/* * coroutine queues and locks * * Copyright (c) 2011 Kevin Wolf <kwolf@redhat.com> * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * The lock-free mutex implementation is based on OSv * (core/lfmutex.cc, include/lockfree/mutex.hh). * Copyright (C) 2013 Cloudius Systems, Ltd. */ #include "qemu/osdep.h" #include "qemu-common.h" #include "qemu/coroutine.h" #include "qemu/coroutine_int.h" #include "qemu/processor.h" #include "qemu/queue.h" #include "block/aio.h" #include "trace.h" void qemu_co_queue_init(CoQueue *queue) { QSIMPLEQ_INIT(&queue->entries); } void coroutine_fn qemu_co_queue_wait_impl(CoQueue *queue, QemuLockable *lock) { Coroutine *self = qemu_coroutine_self(); QSIMPLEQ_INSERT_TAIL(&queue->entries, self, co_queue_next); if (lock) { qemu_lockable_unlock(lock); } /* There is no race condition here. Other threads will call * aio_co_schedule on our AioContext, which can reenter this * coroutine but only after this yield and after the main loop * has gone through the next iteration. */ qemu_coroutine_yield(); assert(qemu_in_coroutine()); /* TODO: OSv implements wait morphing here, where the wakeup * primitive automatically places the woken coroutine on the * mutex's queue. This avoids the thundering herd effect. * This could be implemented for CoMutexes, but not really for * other cases of QemuLockable. */ if (lock) { qemu_lockable_lock(lock); } } /** * qemu_co_queue_run_restart: * * Enter each coroutine that was previously marked for restart by * qemu_co_queue_next() or qemu_co_queue_restart_all(). This function is * invoked by the core coroutine code when the current coroutine yields or * terminates. */ void qemu_co_queue_run_restart(Coroutine *co) { Coroutine *next; QSIMPLEQ_HEAD(, Coroutine) tmp_queue_wakeup = QSIMPLEQ_HEAD_INITIALIZER(tmp_queue_wakeup); trace_qemu_co_queue_run_restart(co); /* Because "co" has yielded, any coroutine that we wakeup can resume it. * If this happens and "co" terminates, co->co_queue_wakeup becomes * invalid memory. Therefore, use a temporary queue and do not touch * the "co" coroutine as soon as you enter another one. * * In its turn resumed "co" can populate "co_queue_wakeup" queue with * new coroutines to be woken up. The caller, who has resumed "co", * will be responsible for traversing the same queue, which may cause * a different wakeup order but not any missing wakeups. */ QSIMPLEQ_CONCAT(&tmp_queue_wakeup, &co->co_queue_wakeup); while ((next = QSIMPLEQ_FIRST(&tmp_queue_wakeup))) { QSIMPLEQ_REMOVE_HEAD(&tmp_queue_wakeup, co_queue_next); qemu_coroutine_enter(next); } } static bool qemu_co_queue_do_restart(CoQueue *queue, bool single) { Coroutine *next; if (QSIMPLEQ_EMPTY(&queue->entries)) { return false; } while ((next = QSIMPLEQ_FIRST(&queue->entries)) != NULL) { QSIMPLEQ_REMOVE_HEAD(&queue->entries, co_queue_next); aio_co_wake(next); if (single) { break; } } return true; } bool coroutine_fn qemu_co_queue_next(CoQueue *queue) { assert(qemu_in_coroutine()); return qemu_co_queue_do_restart(queue, true); } void coroutine_fn qemu_co_queue_restart_all(CoQueue *queue) { assert(qemu_in_coroutine()); qemu_co_queue_do_restart(queue, false); } bool qemu_co_enter_next_impl(CoQueue *queue, QemuLockable *lock) { Coroutine *next; next = QSIMPLEQ_FIRST(&queue->entries); if (!next) { return false; } QSIMPLEQ_REMOVE_HEAD(&queue->entries, co_queue_next); if (lock) { qemu_lockable_unlock(lock); } aio_co_wake(next); if (lock) { qemu_lockable_lock(lock); } return true; } bool qemu_co_queue_empty(CoQueue *queue) { return QSIMPLEQ_FIRST(&queue->entries) == NULL; } /* The wait records are handled with a multiple-producer, single-consumer * lock-free queue. There cannot be two concurrent pop_waiter() calls * because pop_waiter() can only be called while mutex->handoff