/* * rcutorture.c: simple user-level performance/stress test of RCU. * * Usage: * ./rcu <nreaders> rperf [ <seconds> ] * Run a read-side performance test with the specified * number of readers for <seconds> seconds. * ./rcu <nupdaters> uperf [ <seconds> ] * Run an update-side performance test with the specified * number of updaters and specified duration. * ./rcu <nreaders> perf [ <seconds> ] * Run a combined read/update performance test with the specified * number of readers and one updater and specified duration. * * The above tests produce output as follows: * * n_reads: 46008000 n_updates: 146026 nreaders: 2 nupdaters: 1 duration: 1 * ns/read: 43.4707 ns/update: 6848.1 * * The first line lists the total number of RCU reads and updates executed * during the test, the number of reader threads, the number of updater * threads, and the duration of the test in seconds. The second line * lists the average duration of each type of operation in nanoseconds, * or "nan" if the corresponding type of operation was not performed. * * ./rcu <nreaders> stress [ <seconds> ] * Run a stress test with the specified number of readers and * one updater. * * This test produces output as follows: * * n_reads: 114633217 n_updates: 3903415 n_mberror: 0 * rcu_stress_count: 114618391 14826 0 0 0 0 0 0 0 0 0 * * The first line lists the number of RCU read and update operations * executed, followed by the number of memory-ordering violations * (which will be zero in a correct RCU implementation). The second * line lists the number of readers observing progressively more stale * data. A correct RCU implementation will have all but the first two * numbers non-zero. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright (c) 2008 Paul E. McKenney, IBM Corporation. */ /* * Test variables. */ #include "qemu/osdep.h" #include "qemu/atomic.h" #include "qemu/rcu.h" #include "qemu/thread.h" long long n_reads = 0LL; long n_updates = 0L; int nthreadsrunning; #define GOFLAG_INIT 0 #define GOFLAG_RUN 1 #define GOFLAG_STOP 2 static volatile int goflag = GOFLAG_INIT; #define RCU_READ_RUN 1000 #define NR_THREADS 100 static QemuMutex counts_mutex; static QemuThread threads[NR_THREADS]; static struct rcu_reader_data *data[NR_THREADS]; static int n_threads; static void create_thread(void *(*func)(void *)) { if (n_threads >= NR_THREADS) { fprintf(stderr, "Thread limit of %d exceeded!\n", NR_THREADS); exit(-1); } qemu_thread_create(&threads[n_threads], "test", func, &data[n_threads], QEMU_THREAD_JOINABLE); n_threads++; } static void wait_all_threads(void) { int i; for (i = 0; i < n_threads; i++) { qemu_thread_join(&threads[i]); } n_threads = 0; } /* * Performance test. */ static void *rcu_read_perf_test(void *arg) { int i; long long n_reads_local = 0; rcu_register_thread(); *(struct rcu_reader_data **)arg = &rcu_reader; atomic_inc(&nthreadsrunning); while (goflag == GOFLAG_INIT) { g_usleep(1000); } while (goflag == GOFLAG_RUN) { for (i = 0; i < RCU_READ_RUN; i++) { rcu_read_lock(); rcu_read_unlock(); } n_reads_local += RCU_READ_RUN; } qemu_mutex_lock(&counts_mutex); n_reads += n_reads_local; qemu_mutex_unlock(&counts_mutex); rcu_unregister_thread(); return NULL; } static