/* * QTest testcase for STML4X5_USART * * Copyright (c) 2023 Arnaud Minier * Copyright (c) 2023 Inès Varhol * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "libqtest.h" #include "hw/misc/stm32l4x5_rcc_internals.h" #include "hw/registerfields.h" #include "stm32l4x5.h" #define RCC_BASE_ADDR 0x40021000 /* Use USART 1 ADDR, assume the others work the same */ #define USART1_BASE_ADDR 0x40013800 /* See stm32l4x5_usart for definitions */ REG32(CR1, 0x00) FIELD(CR1, M1, 28, 1) FIELD(CR1, OVER8, 15, 1) FIELD(CR1, M0, 12, 1) FIELD(CR1, PCE, 10, 1) FIELD(CR1, TXEIE, 7, 1) FIELD(CR1, RXNEIE, 5, 1) FIELD(CR1, TE, 3, 1) FIELD(CR1, RE, 2, 1) FIELD(CR1, UE, 0, 1) REG32(CR2, 0x04) REG32(CR3, 0x08) FIELD(CR3, OVRDIS, 12, 1) REG32(BRR, 0x0C) REG32(GTPR, 0x10) REG32(RTOR, 0x14) REG32(RQR, 0x18) REG32(ISR, 0x1C) FIELD(ISR, REACK, 22, 1) FIELD(ISR, TEACK, 21, 1) FIELD(ISR, TXE, 7, 1) FIELD(ISR, RXNE, 5, 1) FIELD(ISR, ORE, 3, 1) REG32(ICR, 0x20) REG32(RDR, 0x24) REG32(TDR, 0x28) #define NVIC_ISPR1 0XE000E204 #define NVIC_ICPR1 0xE000E284 #define USART1_IRQ 37 static bool check_nvic_pending(QTestState *qts, unsigned int n) { /* No USART interrupts are less than 32 */ assert(n > 32); n -= 32; return qtest_readl(qts, NVIC_ISPR1) & (1 << n); } static bool clear_nvic_pending(QTestState *qts, unsigned int n) { /* No USART interrupts are less than 32 */ assert(n > 32); n -= 32; qtest_writel(qts, NVIC_ICPR1, (1 << n)); return true; } /* * Wait indefinitely for the flag to be updated. * If this is run on a slow CI runner, * the meson harness will timeout after 10 minutes for us. */ static bool usart_wait_for_flag(QTestState *qts, uint32_t event_addr, uint32_t flag) { while (true) { if ((qtest_readl(qts, event_addr) & flag)) { return true; } g_usleep(1000); } return false; } static void usart_receive_string(QTestState *qts, int sock_fd, const char *in, char *out) { int i, in_len = strlen(in); g_assert_true(send(sock_fd, in, in_len, 0) == in_len); for (i = 0; i < in_len; i++) { g_assert_true(usart_wait_for_flag(qts, USART1_BASE_ADDR + A_ISR, R_ISR_RXNE_MASK)); out[i] = qtest_readl(qts, USART1_BASE_ADDR + A_RDR); } out[i] = '\0'; } static void usart_send_string(QTestState *qts, const char *in) { int i, in_len = strlen(in); for (i = 0; i < in_len; i++) { qtest_writel(qts, USART1_BASE_ADDR + A_TDR, in[i]); g_assert_true(usart_wait_for_flag(qts, USART1_BASE_ADDR + A_ISR, R_ISR_TXE_MASK)); } } /* Init the RCC clocks to run at 80 MHz */ static void init_clocks(QTestState *qts) { uint32_t value; /* MSIRANGE can be set only when MSI is OFF or READY */ qtest_writel(qts, (RCC_BASE_ADDR + A_CR), R_CR_MSION_MASK); /* Clocking from MSI, in case MSI was not the default source */ qtest_writel(qts, (RCC_BASE_ADDR + A_CFGR), 0); /* * Update PLL and set MSI as the source clock. * PLLM = 1 --> 000 * PLLN = 40 --> 40 * PPLLR = 2 --> 00 * PLLDIV = unused, PLLP = unused (SAI3), PLLQ = unused (48M1) * SRC = MSI --> 01 */ qtest_writel(qts, (RCC_BASE_ADDR + A_PLLCFGR), R_PLLCFGR_PLLREN_MASK | (40 << R_PLLCFGR_PLLN_SHIFT) | (0b01 << R_PLLCFGR_PLLSRC_SHIFT)); /* PLL activation */ value = qtest_readl(qts, (RCC_BASE_ADDR + A_CR)); qtest_writel(qts, (RCC_BASE_ADDR + A_CR), value | R_CR_PLLON_MASK); /* RCC_CFGR is OK by defaut */ qtest_writel(qts, (RCC_BASE_ADDR + A_CFGR), 0); /* CCIPR : no periph clock by default */ qtest_writel(qts, (RCC_BASE_ADDR + A_CCIPR), 0); /* Switches on the PLL clock source */ value = qtest_readl(qts, (RCC_BASE_ADDR + A_CFGR)); qtest_writel(qts, (RCC_BASE_ADDR + A_CFGR), (value & ~R_CFGR_SW_MASK) | (0b11 << R_CFGR_SW_SHIFT)); /* Enable SYSCFG clock enabled */ qtest_writel(qts, (RCC_BASE_ADDR + A_APB2ENR), R_APB2ENR_SYSCFGEN_MASK); /* Enable the IO port B clock (See p.252) */ qtest_writel(qts, (RCC_BASE_ADDR + A_AHB2ENR), R_AHB2ENR_GPIOBEN_MASK); /* Enable the clock for USART1 (cf p.259) */ /* We rewrite SYSCFGEN to not disable it */ qtest_writel(qts, (RCC_BASE_ADDR + A_APB2ENR), R_APB2ENR_SYSCFGEN_MASK | R_APB2ENR_USART1EN_MASK); /* TODO: Enable usart via gpio */ /* Set PCLK as the clock for USART1(cf p.272) i.e. reset both bits */ qtest_writel(qts, (RCC_BASE_ADDR + A_CCIPR), 0); /* Reset USART1 (see p.249) */ qtest_writel(qts, (RCC_BASE_ADDR + A_APB2RSTR), 1 << 14); qtest_writel(qts, (RCC_BASE_ADDR + A_APB2RSTR), 0); } static void init_uart(QTestState *qts) { uint32_t cr1; init_clocks(qts); /* * For 115200 bauds, see p.1349. * The clock has a frequency of 80Mhz, * for 115200, we have to put a divider of 695 = 0x2B7. */ qtest_writel(qts, (USART1_BASE_ADDR + A_BRR), 0x2B7); /* * Set the oversampling by 16, * disable the parity control and * set the word length to 8. (cf p.1377) */ cr1 = qtest_readl(qts, (USART1_BASE_ADDR + A_CR1)); cr1 &= ~(R_CR1_M1_MASK | R_CR1_M0_MASK | R_CR1_OVER8_MASK | R_CR1_PCE_MASK); qtest_writel(qts, (USART1_BASE_ADDR + A_CR1), cr1); /* Enable the transmitter, the receiver and the USART. */ qtest_writel(qts, (USART1_BASE_ADDR + A_CR1), cr1 | R_CR1_UE_MASK | R_CR1_RE_MASK | R_CR1_TE_MASK); } static void test_write_read(void) { QTestState *qts = qtest_init("-M b-l475e-iot01a"); /* Test that we can write and retrieve a value from the device */ qtest_writel(qts, USART1_BASE_ADDR + A_TDR, 0xFFFFFFFF); const uint32_t tdr = qtest_readl(qts, USART1_BASE_ADDR + A_TDR); g_assert_cmpuint(tdr, ==, 0x000001FF); qtest_quit(qts); } static void test_receive_char(void) { int sock_fd; uint32_t cr1; QTestState *qts = qtest_init_with_serial("-M b-l475e-iot01a", &sock_fd); init_uart(qts); /* Try without initializing IRQ */ g_assert_true(send(sock_fd, "a", 1, 0) == 1); usart_wait_for_flag(qts, USART1_BASE_ADDR + A_ISR, R_ISR_RXNE_MASK); g_assert_cmphex(qtest_readl(qts, USART1_BASE_ADDR + A_RDR), ==, 'a'); g_assert_false(check_nvic_pending(qts, USART1_IRQ)); /* Now with the IRQ */ cr1 = qtest_readl(qts, (USART1_BASE_ADDR + A_CR1)); cr1 |= R_CR1_RXNEIE_MASK; qtest_writel(qts, USART1_BASE_ADDR + A_CR1, cr1); g_assert_true(send(sock_fd, "b", 1, 0) == 1); usart_wait_for_flag(qts, USART1_BASE_ADDR + A_ISR, R_ISR_RXNE_MASK); g_assert_cmphex(qtest_readl(qts, USART1_BASE_ADDR + A_RDR), ==, 'b'); g_assert_true(check_nvic_pending(qts, USART1_IRQ)); clear_nvic_pending(qts, USART1_IRQ); close(sock_fd); qtest_quit(qts); } static void test_send_char(void) { int sock_fd; char s[1]; uint32_t cr1; QTestState *qts = qtest_init_with_serial("-M b-l475e-iot01a", &sock_fd); init_uart(qts); /* Try without initializing IRQ */ qtest_writel(qts, USART1_BASE_ADDR + A_TDR, 'c'); g_assert_true(recv(sock_fd, s, 1, 0) == 1); g_assert_cmphex(s[0], ==, 'c'); g_assert_false(check_nvic_pending(qts, USART1_IRQ)); /* Now