/* * Unit-tests for visitor-based serialization * * Copyright (C) 2014-2015 Red Hat, Inc. * Copyright IBM, Corp. 2012 * * Authors: * Michael Roth <mdroth@linux.vnet.ibm.com> * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include <float.h> #include "qemu-common.h" #include "test-qapi-types.h" #include "test-qapi-visit.h" #include "qapi/error.h" #include "qapi/qmp/types.h" #include "qapi/qmp/qjson.h" #include "qapi/qmp-input-visitor.h" #include "qapi/qmp-output-visitor.h" #include "qapi/string-input-visitor.h" #include "qapi/string-output-visitor.h" #include "qapi-types.h" #include "qapi-visit.h" #include "qapi/dealloc-visitor.h" enum PrimitiveTypeKind { PTYPE_STRING = 0, PTYPE_BOOLEAN, PTYPE_NUMBER, PTYPE_INTEGER, PTYPE_U8, PTYPE_U16, PTYPE_U32, PTYPE_U64, PTYPE_S8, PTYPE_S16, PTYPE_S32, PTYPE_S64, PTYPE_EOL, }; typedef struct PrimitiveType { union { const char *string; bool boolean; double number; int64_t integer; uint8_t u8; uint16_t u16; uint32_t u32; uint64_t u64; int8_t s8; int16_t s16; int32_t s32; int64_t s64; intmax_t max; } value; enum PrimitiveTypeKind type; const char *description; } PrimitiveType; typedef struct PrimitiveList { union { strList *strings; boolList *booleans; numberList *numbers; intList *integers; int8List *s8_integers; int16List *s16_integers; int32List *s32_integers; int64List *s64_integers; uint8List *u8_integers; uint16List *u16_integers; uint32List *u32_integers; uint64List *u64_integers; } value; enum PrimitiveTypeKind type; const char *description; } PrimitiveList; /* test helpers */ typedef void (*VisitorFunc)(Visitor *v, void **native, Error **errp); static void dealloc_helper(void *native_in, VisitorFunc visit, Error **errp) { Visitor *v = qapi_dealloc_visitor_new(); visit(v, &native_in, errp); visit_free(v); } static void visit_primitive_type(Visitor *v, void **native, Error **errp) { PrimitiveType *pt = *native; switch(pt->type) { case PTYPE_STRING: visit_type_str(v, NULL, (char **)&pt->value.string, errp); break; case PTYPE_BOOLEAN: visit_type_bool(v, NULL, &pt->value.boolean, errp); break; case PTYPE_NUMBER: visit_type_number(v, NULL, &pt->value.number, errp); break; case PTYPE_INTEGER: visit_type_int(v, NULL, &pt->value.integer, errp); break; case PTYPE_U8: visit_type_uint8(v, NULL, &pt->value.u8, errp); break; case PTYPE_U16: visit_type_uint16(v, NULL, &pt->value.u16, errp); break; case PTYPE_U32: visit_type_uint32(v, NULL, &pt->value.u32, errp); break; case PTYPE_U64: visit_type_uint64(v, NULL, &pt->value.u64, errp); break; case PTYPE_S8: visit_type_int8(v, NULL, &pt->value.s8, errp); break; case PTYPE_S16: visit_type_int16(v, NULL, &pt->value.s16, errp); break; case PTYPE_S32: visit_type_int32(v, NULL, &pt->value.s32, errp); break; case PTYPE_S64: visit_type_int64(v, NULL, &pt->value.s64, errp); break; case PTYPE_EOL: g_assert_not_reached(); } } static void visit_primitive_list(Visitor *v, void **native, Error **errp) { PrimitiveList *pl = *native; switch (pl->type) { case PTYPE_STRING: visit_type_strList(v, NULL, &pl->value.strings, errp); break; case PTYPE_BOOLEAN: visit_type_boolList(v, NULL, &pl->value.booleans, errp); break; case PTYPE_NUMBER: visit_type_numberList(v, NULL, &pl->value.numbers, errp); break; case PTYPE_INTEGER: visit_type_intList(v, NULL, &pl->value.integers, errp); break; case PTYPE_S8: visit_type_int8List(v, NULL, &pl->value.s8_integers, errp); break; case PTYPE_S16: visit_type_int16List(v, NULL, &pl->value.s16_integers, errp); break; case PTYPE_S32: visit_type_int32List(v, NULL, &pl->value.s32_integers, errp); break; case PTYPE_S64: visit_type_int64List(v, NULL, &pl->value.s64_integers, errp); break; case PTYPE_U8: visit_type_uint8List(v, NULL, &pl->value.u8_integers, errp); break; case PTYPE_U16: visit_type_uint16List(v, NULL, &pl->value.u16_integers, errp); break; case PTYPE_U32: visit_type_uint32List(v, NULL, &pl->value.u32_integers, errp); break; case PTYPE_U64: visit_type_uint64List(v, NULL, &pl->value.u64_integers, errp); break; default: g_assert_not_reached(); } } static TestStruct *struct_create(void) { TestStruct *ts = g_malloc0(sizeof(*ts)); ts->integer = -42; ts->boolean = true; ts->string = strdup("test string"); return ts; } static void struct_compare(TestStruct *ts1, TestStruct *ts2) { g_assert(ts1); g_assert(ts2); g_assert_cmpint(ts1->integer, ==, ts2->integer); g_assert(ts1->boolean == ts2->boolean); g_assert_cmpstr(ts1->string, ==, ts2->string); } static void struct_cleanup(TestStruct *ts) { g_free(ts->string); g_free(ts); } static void visit_struct(Visitor *v, void **native, Error **errp) { visit_type_TestStruct(v, NULL, (TestStruct **)native, errp); } static UserDefTwo *nested_struct_create(void) { UserDefTwo *udnp = g_malloc0(sizeof(*udnp)); udnp->string0 = strdup("test_string0"); udnp->dict1 = g_malloc0(sizeof(*udnp->dict1)); udnp->dict1->string1 = strdup("test_string1"); udnp->dict1->dict2 = g_malloc0(sizeof(*udnp->dict1->dict2)); udnp->dict1->dict2->userdef = g_new0(UserDefOne, 1); udnp->dict1->dict2->userdef->integer = 42; udnp->dict1->dict2->userdef->string = strdup("test_string"); udnp->dict1->dict2->string = strdup("test_string2"); udnp->dict1->dict3 = g_malloc0(sizeof(*udnp->dict1->dict3)); udnp->dict1->has_dict3 = true; udnp->dict1->dict3->userdef = g_new0(UserDefOne, 1); udnp->dict1->dict3->userdef->integer = 43; udnp->dict1->dict3->userdef->string = strdup("test_string"); udnp->dict1->dict3->string = strdup("test_string3"); return udnp; } static void nested_struct_compare(UserDefTwo *udnp1, UserDefTwo *udnp2) { g_assert(udnp1); g_assert(udnp2); g_assert_cmpstr(udnp1->string0, ==, udnp2->string0); g_assert_cmpstr(udnp1->dict1->string1, ==, udnp2->dict1->string1); g_assert_cmpint(udnp1->dict1->dict2->userdef->integer, ==, udnp2->dict1->dict2->userdef->integer); g_assert_cmpstr(udnp1->dict1->dict2->userdef->string, ==, udnp2->dict1->dict2->userdef->string); g_assert_cmpstr(udnp1->dict1->dict2->string, ==, udnp2->dict1->dict2->string); g_assert(udnp1->dict1->has_dict3 == udnp2->dict1->has_dict3); g_assert_cmpint(udnp1->dict1->dict3->userdef->integer, ==, udnp2->dict1->dict3->userdef->integer); g_assert_cmpstr(udnp1->dict1->dict3->userdef->string, ==, udnp2->dict1->dict3->userdef->string); g_assert_cmpstr(udnp1->dict1->dict3->string, ==, udnp2->dict1->dict3->string); } static void nested_struct_cleanup(UserDefTwo *udnp) { qapi_free_UserDefTwo(udnp); } static void