void *rcu_update_perf_test(void *arg) { long long n_updates_local = 0; rcu_register_thread(); *(struct rcu_reader_data **)arg = &rcu_reader; atomic_inc(&nthreadsrunning); while (goflag == GOFLAG_INIT) { g_usleep(1000); } while (goflag == GOFLAG_RUN) { synchronize_rcu(); n_updates_local++; } qemu_mutex_lock(&counts_mutex); n_updates += n_updates_local; qemu_mutex_unlock(&counts_mutex); rcu_unregister_thread(); return NULL; } static void perftestinit(void) { nthreadsrunning = 0; } static void perftestrun(int nthreads, int duration, int nreaders, int nupdaters) { while (atomic_read(&nthreadsrunning) < nthreads) { g_usleep(1000); } goflag = GOFLAG_RUN; g_usleep(duration * G_USEC_PER_SEC); goflag = GOFLAG_STOP; wait_all_threads(); printf("n_reads: %lld n_updates: %ld nreaders: %d nupdaters: %d duration: %d\n", n_reads, n_updates, nreaders, nupdaters, duration); printf("ns/read: %g ns/update: %g\n", ((duration * 1000*1000*1000.*(double)nreaders) / (double)n_reads), ((duration * 1000*1000*1000.*(double)nupdaters) / (double)n_updates)); exit(0); } static void perftest(int nreaders, int duration) { int i; perftestinit(); for (i = 0; i < nreaders; i++) { create_thread(rcu_read_perf_test); } create_thread(rcu_update_perf_test); perftestrun(i + 1, duration, nreaders, 1); } static void rperftest(int nreaders, int duration) { int i; perftestinit(); for (i = 0; i < nreaders; i++) { create_thread(rcu_read_perf_test); } perftestrun(i, duration, nreaders, 0); } static void uperftest(int nupdaters, int duration) { int i; perftestinit(); for (i = 0; i < nupdaters; i++) { create_thread(rcu_update_perf_test); } perftestrun(i, duration, 0, nupdaters); } /* * Stress test. */ #define RCU_STRESS_PIPE_LEN 10 struct rcu_stress { int pipe_count; int mbtest; }; struct rcu_stress rcu_stress_array[RCU_STRESS_PIPE_LEN] = { { 0 } }; struct rcu_stress *rcu_stress_current; int rcu_stress_idx; int n_mberror; long long rcu_stress_count[RCU_STRESS_PIPE_LEN + 1]; static void *rcu_read_stress_test(void *arg) { int i; struct rcu_stress *p; int pc; long long n_reads_local = 0; long long rcu_stress_local[RCU_STRESS_PIPE_LEN + 1] = { 0 }; volatile int garbage = 0; rcu_register_thread(); *(struct rcu_reader_data **)arg = &rcu_reader; while (goflag == GOFLAG_INIT) { g_usleep(1000); } while (goflag == GOFLAG_RUN) { rcu_read_lock(); p = atomic_rcu_read(&rcu_stress_current); if (p->mbtest == 0) { n_mberror++; } rcu_read_lock(); for (i = 0; i < 100; i++) { garbage++; } rcu_read_unlock(); pc = p->pipe_count; rcu_read_unlock(); if ((pc > RCU_STRESS_PIPE_LEN) || (pc < 0)) { pc = RCU_STRESS_PIPE_LEN; } rcu_stress_local[pc]++; n_reads_local++; } qemu_mutex_lock(&counts_mutex); n_reads += n_reads_local; for (i = 0; i <= RCU_STRESS_PIPE_LEN; i++) { rcu_stress_count[i] += rcu_stress_local[i]; } qemu_mutex_unlock(&counts_mutex); rcu_unregister_thread(); return NULL; } static void *rcu_update_stress_test(void *arg) { int i; struct rcu_stress *p; rcu_register_thread(); *(struct rcu_reader_data **)arg = &rcu_reader; while (goflag == GOFLAG_INIT) { g_usleep(1000); } while (goflag == GOFLAG_RUN) { i = rcu_stress_idx + 1; if (i >= RCU_STRESS_PIPE_LEN) { i = 0; } p = &rcu_stress_array[i]; p->mbtest = 0; smp_mb(); p->pipe_count = 0; p->mbtest = 1; atomic_rcu_set(&rcu_stress_current, p); rcu_stress_idx = i; for (i = 0; i < RCU_STRESS_PIPE_LEN; i++) { if (i != rcu_stress_idx) { rcu_stress_array[i].pipe_count++; } } synchronize_rcu(); n_updates++; } rcu_unregister_thread(); return NULL; } static void *rcu_fake_update_stress_test(void *arg) { rcu_register_thread(); *(struct rcu_reader_data **)arg = &rcu_reader; while (goflag == GOFLAG_INIT) { g_usleep(1000); } while (goflag == GOFLAG_RUN) { synchronize_rcu(); g_usleep(1000); } rcu_unregister_thread(); return NULL; } static void stresstest(int nreaders, int duration) { int i; rcu_stress_current = &rcu_stress_array[0]; rcu_stress_current->pipe_count = 0; rcu_stress_current->mbtest = 1; for (i = 0; i < nreaders; i++) { create_thread(rcu_read_stress_test); } create_thread(rcu_update_stress_test); for (i = 0; i < 5; i++) { create_thread(rcu_fake_update_stress_test); } goflag = GOFLAG_RUN; g_usleep(duration * G_USEC_PER_SEC); goflag = GOFLAG_STOP; wait_all_threads(); printf("n_reads: %lld n_updates: %ld n_mberror: %d\n", n_reads, n_updates, n_mberror); printf("rcu_stress_count:"); for (i = 0; i <= RCU_STRESS_PIPE_LEN; i++) { printf(" %lld", rcu_stress_count[i]); } printf("\n"); exit(0); } /* GTest interface */ static void gtest_stress(int nreaders, int duration) { int i; rcu_stress_current = &rcu_stress_array[0]; rcu_stress_current->pipe_count = 0; rcu_stress_current->mbtest = 1; for (i = 0; i < nreaders; i++) { create_thread(rcu_read_stress_test); } create_thread(rcu_update_stress_test); for (i = 0; i < 5; i++) { create_thread(rcu_fake_update_stress_test); } goflag = GOFLAG_RUN; g_usleep(duration * G_USEC_PER_SEC); goflag = GOFLAG_STOP; wait_all_threads(); g_assert_cmpint(n_mberror, ==, 0); for (i = 2; i <= RCU_STRESS_PIPE_LEN; i++) { g_assert_cmpint(rcu_stress_count[i], ==, 0); } } static void gtest_stress_1_1(void) { gtest_stress(1, 1); } static void gtest_stress_10_1(void) { gtest_stress(10, 1); } static void gtest_stress_1_5(void) { gtest_stress(1, 5); } static void gtest_stress_10_5(void) { gtest_stress(10, 5); } /* * Mainprogram. */ static void usage(int argc, char *argv[]) { fprintf(stderr, "Usage: %s [nreaders [ perf | stress ] ]\n", argv[0]); exit(-1); } int main(int argc, char *argv[]) { int nreaders = 1; int duration = 1; qemu_mutex_init(&counts_mutex); if (argc >= 2 && argv[1][0] == '-') { g_test_init(&argc, &argv, NULL); if (g_test_quick()) { g_test_add_func("/rcu/torture/1reader", gtest_stress_1_1); g_test_add_func("/rcu/torture/10readers", gtest_stress_10_1); } else { g_test_add_func("/rcu/torture/1reader", gtest_stress_1_5); g_test_add_func("/rcu/torture/10readers", gtest_stress_10_5); } return g_test_run(); } if (argc >= 2) { nreaders = strtoul(argv[1], NULL, 0); } if (argc > 3) { duration = strtoul(argv[3], NULL, 0); } if (argc < 3 || strcmp(argv[2], "stress") == 0) { stresstest(nreaders, duration); } else if (strcmp(argv[2], "rperf") == 0) { rperftest(nreaders, duration); } else if (strcmp(argv[2], "uperf") == 0) { uperftest(nreaders, duration); } else if (strcmp(argv[2], "perf") == 0) { perftest(nreaders, duration); } usage(argc, argv); return 0; }