is zero. * This can happen in three cases: * - in qemu_co_mutex_unlock, before the hand-off protocol has started. * In this case, qemu_co_mutex_lock will see mutex->handoff == 0 and * not take part in the handoff. * - in qemu_co_mutex_lock, if it steals the hand-off responsibility from * qemu_co_mutex_unlock. In this case, qemu_co_mutex_unlock will fail * the cmpxchg (it will see either 0 or the next sequence value) and * exit. The next hand-off cannot begin until qemu_co_mutex_lock has * woken up someone. * - in qemu_co_mutex_unlock, if it takes the hand-off token itself. * In this case another iteration starts with mutex->handoff == 0; * a concurrent qemu_co_mutex_lock will fail the cmpxchg, and * qemu_co_mutex_unlock will go back to case (1). * * The following functions manage this queue. */ typedef struct CoWaitRecord { Coroutine *co; QSLIST_ENTRY(CoWaitRecord) next; } CoWaitRecord; static void push_waiter(CoMutex *mutex, CoWaitRecord *w) { w->co = qemu_coroutine_self(); QSLIST_INSERT_HEAD_ATOMIC(&mutex->from_push, w, next); } static void move_waiters(CoMutex *mutex) { QSLIST_HEAD(, CoWaitRecord) reversed; QSLIST_MOVE_ATOMIC(&reversed, &mutex->from_push); while (!QSLIST_EMPTY(&reversed)) { CoWaitRecord *w = QSLIST_FIRST(&reversed); QSLIST_REMOVE_HEAD(&reversed, next); QSLIST_INSERT_HEAD(&mutex->to_pop, w, next); } } static CoWaitRecord *pop_waiter(CoMutex *mutex) { CoWaitRecord *w; if (QSLIST_EMPTY(&mutex->to_pop)) { move_waiters(mutex); if (QSLIST_EMPTY(&mutex->to_pop)) { return NULL; } } w = QSLIST_FIRST(&mutex->to_pop); QSLIST_REMOVE_HEAD(&mutex->to_pop, next); return w; } static bool has_waiters(CoMutex *mutex) { return QSLIST_EMPTY(&mutex->to_pop) || QSLIST_EMPTY(&mutex->from_push); } void qemu_co_mutex_init(CoMutex *mutex) { memset(mutex, 0, sizeof(*mutex)); } static void coroutine_fn qemu_co_mutex_wake(CoMutex *mutex, Coroutine *co) { /* Read co before co->ctx; pairs with smp_wmb() in * qemu_coroutine_enter(). */ smp_read_barrier_depends(); mutex->ctx = co->ctx; aio_co_wake(co); } static void coroutine_fn qemu_co_mutex_lock_slowpath(AioContext *ctx, CoMutex *mutex) { Coroutine *self = qemu_coroutine_self(); CoWaitRecord w; unsigned old_handoff; trace_qemu_co_mutex_lock_entry(mutex, self); w.co = self; push_waiter(mutex, &w); /* This is the "Responsibility Hand-Off" protocol; a lock() picks from * a concurrent unlock() the responsibility of waking somebody up. */ old_handoff = atomic_mb_read(&mutex->handoff); if (old_handoff && has_waiters(mutex) && atomic_cmpxchg(&mutex->handoff, old_handoff, 0) == old_handoff) { /* There can be no concurrent pops, because there can be only * one active handoff at a time. */ CoWaitRecord *to_wake = pop_waiter(mutex); Coroutine *co = to_wake->co; if (co == self) { /* We got the lock ourselves! */ assert(to_wake == &w); mutex->ctx = ctx; return; } qemu_co_mutex_wake(mutex, co); } qemu_coroutine_yield(); trace_qemu_co_mutex_lock_return(mutex, self); } void coroutine_fn qemu_co_mutex_lock(CoMutex *mutex) { AioContext *ctx = qemu_get_current_aio_context(); Coroutine *self = qemu_coroutine_self(); int waiters, i; /* Running a very small critical section on pthread_mutex_t and CoMutex * shows that pthread_mutex_t is much faster because it doesn't actually * go to sleep. What happens is that the critical section is shorter * than the latency of entering the kernel and thus FUTEX_WAIT always * fails. With CoMutex there is no such latency but you still want to * avoid wait and wakeup. So introduce it artificially. */ i = 0; retry_fast_path: waiters = atomic_cmpxchg(&mutex->locked, 0, 1); if (waiters != 0) { while (waiters == 1 && ++i < 1000) { if (atomic_read(&mutex->ctx) == ctx) { break; } if (atomic_read(&mutex->locked) == 0) { goto