visit_nested_struct(Visitor *v, void **native, Error **errp) { visit_type_UserDefTwo(v, NULL, (UserDefTwo **)native, errp); } static void visit_nested_struct_list(Visitor *v, void **native, Error **errp) { visit_type_UserDefTwoList(v, NULL, (UserDefTwoList **)native, errp); } /* test cases */ typedef enum VisitorCapabilities { VCAP_PRIMITIVES = 1, VCAP_STRUCTURES = 2, VCAP_LISTS = 4, VCAP_PRIMITIVE_LISTS = 8, } VisitorCapabilities; typedef struct SerializeOps { void (*serialize)(void *native_in, void **datap, VisitorFunc visit, Error **errp); void (*deserialize)(void **native_out, void *datap, VisitorFunc visit, Error **errp); void (*cleanup)(void *datap); const char *type; VisitorCapabilities caps; } SerializeOps; typedef struct TestArgs { const SerializeOps *ops; void *test_data; } TestArgs; static void test_primitives(gconstpointer opaque) { TestArgs *args = (TestArgs *) opaque; const SerializeOps *ops = args->ops; PrimitiveType *pt = args->test_data; PrimitiveType *pt_copy = g_malloc0(sizeof(*pt_copy)); void *serialize_data; pt_copy->type = pt->type; ops->serialize(pt, &serialize_data, visit_primitive_type, &error_abort); ops->deserialize((void **)&pt_copy, serialize_data, visit_primitive_type, &error_abort); g_assert(pt_copy != NULL); if (pt->type == PTYPE_STRING) { g_assert_cmpstr(pt->value.string, ==, pt_copy->value.string); g_free((char *)pt_copy->value.string); } else if (pt->type == PTYPE_NUMBER) { GString *double_expected = g_string_new(""); GString *double_actual = g_string_new(""); /* we serialize with %f for our reference visitors, so rather than fuzzy * floating math to test "equality", just compare the formatted values */ g_string_printf(double_expected, "%.6f", pt->value.number); g_string_printf(double_actual, "%.6f", pt_copy->value.number); g_assert_cmpstr(double_actual->str, ==, double_expected->str); g_string_free(double_expected, true); g_string_free(double_actual, true); } else if (pt->type == PTYPE_BOOLEAN) { g_assert_cmpint(!!pt->value.max, ==, !!pt->value.max); } else { g_assert_cmpint(pt->value.max, ==, pt_copy->value.max); } ops->cleanup(serialize_data); g_free(args); g_free(pt_copy); } static void test_primitive_lists(gconstpointer opaque) { TestArgs *args = (TestArgs *) opaque; const SerializeOps *ops = args->ops; PrimitiveType *pt = args->test_data; PrimitiveList pl = { .value = { NULL } }; PrimitiveList pl_copy = { .value = { NULL } }; PrimitiveList *pl_copy_ptr = &pl_copy; void *serialize_data; void *cur_head = NULL; int i; pl.type = pl_copy.type = pt->type; /* build up our list of primitive types */ for (i = 0; i < 32; i++) { switch (pl.type) { case PTYPE_STRING: { strList *tmp = g_new0(strList, 1); tmp->value = g_strdup(pt->value.string); if (pl.value.strings == NULL) { pl.value.strings = tmp; } else { tmp->next = pl.value.strings; pl.value.strings = tmp; } break; } case PTYPE_INTEGER: { intList *tmp = g_new0(intList, 1); tmp->value = pt->value.integer; if (pl.value.integers == NULL) { pl.value.integers = tmp; } else { tmp->next = pl.value.integers; pl.value.integers = tmp; } break; } case PTYPE_S8: { int8List *tmp = g_new0(int8List, 1); tmp->value = pt->value.s8; if (pl.value.s8_integers == NULL) { pl.value.s8_integers = tmp; } else { tmp->next = pl.value.s8_integers; pl.value.s8_integers = tmp; } break; } case PTYPE_S16: { int16List *tmp = g_new0(int16List, 1); tmp->value = pt->value.s16; if (pl.value.s16_integers == NULL) { pl.value.s16_integers = tmp; } else { tmp->next = pl.value.s16_integers; pl.value.s16_integers = tmp; } break; } case PTYPE_S32: { int32List *tmp = g_new0(int32List, 1); tmp->value = pt->value.s32; if (pl.value.s32_integers == NULL) { pl.value.s32_integers = tmp; } else { tmp->next = pl.value.s32_integers; pl.value.s32_integers = tmp; } break; } case PTYPE_S64: { int64List *tmp = g_new0(int64List, 1); tmp->value = pt->value.s64; if (pl.value.s64_integers == NULL) { pl.value.s64_integers = tmp; } else { tmp->next = pl.value.s64_integers; pl.value.s64_integers = tmp; } break; } case PTYPE_U8: { uint8List *tmp = g_new0(uint8List, 1); tmp->value = pt->value.u8; if (pl.value.u8_integers == NULL) { pl.value.u8_integers = tmp; } else { tmp->next = pl.value.u8_integers; pl.value.u8_integers = tmp; } break; } case PTYPE_U16: { uint16List *tmp = g_new0(uint16List, 1); tmp->value = pt->value.u16; if (pl.value.u16_integers == NULL) { pl.value.u16_integers = tmp; } else { tmp->next = pl.value.u16_integers; pl.value.u16_integers = tmp; } break; } case PTYPE_U32: { uint32List *tmp = g_new0(uint32List, 1); tmp->value = pt->value.u32; if (pl.value.u32_integers == NULL) { pl.value.u32_integers = tmp; } else { tmp->next = pl.value.u32_integers; pl.value.u32_integers = tmp; } break; } case PTYPE_U64: { uint64List *tmp = g_new0(uint64List, 1); tmp->value = pt->value.u64; if (pl.value.u64_integers == NULL) { pl.value.u64_integers = tmp; } else { tmp->next = pl.value.u64_integers; pl.value.u64_integers = tmp; } break; } case PTYPE_NUMBER: { numberList *tmp = g_new0(numberList, 1); tmp->value = pt->value.number; if (pl.value.numbers == NULL) { pl.value.numbers = tmp; } else { tmp->next = pl.value.numbers; pl.value.numbers = tmp; } break; } case PTYPE_BOOLEAN: { boolList *tmp = g_new0(boolList, 1); tmp->value = pt->value.boolean; if (pl.value.booleans == NULL) { pl.value.booleans = tmp; } else { tmp->next = pl.value.booleans; pl.value.booleans = tmp; } break; } default: g_assert_not_reached(); } } ops->serialize((void **)&pl, &serialize_data, visit_primitive_list, &error_abort); ops->deserialize((void **)&pl_copy_ptr, serialize_data, visit_primitive_list, &error_abort); i = 0; /* compare our deserialized list of primitives to the original */ do { switch (pl_copy.type) { case PTYPE_STRING: { strList *ptr; if (cur_head) { ptr = cur_head; cur_head = ptr->next; } else { cur_head = ptr = pl_copy.value.strings; } g_assert_cmpstr(pt->value.string, ==, ptr->value); break; } case PTYPE_INTEGER: { intList *ptr; if (cur_head) { ptr = cur_head; cur_head = ptr->next; } else { cur_head = ptr = pl_copy.value.integers; } g_assert_cmpint(pt->value.integer, ==, ptr->value); break; } case PTYPE_S8: { int8List *ptr; if (cur_head) { ptr = cur_head; cur_head = ptr->next; } else { cur_head = ptr = pl_copy.value.s8_integers; } g_assert_cmpint(pt->value.s8, ==, ptr->value); break; } case PTYPE_S16: { int16List *ptr; if (cur_head) { ptr = cur_head; cur_head = ptr->next; } else { cur_head = ptr = pl_copy.value.s16_integers; } g_assert_cmpint(pt->value.s16, ==, ptr->value); break; } case PTYPE_S32: { int32List *ptr; if (cur_head) { ptr = cur_head; cur_head = ptr->next; } else { cur_head = ptr = pl_copy.value.s32_integers; } g_assert_cmpint(pt->value.s32, ==, ptr->value); break; } case PTYPE_S64: { int64List *ptr; if (cur_head) { ptr = cur_head; cur_head = ptr->next; } else { cur_head = ptr = pl_copy.value.s64_integers; } g_assert_cmpint(pt->value.s64, ==, ptr->value); break; } case PTYPE_U8: { uint8List *ptr; if (cur_head) { ptr = cur_head; cur_head = ptr->next; } else { cur_head = ptr = pl_copy.value.u8_integers; } g_assert_cmpint(pt->value.u8, ==, ptr->value); break; } case PTYPE_U16: { uint16List *ptr; if (cur_head) { ptr = cur_head; cur_head = ptr->next; } else { cur_head = ptr = pl_copy.value.u16_integers; } g_assert_cmpint(pt->value.u16, ==, ptr->value); break; } case PTYPE_U32: { uint32List *ptr; if (cur_head) { ptr = cur_head; cur_head = ptr->next; } else { cur_head = ptr = pl_copy.value.u32_integers; } g_assert_cmpint(pt->value.u32, ==, ptr->value); break; } case PTYPE_U64: { uint64List *ptr; if (cur_head) { ptr = cur_head; cur_head = ptr->next; } else { cur_head = ptr = pl_copy.value.u64_integers; } g_assert_cmpint(pt->value.u64, ==, ptr->value); break; } case PTYPE_NUMBER: { numberList *ptr; GString *double_expected = g_string_new(""); GString *double_actual = g_string_new(""); if (cur_head) { ptr = cur_head; cur_head = ptr->next; } else { cur_head = ptr = pl_copy.value.numbers; } /* we serialize with %f for our reference visitors, so rather than * fuzzy floating math to test "equality", just compare the * formatted values */ g_string_printf(double_expected, "%.6f", pt->value.number); g_string_printf(double_actual, "%.6f", ptr->value); g_assert_cmpstr(double_actual->str, ==, double_expected->str); g_string_free(double_expected, true); g_string_free(double_actual, true); break; } case PTYPE_BOOLEAN: { boolList *ptr; if (cur_head) { ptr = cur_head; cur_head = ptr->next; } else { cur_head = ptr = pl_copy.value.booleans; } g_assert_cmpint(!!pt->value.boolean, ==, !!ptr->value); break; } default: g_assert_not_reached(); } i++; } while (cur_head); g_assert_cmpint(i, ==, 33); ops->cleanup(serialize_data); dealloc_helper(&pl, visit_primitive_list, &error_abort); dealloc_helper(&pl_copy, visit_primitive_list, &error_abort); g_free(args); } static void test_struct(gconstpointer opaque) { TestArgs *args = (TestArgs *) opaque; const SerializeOps *ops = args->ops; TestStruct *ts = struct_create(); TestStruct *ts_copy = NULL; void *serialize_data; ops->serialize(ts, &serialize_data, visit_struct, &error_abort); ops->deserialize((void **)&ts_copy, serialize_data, visit_struct, &error_abort); struct_compare(ts, ts_copy); struct_cleanup(ts); struct_cleanup(ts_copy); ops->cleanup(serialize_data); g_free(args); } static void test_nested_struct(gconstpointer opaque) { TestArgs *args = (TestArgs *) opaque; const SerializeOps *ops = args->ops; UserDefTwo *udnp = nested_struct_create(); UserDefTwo *udnp_copy = NULL; void *serialize_data; ops->serialize(udnp, &serialize_data, visit_nested_struct, &error_abort); ops->deserialize((void **)&udnp_copy, serialize_data, visit_nested_struct, &error_abort); nested_struct_compare(udnp, udnp_copy); nested_struct_cleanup(udnp); nested_struct_cleanup(udnp_copy); ops->cleanup(serialize_data); g_free(args); } static void test_nested_struct_list(gconstpointer opaque) { TestArgs *args = (TestArgs *) opaque; const SerializeOps *ops = args->ops; UserDefTwoList *listp = NULL, *tmp, *tmp_copy, *listp_copy = NULL; void *serialize_data; int i = 0; for (i = 0; i < 8; i++) { tmp = g_new0(UserDefTwoList, 1); tmp->value = nested_struct_create(); tmp->next = listp; listp = tmp; } ops->serialize(listp, &serialize_data, visit_nested_struct_list, &error_abort); ops->deserialize((void **)&listp_copy, serialize_data, visit_nested_struct_list, &error_abort); tmp = listp; tmp_copy = listp_copy; while (listp_copy) { g_assert(listp); nested_struct_compare(listp->value, listp_copy->value); listp = listp->next; listp_copy = listp_copy->next; } qapi_free_UserDefTwoList(tmp); qapi_free_UserDefTwoList(tmp_copy); ops->cleanup(serialize_data); g_free(args); } static PrimitiveType pt_values[] = { /* string tests */ { .description = "string_empty", .type = PTYPE_STRING, .value.string = "", }, { .description = "string_whitespace", .type = PTYPE_STRING, .value.string = "a b c\td", }, { .description = "string_newlines", .type = PTYPE_STRING, .value.string = "a\nb\n", }, { .description = "string_commas", .type = PTYPE_STRING, .value.string = "a,b, c,d", }, { .description = "string_single_quoted", .type = PTYPE_STRING, .value.string = "'a b',cd", }, { .description = "string_double_quoted", .type = PTYPE_STRING, .value.string = "\"a b\",cd", }, /* boolean tests */ { .description = "boolean_true1", .type = PTYPE_BOOLEAN, .value.boolean = true, }, { .description = "boolean_true2", .type = PTYPE_BOOLEAN, .value.boolean = 8, }, { .description = "boolean_true3", .type = PTYPE_BOOLEAN, .value.boolean = -1, }, { .description = "boolean_false1", .type = PTYPE_BOOLEAN, .value.boolean = false, }, { .description = "boolean_false2", .type = PTYPE_BOOLEAN, .value.boolean = 0, }, /* number tests (double) */ /* note: we format these to %.6f before comparing, since that's how * we serialize them and it doesn't make sense to check precision * beyond that. */ { .description = "number_sanity1", .type = PTYPE_NUMBER, .value.number = -1, }, { .description = "number_sanity2", .type = PTYPE_NUMBER, .value.number = 3.14159265, }, { .description = "number_min", .type = PTYPE_NUMBER, .value.number = DBL_MIN, }, { .description = "number_max", .type = PTYPE_NUMBER, .value.number = DBL_MAX, }, /* integer tests (int64) */ { .description = "integer_sanity1", .type = PTYPE_INTEGER, .value.integer = -1, }, { .description = "integer_sanity2", .type = PTYPE_INTEGER, .value.integer = INT64_MAX / 2 + 1, }, { .description = "integer_min", .type = PTYPE_INTEGER, .value.integer = INT64_MIN, }, { .description = "integer_max", .type = PTYPE_INTEGER, .value.integer = INT64_MAX, }, /* uint8 tests */ { .description = "uint8_sanity1", .type = PTYPE_U8, .value.u8 = 1, }, { .description = "uint8_sanity2", .type = PTYPE_U8, .value.u8 = UINT8_MAX / 2 + 1, }, { .description = "uint8_min", .type = PTYPE_U8, .value.u8 = 0, }, { .description = "uint8_max", .type = PTYPE_U8, .value.u8 = UINT8_MAX, }, /* uint16 tests */ { .description = "uint16_sanity1", .type = PTYPE_U16, .value.u16 = 1, }, { .description = "uint16_sanity2", .type = PTYPE_U16, .value.u16 = UINT16_MAX / 2 + 1, }, { .description = "uint16_min", .type = PTYPE_U16, .value.u16 = 0, }, { .description = "uint16_max", .type = PTYPE_U16, .value.u16 = UINT16_MAX, }, /* uint32 tests */ { .description = "uint32_sanity1", .type = PTYPE_U32, .value.u32 = 1, }, { .description = "uint32_sanity2", .type = PTYPE_U32, .value.u32 = UINT32_MAX / 2 + 1, }, { .description = "uint32_min", .type = PTYPE_U32, .value.u32 = 0, }, { .description = "uint32_max", .type = PTYPE_U32, .value.u32 = UINT32_MAX, }, /* uint64 tests */ { .description = "uint64_sanity1", .type = PTYPE_U64, .value.u64 = 1, }, { .description = "uint64_sanity2", .type = PTYPE_U64, .value.u64 = UINT64_MAX / 2 + 1, }, { .description = "uint64_min", .type = PTYPE_U64, .value.u64 = 0, }, { .description = "uint64_max", .type = PTYPE_U64, .value.u64 = UINT64_MAX, }, /* int8 tests */ { .description = "int8_sanity1", .type = PTYPE_S8, .value.s8 = -1, }, { .description = "int8_sanity2", .type = PTYPE_S8, .value.s8 = INT8_MAX / 2 + 1, }, { .description = "int8_min", .type = PTYPE_S8, .value.s8 = INT8_MIN, }, { .description = "int8_max", .type = PTYPE_S8, .value.s8 = INT8_MAX, }, /* int16 tests */ { .description = "int16_sanity1", .type = PTYPE_S16, .value.s16 = -1, }, { .description = "int16_sanity2", .type = PTYPE_S16, .value.s16 = INT16_MAX / 2 + 1, }, { .description = "int16_min", .type = PTYPE_S16, .value.s16 = INT16_MIN, }, { .description = "int16_max", .type = PTYPE_S16, .value.s16 = INT16_MAX, }, /* int32 tests */ { .description = "int32_sanity1", .type = PTYPE_S32, .value.s32 = -1, }, { .description = "int32_sanity2", .type = PTYPE_S32, .value.s32 = INT32_MAX / 2 + 1, }, { .description = "int32_min", .type = PTYPE_S32, .value.s32 = INT32_MIN, }, { .description = "int32_max", .type = PTYPE_S32, .value.s32 = INT32_MAX, }, /* int64 tests */ { .description = "int64_sanity1", .type = PTYPE_S64, .value.s64 = -1, }, { .description = "int64_sanity2", .type = PTYPE_S64, .value.s64 = INT64_MAX / 2 + 1, }, { .description = "int64_min", .type = PTYPE_S64, .value.s64 = INT64_MIN, }, { .description = "int64_max", .type = PTYPE_S64, .value.s64 = INT64_MAX, }, { .type = PTYPE_EOL } }; /* visitor-specific op implementations */ typedef struct QmpSerializeData { Visitor *qov; QObject *obj; Visitor *qiv; } QmpSerializeData; static void qmp_serialize(void *native_in, void **datap, VisitorFunc visit, Error **errp) { QmpSerializeData *d = g_malloc0(sizeof(*d)); d->qov = qmp_output_visitor_new(&d->obj); visit(d->qov, &native_in, errp); *datap = d; } static void qmp_deserialize(void **native_out, void *datap, VisitorFunc visit, Error **errp) { QmpSerializeData *d = datap; QString *output_json; QObject *obj_orig, *obj; visit_complete(d->qov, &d->obj); obj_orig = d->obj; output_json = qobject_to_json(obj_orig); obj = qobject_from_json(qstring_get_str(output_json)); QDECREF(output_json); d->qiv = qmp_input_visitor_new(obj, true); qobject_decref(obj_orig); qobject_decref(obj); visit(d->qiv, native_out, errp); } static void qmp_cleanup(void *datap) { QmpSerializeData *d = datap; visit_free(d->qov); visit_free(d->qiv); g_free(d); } typedef struct StringSerializeData { char *string; Visitor *sov; Visitor *siv; } StringSerializeData; static void string_serialize(void *native_in, void **datap, VisitorFunc visit, Error **errp) { StringSerializeData *d = g_malloc0(sizeof(*d)); d->sov = string_output_visitor_new(false, &d->string); visit(d->sov, &native_in, errp); *datap = d; } static void string_deserialize(void **native_out, void *datap, VisitorFunc visit, Error **errp) { StringSerializeData *d = datap; visit_complete(d->sov, &d->string); d->siv = string_input_visitor_new(d->string); visit(d->siv, native_out, errp); } static void string_cleanup(void *datap) { StringSerializeData *d = datap; visit_free(d->sov); visit_free(d->siv); g_free(d->string); g_free(d); } /* visitor registration, test harness */ /* note: to function interchangeably as a serialization mechanism your * visitor test implementation should pass the test cases for all visitor * capabilities: primitives, structures, and lists */ static const SerializeOps visitors[] = { { .type = "QMP", .serialize = qmp_serialize, .deserialize = qmp_deserialize, .cleanup = qmp_cleanup, .caps = VCAP_PRIMITIVES | VCAP_STRUCTURES | VCAP_LISTS | VCAP_PRIMITIVE_LISTS }, { .type = "String", .serialize = string_serialize, .deserialize = string_deserialize, .cleanup = string_cleanup, .caps = VCAP_PRIMITIVES }, { NULL } }; static void add_visitor_type(const SerializeOps *ops) { char testname_prefix[128]; char testname[128]; TestArgs *args; int i = 0; sprintf(testname_prefix, "/visitor/serialization/%s", ops->type); if (ops->caps & VCAP_PRIMITIVES) { while (pt_values[i].type != PTYPE_EOL) { sprintf(testname, "%s/primitives/%s", testname_prefix, pt_values[i].description); args = g_malloc0(sizeof(*args)); args->ops = ops; args->test_data = &pt_values[i]; g_test_add_data_func(testname, args, test_primitives); i++; } } if (ops->caps & VCAP_STRUCTURES) { sprintf(testname, "%s/struct", testname_prefix); args = g_malloc0(sizeof(*args)); args->ops = ops; args->test_data = NULL; g_test_add_data_func(testname, args, test_struct); sprintf(testname, "%s/nested_struct", testname_prefix); args = g_malloc0(sizeof(*args)); args->ops = ops; args->test_data = NULL; g_test_add_data_func(testname, args, test_nested_struct); } if (ops->caps & VCAP_LISTS) { sprintf(testname, "%s/nested_struct_list", testname_prefix); args = g_malloc0(sizeof(*args)); args->ops = ops; args->test_data = NULL; g_test_add_data_func(testname, args, test_nested_struct_list); } if (ops->caps & VCAP_PRIMITIVE_LISTS) { i = 0; while (pt_values[i].type != PTYPE_EOL) { sprintf(testname, "%s/primitive_list/%s", testname_prefix, pt_values[i].description); args = g_malloc0(sizeof(*args)); args->ops = ops; args->test_data = &pt_values[i]; g_test_add_data_func(testname, args, test_primitive_lists); i++; } } } int main(int argc, char **argv) { int i = 0; g_test_init(&argc, &argv, NULL); while (visitors[i].type != NULL) { add_visitor_type(&visitors[i]); i++; } g_test_run(); return 0; }