/* * QEMU keysym to keycode conversion using rdesktop keymaps * * Copyright (c) 2004 Johannes Schindelin * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "keymaps.h" #include "sysemu/sysemu.h" #include "trace.h" static int get_keysym(const name2keysym_t *table, const char *name) { const name2keysym_t *p; for(p = table; p->name != NULL; p++) { if (!strcmp(p->name, name)) { return p->keysym; } } if (name[0] == 'U' && strlen(name) == 5) { /* try unicode Uxxxx */ char *end; int ret = (int)strtoul(name + 1, &end, 16); if (*end == '\0' && ret > 0) { return ret; } } return 0; } static void add_to_key_range(struct key_range **krp, int code) { struct key_range *kr; for (kr = *krp; kr; kr = kr->next) { if (code >= kr->start && code <= kr->end) { break; } if (code == kr->start - 1) { kr->start--; break; } if (code == kr->end + 1) { kr->end++; break; } } if (kr == NULL) { kr = g_malloc0(sizeof(*kr)); kr->start = kr->end = code; kr->next = *krp; *krp = kr; } } static void add_keysym(char *line, int keysym, int keycode, kbd_layout_t *k) { if (keysym < MAX_NORMAL_KEYCODE) { trace_keymap_add("normal", keysym, keycode, line); k->keysym2keycode[keysym] = keycode; } else { if (k->extra_count >= MAX_EXTRA_COUNT) { fprintf(stderr, "Warning: Could not assign keysym %s (0x%x)" " because of memory constraints.\n", line, keysym); } else { trace_keymap_add("extra", keysym, keycode, line); k->keysym2keycode_extra[k->extra_count]. keysym = keysym; k->keysym2keycode_extra[k->extra_count]. keycode = keycode; k->extra_count++; } } } static kbd_layout_t *parse_keyboard_layout(const name2keysym_t *table, const char *language, kbd_layout_t *k) { FILE *f; char * filename; char line[1024]; char keyname[64]; int len; filename = qemu_find_file(QEMU_FILE_TYPE_KEYMAP, language); trace_keymap_parse(filename); f = filename ? fopen(filename, "r") : NULL; g_free(filename); if (!f) { fprintf(stderr, "Could not read keymap file: '%s'\n", language); return NULL; } if (!k) { k = g_new0(kbd_layout_t, 1); } for(;;) { if (fgets(line, 1024, f) == NULL) { break; } len = strlen(line); if (len > 0 && line[len - 1] == '\n') { line[len - 1] = '\0'; } if (line[0] == '#') { continue; } if (!strncmp(line, "map ", 4)) { continue; } if (!strncmp(line, "include ", 8)) { parse_keyboard_layout(table, line + 8, k); } else { int offset = 0; while (line[offset] != 0 && line[offset] != ' ' && offset < sizeof(keyname) - 1) { keyname[offset] = line[offset]; offset++; } keyname[offset] = 0; if (strlen(keyname)) { int keysym; keysym = get_keysym(table, keyname); if (keysym == 0) { /* warn_report("unknown keysym %s", line);*/ } else { const char *rest = line + offset + 1; int keycode = strtol(rest, NULL, 0); if (strstr(rest, "numlock")) { add_to_key_range(&k->keypad_range, keycode); add_to_key_range(&k->numlock_range, keysym); /* fprintf(stderr, "keypad keysym %04x keycode %d\n", keysym, keycode); */ } if (strstr(rest, "shift")) { keycode |= SCANCODE_SHIFT; } if (strstr(rest, "altgr")) { keycode |= SCANCODE_ALTGR; } if (strstr(rest, "ctrl")) { keycode |= SCANCODE_CTRL; } add_keysym(line, keysym, keycode, k); if (strstr(rest, "addupper")) { char *c; for (c = keyname; *c; c++) { *c = qemu_toupper(*c); } keysym = get_keysym(table, keyname); if (keysym) { add_keysym(line, keysym, keycode | SCANCODE_SHIFT, k); } } } } } } fclose(f); return k; } void *init_keyboard_layout(const name2keysym_t *table, const char *language) { return parse_keyboard_layout(table, language, NULL); } int keysym2scancode(void *kbd_layout, int keysym) { kbd_layout_t *k = kbd_layout; if (keysym < MAX_NORMAL_KEYCODE) { if (k->keysym2keycode[keysym] == 0) { trace_keymap_unmapped(keysym); fprintf(stderr, "Warning: no scancode found for keysym %d\n", keysym); } return k->keysym2keycode[keysym]; } else { int i; #ifdef XK_ISO_Left_Tab if (keysym == XK_ISO_Left_Tab) { keysym = XK_Tab; } #endif for (i = 0; i < k->extra_count; i++) { if (k->keysym2keycode_extra[i].keysym == keysym) { return k->keysym2keycode_extra[i].keycode; } } } return 0; } int keycode_is_keypad(void *kbd_layout, int keycode) { kbd_layout_t *k = kbd_layout; struct key_range *kr; for (kr = k->keypad_range; kr; kr = kr->next) { if (keycode >= kr->start && keycode <= kr->end) { return 1; } } return 0; } int keysym_is_numlock(void *kbd_layout, int keysym) { kbd_layout_t *k = kbd_layout; struct key_range *kr; for (kr = k->numlock_range; kr; kr = kr->next) { if (keysym >= kr->start && keysym <= kr->end) { return 1; } } return 0; }