retry_fast_path; } cpu_relax(); } waiters = atomic_fetch_inc(&mutex->locked); } if (waiters == 0) { /* Uncontended. */ trace_qemu_co_mutex_lock_uncontended(mutex, self); mutex->ctx = ctx; } else { qemu_co_mutex_lock_slowpath(ctx, mutex); } mutex->holder = self; self->locks_held++; } void coroutine_fn qemu_co_mutex_unlock(CoMutex *mutex) { Coroutine *self = qemu_coroutine_self(); trace_qemu_co_mutex_unlock_entry(mutex, self); assert(mutex->locked); assert(mutex->holder == self); assert(qemu_in_coroutine()); mutex->ctx = NULL; mutex->holder = NULL; self->locks_held--; if (atomic_fetch_dec(&mutex->locked) == 1) { /* No waiting qemu_co_mutex_lock(). Pfew, that was easy! */ return; } for (;;) { CoWaitRecord *to_wake = pop_waiter(mutex); unsigned our_handoff; if (to_wake) { qemu_co_mutex_wake(mutex, to_wake->co); break; } /* Some concurrent lock() is in progress (we know this because * mutex->locked was >1) but it hasn't yet put itself on the wait * queue. Pick a sequence number for the handoff protocol (not 0). */ if (++mutex->sequence == 0) { mutex->sequence = 1; } our_handoff = mutex->sequence; atomic_mb_set(&mutex->handoff, our_handoff); if (!has_waiters(mutex)) { /* The concurrent lock has not added itself yet, so it * will be able to pick our handoff. */ break; } /* Try to do the handoff protocol ourselves; if somebody else has * already taken it, however, we're done and they're responsible. */ if (atomic_cmpxchg(&mutex->handoff, our_handoff, 0) != our_handoff) { break; } } trace_qemu_co_mutex_unlock_return(mutex, self); } void qemu_co_rwlock_init(CoRwlock *lock) { memset(lock, 0, sizeof(*lock)); qemu_co_queue_init(&lock->queue); qemu_co_mutex_init(&lock->mutex); } void qemu_co_rwlock_rdlock(CoRwlock *lock) { Coroutine *self = qemu_coroutine_self(); qemu_co_mutex_lock(&lock->mutex); /* For fairness, wait if a writer is in line. */ while (lock->pending_writer) { qemu_co_queue_wait(&lock->queue, &lock->mutex); } lock->reader++; qemu_co_mutex_unlock(&lock->mutex); /* The rest of the read-side critical section is run without the mutex. */ self->locks_held++; } void qemu_co_rwlock_unlock(CoRwlock *lock) { Coroutine *self = qemu_coroutine_self(); assert(qemu_in_coroutine()); if (!lock->reader) { /* The critical section started in qemu_co_rwlock_wrlock. */ qemu_co_queue_restart_all(&lock->queue); } else { self->locks_held--; qemu_co_mutex_lock(&lock->mutex); lock->reader--; assert(lock->reader >= 0); /* Wakeup only one waiting writer */ if (!lock->reader) { qemu_co_queue_next(&lock->queue); } } qemu_co_mutex_unlock(&lock->mutex); } void qemu_co_rwlock_downgrade(CoRwlock *lock) { Coroutine *self = qemu_coroutine_self(); /* lock->mutex critical section started in qemu_co_rwlock_wrlock or * qemu_co_rwlock_upgrade. */ assert(lock->reader == 0); lock->reader++; qemu_co_mutex_unlock(&lock->mutex); /* The rest of the read-side critical section is run without the mutex. */ self->locks_held++; } void qemu_co_rwlock_wrlock(CoRwlock *lock) { qemu_co_mutex_lock(&lock->mutex); lock->pending_writer++; while (lock->reader) { qemu_co_queue_wait(&lock->queue, &lock->mutex); } lock->pending_writer--; /* The rest of the write-side critical section is run with * the mutex taken, so that lock->reader remains zero. * There is no need to update self->locks_held. */ } void qemu_co_rwlock_upgrade(CoRwlock *lock) { Coroutine *self = qemu_coroutine_self(); qemu_co_mutex_lock(&lock->mutex); assert(lock->reader > 0); lock->reader--; lock->pending_writer++; while (lock->reader) { qemu_co_queue_wait(&lock->queue, &lock->mutex); } lock->pending_writer--; /* The rest of the write-side critical section is run with * the mutex taken, similar to qemu_co_rwlock_wrlock. Do * not account for the lock twice in self->locks_held. */ self->locks_held--; }