with the IRQ */ cr1 = qtest_readl(qts, (USART1_BASE_ADDR + A_CR1)); cr1 |= R_CR1_TXEIE_MASK; qtest_writel(qts, USART1_BASE_ADDR + A_CR1, cr1); qtest_writel(qts, USART1_BASE_ADDR + A_TDR, 'd'); g_assert_true(recv(sock_fd, s, 1, 0) == 1); g_assert_cmphex(s[0], ==, 'd'); g_assert_true(check_nvic_pending(qts, USART1_IRQ)); clear_nvic_pending(qts, USART1_IRQ); close(sock_fd); qtest_quit(qts); } static void test_receive_str(void) { int sock_fd; char s[10]; QTestState *qts = qtest_init_with_serial("-M b-l475e-iot01a", &sock_fd); init_uart(qts); usart_receive_string(qts, sock_fd, "hello", s); g_assert_true(memcmp(s, "hello", 5) == 0); close(sock_fd); qtest_quit(qts); } static void test_send_str(void) { int sock_fd; char s[10]; QTestState *qts = qtest_init_with_serial("-M b-l475e-iot01a", &sock_fd); init_uart(qts); usart_send_string(qts, "world"); g_assert_true(recv(sock_fd, s, 10, 0) == 5); g_assert_true(memcmp(s, "world", 5) == 0); close(sock_fd); qtest_quit(qts); } static void test_ack(void) { uint32_t cr1; uint32_t isr; QTestState *qts = qtest_init("-M b-l475e-iot01a"); init_uart(qts); cr1 = qtest_readl(qts, (USART1_BASE_ADDR + A_CR1)); /* Disable the transmitter and receiver. */ qtest_writel(qts, (USART1_BASE_ADDR + A_CR1), cr1 & ~(R_CR1_RE_MASK | R_CR1_TE_MASK)); /* Test ISR ACK for transmitter and receiver disabled */ isr = qtest_readl(qts, (USART1_BASE_ADDR + A_ISR)); g_assert_false(isr & R_ISR_TEACK_MASK); g_assert_false(isr & R_ISR_REACK_MASK); /* Enable the transmitter and receiver. */ qtest_writel(qts, (USART1_BASE_ADDR + A_CR1), cr1 | (R_CR1_RE_MASK | R_CR1_TE_MASK)); /* Test ISR ACK for transmitter and receiver disabled */ isr = qtest_readl(qts, (USART1_BASE_ADDR + A_ISR)); g_assert_true(isr & R_ISR_TEACK_MASK); g_assert_true(isr & R_ISR_REACK_MASK); qtest_quit(qts); } static void check_clock(QTestState *qts, const char *path, uint32_t rcc_reg, uint32_t reg_offset) { g_assert_cmpuint(get_clock_period(qts, path), ==, 0); qtest_writel(qts, rcc_reg, qtest_readl(qts, rcc_reg) | (0x1 << reg_offset)); g_assert_cmpuint(get_clock_period(qts, path), ==, SYSCLK_PERIOD); } static void test_clock_enable(void) { /* * For each USART device, enable its clock in RCC * and check that its clock frequency is SYSCLK_PERIOD */ QTestState *qts = qtest_init("-M b-l475e-iot01a"); check_clock(qts, "machine/soc/usart[0]/clk", RCC_APB2ENR, 14); check_clock(qts, "machine/soc/usart[1]/clk", RCC_APB1ENR1, 17); check_clock(qts, "machine/soc/usart[2]/clk", RCC_APB1ENR1, 18); check_clock(qts, "machine/soc/uart[0]/clk", RCC_APB1ENR1, 19); check_clock(qts, "machine/soc/uart[1]/clk", RCC_APB1ENR1, 20); check_clock(qts, "machine/soc/lpuart1/clk", RCC_APB1ENR2, 0); qtest_quit(qts); } int main(int argc, char **argv) { int ret; g_test_init(&argc, &argv, NULL); g_test_set_nonfatal_assertions(); qtest_add_func("stm32l4x5/usart/write_read", test_write_read); qtest_add_func("stm32l4x5/usart/receive_char", test_receive_char); qtest_add_func("stm32l4x5/usart/send_char", test_send_char); qtest_add_func("stm32l4x5/usart/receive_str", test_receive_str); qtest_add_func("stm32l4x5/usart/send_str", test_send_str); qtest_add_func("stm32l4x5/usart/ack", test_ack); qtest_add_func("stm32l4x5/usart/clock_enable", test_clock_enable); ret = g_test_run(); return ret; }