/* * QTest testcase for e1000e NIC * * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com) * Developed by Daynix Computing LTD (http://www.daynix.com) * * Authors: * Dmitry Fleytman <dmitry@daynix.com> * Leonid Bloch <leonid@daynix.com> * Yan Vugenfirer <yan@daynix.com> * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/>. */ #include "qemu/osdep.h" #include "libqtest.h" #include "qemu-common.h" #include "libqos/pci-pc.h" #include "qemu/sockets.h" #include "qemu/iov.h" #include "qemu/bitops.h" #include "libqos/malloc.h" #include "libqos/malloc-pc.h" #include "libqos/malloc-generic.h" #define E1000E_IMS (0x00d0) #define E1000E_STATUS (0x0008) #define E1000E_STATUS_LU BIT(1) #define E1000E_STATUS_ASDV1000 BIT(9) #define E1000E_CTRL (0x0000) #define E1000E_CTRL_RESET BIT(26) #define E1000E_RCTL (0x0100) #define E1000E_RCTL_EN BIT(1) #define E1000E_RCTL_UPE BIT(3) #define E1000E_RCTL_MPE BIT(4) #define E1000E_RFCTL (0x5008) #define E1000E_RFCTL_EXTEN BIT(15) #define E1000E_TCTL (0x0400) #define E1000E_TCTL_EN BIT(1) #define E1000E_CTRL_EXT (0x0018) #define E1000E_CTRL_EXT_DRV_LOAD BIT(28) #define E1000E_CTRL_EXT_TXLSFLOW BIT(22) #define E1000E_RX0_MSG_ID (0) #define E1000E_TX0_MSG_ID (1) #define E1000E_OTHER_MSG_ID (2) #define E1000E_IVAR (0x00E4) #define E1000E_IVAR_TEST_CFG ((E1000E_RX0_MSG_ID << 0) | BIT(3) | \ (E1000E_TX0_MSG_ID << 8) | BIT(11) | \ (E1000E_OTHER_MSG_ID << 16) | BIT(19) | \ BIT(31)) #define E1000E_RING_LEN (0x1000) #define E1000E_TXD_LEN (16) #define E1000E_RXD_LEN (16) #define E1000E_TDBAL (0x3800) #define E1000E_TDBAH (0x3804) #define E1000E_TDLEN (0x3808) #define E1000E_TDH (0x3810) #define E1000E_TDT (0x3818) #define E1000E_RDBAL (0x2800) #define E1000E_RDBAH (0x2804) #define E1000E_RDLEN (0x2808) #define E1000E_RDH (0x2810) #define E1000E_RDT (0x2818) typedef struct e1000e_device { QPCIDevice *pci_dev; QPCIBar mac_regs; uint64_t tx_ring; uint64_t rx_ring; } e1000e_device; static int test_sockets[2]; static QGuestAllocator *test_alloc; static QPCIBus *test_bus; static void e1000e_pci_foreach_callback(QPCIDevice *dev, int devfn, void *data) { QPCIDevice **res = data; g_assert_null(*res); *res = dev; } static QPCIDevice *e1000e_device_find(QPCIBus *bus) { static const int e1000e_vendor_id = 0x8086; static const int e1000e_dev_id = 0x10D3; QPCIDevice *e1000e_dev = NULL; qpci_device_foreach(bus, e1000e_vendor_id, e1000e_dev_id, e1000e_pci_foreach_callback, &e1000e_dev); g_assert_nonnull(e1000e_dev); return e1000e_dev; } static void e1000e_macreg_write(e1000e_device *d, uint32_t reg, uint32_t val) { qpci_io_writel(d->pci_dev, d->mac_regs, reg, val); } static uint32_t e1000e_macreg_read(e1000e_device *d, uint32_t reg) { return qpci_io_readl(d->pci_dev, d->mac_regs, reg); } static void e1000e_device_init(QPCIBus *bus, e1000e_device *d) { uint32_t val; d->pci_dev = e1000e_device_find(bus); /* Enable the device */ qpci_device_enable(d->pci_dev); /* Map BAR0 (mac registers) */ d->mac_regs = qpci_iomap(d->pci_dev, 0, NULL); /* Reset the device */ val = e1000e_macreg_read(d, E1000E_CTRL); e1000e_macreg_write(d, E1000E_CTRL, val | E1000E_CTRL_RESET); /* Enable and configure MSI-X */ qpci_msix_enable(d->pci_dev); e1000e_macreg_write(d, E1000E_IVAR, E1000E_IVAR_TEST_CFG); /* Check the device status - link and speed */ val = e1000e_macreg_read(d, E1000E_STATUS); g_assert_cmphex(val & (E1000E_STATUS_LU | E1000E_STATUS_ASDV1000), ==, E1000E_STATUS_LU | E1000E_STATUS_ASDV1000); /* Initialize TX/RX logic */ e1000e_macreg_write(d, E1000E_RCTL, 0); e1000e_macreg_write(d, E1000E_TCTL, 0); /* Notify the device that the driver is ready */ val = e1000e_macreg_read(d, E1000E_CTRL_EXT); e1000e_macreg_write(d, E1000E_CTRL_EXT, val | E1000E_CTRL_EXT_DRV_LOAD | E1000E_CTRL_EXT_TXLSFLOW); /* Allocate and setup TX ring */ d->tx_ring = guest_alloc(test_alloc, E1000E_RING_LEN); g_assert(d->tx_ring != 0); e1000e_macreg_write(d, E1000E_TDBAL, (uint32_t) d->tx_ring); e1000e_macreg_write(d, E1000E_TDBAH, (uint32_t) (d->tx_ring >> 32)); e1000e_macreg_write(d, E1000E_TDLEN, E1000E_RING_LEN); e1000e_macreg_write(d, E1000E_TDT, 0); e1000e_macreg_write(d, E1000E_TDH, 0); /* Enable transmit */ e1000e_macreg_write(d, E1000E_TCTL, E1000E_TCTL_EN); /* Allocate and setup RX ring */ d->rx_ring = guest_alloc(test_alloc, E1000E_RING_LEN); g_assert(d->rx_ring != 0); e1000e_macreg_write(d, E1000E_RDBAL, (uint32_t)d->rx_ring); e1000e_macreg_write(d, E1000E_RDBAH, (uint32_t)(d->rx_ring >> 32)); e1000e_macreg_write(d, E1000E_RDLEN, E1000E_RING_LEN); e1000e_macreg_write(d, E1000E_RDT, 0); e1000e_macreg_write(d, E1000E_RDH, 0); /* Enable receive */ e1000e_macreg_write(d, E1000E_RFCTL, E1000E_RFCTL_EXTEN); e1000e_macreg_write(d, E1000E_RCTL, E1000E_RCTL_EN | E1000E_RCTL_UPE | E1000E_RCTL_MPE); /* Enable all interrupts */ e1000e_macreg_write(d, E1000E_IMS, 0xFFFFFFFF); } static void e1000e_tx_ring_push(e1000e_device *d, void *descr) { uint32_t tail = e1000e_macreg_read(d, E1000E_TDT); uint32_t len = e1000e_macreg_read(d, E1000E_TDLEN) / E1000E_TXD_LEN; memwrite(d->tx_ring + tail * E1000E_TXD_LEN, descr, E1000E_TXD_LEN); e1000e_macreg_write(d, E1000E_TDT, (tail + 1) % len); /* Read WB data for the packet transmitted */ memread(d->tx_ring + tail * E1000E_TXD_LEN, descr, E1000E_TXD_LEN); } static void e1000e_rx_ring_push(e1000e_device *d, void *descr) { uint32_t tail = e1000e_macreg_read(d, E1000E_RDT); uint32_t len = e1000e_macreg_read(d, E1000E_RDLEN) / E1000E_RXD_LEN; memwrite(d->rx_ring + tail * E1000E_RXD_LEN, descr, E1000E_RXD_LEN); e1000e_macreg_write(d, E1000E_RDT, (tail + 1) % len); /* Read WB data for the packet received */ memread(d->rx_ring + tail * E1000E_RXD_LEN, descr, E1000E_RXD_LEN); } static void e1000e_wait_isr(e1000e_device *d, uint16_t msg_id) { guint64 end_time = g_get_monotonic_time() + 5 * G_TIME_SPAN_SECOND; do { if (qpci_msix_pending(d->pci_dev, msg_id)) { return; } clock_step(10000); } while (g_get_monotonic_time() < end_time); g_error("Timeout expired"); } static void e1000e_send_verify(e1000e_device *d) { struct { uint64_t buffer_addr; union { uint32_t data; struct { uint16_t length; uint8_t cso; uint8_t cmd; } flags; } lower; union { uint32_t data; struct { uint8_t status; uint8_t css; uint16_t special; } fields; } upper; } descr; static const uint32_t dtyp_data = BIT(20); static const uint32_t dtyp_ext = BIT(29); static const uint32_t dcmd_rs = BIT(27); static const uint32_t dcmd_eop = BIT(24); static const uint32_t dsta_dd = BIT(0); static const int data_len = 64; char buffer[64]; int ret; uint32_t recv_len; /* Prepare test data buffer */ uint64_t data = guest_alloc(test_alloc, data_len); memwrite(data, "TEST", 5); /* Prepare TX descriptor */ memset(&descr, 0, sizeof(descr)); descr.buffer_addr = cpu_to_le64(data); descr.lower.data = cpu_to_le32(dcmd_rs | dcmd_eop | dtyp_ext | dtyp_data | data_len); /* Put descriptor to the ring */ e1000e_tx_ring_push(d, &descr); /* Wait for TX WB interrupt */ e1000e_wait_isr(d, E1000E_TX0_MSG_ID); /* Check DD bit */ g_assert_cmphex(le32_to_cpu(descr.upper.data) & dsta_dd, ==, dsta_dd); /* Check data sent to the backend */ ret = qemu_recv(test_sockets[0], &recv_len, sizeof(recv_len), 0); g_assert_cmpint(ret, == , sizeof(recv_len)); qemu_recv(test_sockets[0], buffer, 64, 0); g_assert_cmpstr(buffer, == , "TEST"); /* Free test data buffer */ guest_free(test_alloc, data); } static void e1000e_receive_verify(e1000e_device *d) { union { struct { uint64_t buffer_addr; uint64_t reserved; } read; struct { struct { uint32_t mrq; union { uint32_t rss; struct { uint16_t ip_id; uint16_t csum; } csum_ip; } hi_dword; } lower; struct { uint32_t status_error; uint16_t length; uint16_t vlan; } upper; } wb; } descr; static const uint32_t esta_dd = BIT(0); char test[] = "TEST"; int len = htonl(sizeof(test)); struct iovec iov[] = { { .iov_base = &len, .iov_len = sizeof(len), },{ .iov_base = test, .iov_len = sizeof(test), }, }; static const int data_len = 64; char buffer[64]; int ret; /* Send a dummy packet to device's socket*/ ret = iov_send(test_sockets[0], iov, 2, 0, sizeof(len) + sizeof(test)); g_assert_cmpint(ret, == , sizeof(test) + sizeof(len)); /* Prepare test data buffer */ uint64_t data = guest_alloc(test_alloc, data_len); /* Prepare RX descriptor */ memset(&descr, 0, sizeof(descr)); descr.read.buffer_addr = cpu_to_le64(data); /* Put descriptor to the ring */ e1000e_rx_ring_push(d, &descr); /* Wait for TX WB interrupt */ e1000e_wait_isr(d, E1000E_RX0_MSG_ID); /* Check DD bit */ g_assert_cmphex(le32_to_cpu(descr.wb.upper.status_error) & esta_dd, ==, esta_dd); /* Check data sent to the backend */ memread(data, buffer, sizeof(buffer)); g_assert_cmpstr(buffer, == , "TEST"); /* Free test data buffer */ guest_free(test_alloc, data); } static void e1000e_device_clear(QPCIBus *bus, e1000e_device *d) { qpci_iounmap(d->pci_dev, d->mac_regs); qpci_msix_disable(d->pci_dev); } static void data_test_init(e1000e_device *d) { char *cmdline; int ret = socketpair(PF_UNIX, SOCK_STREAM, 0, test_sockets); g_assert_cmpint(ret, != , -1); cmdline = g_strdup_printf("-netdev socket,fd=%d,id=hs0 " "-device e1000e,netdev=hs0", test_sockets[1]); g_assert_nonnull(cmdline); qtest_start(cmdline); g_free(cmdline); test_alloc = pc_alloc_init(global_qtest); g_assert_nonnull(test_alloc); test_bus = qpci_init_pc(global_qtest, test_alloc); g_assert_nonnull(test_bus); e1000e_device_init(test_bus, d); } static void data_test_clear(e1000e_device *d) { e1000e_device_clear(test_bus, d); close(test_sockets[0]); pc_alloc_uninit(test_alloc); g_free(d->pci_dev); qpci_free_pc(test_bus); qtest_end(); } static void test_e1000e_init(gconstpointer data) { e1000e_device d; data_test_init(&d); data_test_clear(&d); } static void test_e1000e_tx(gconstpointer data) { e1000e_device d; data_test_init(&d); e1000e_send_verify(&d); data_test_clear(&d); } static void test_e1000e_rx(gconstpointer data) { e1000e_device d; data_test_init(&d); e1000e_receive_verify(&d); data_test_clear(&d); } static void test_e1000e_multiple_transfers(gconstpointer data) { static const long iterations = 4 * 1024; long i; e1000e_device d; data_test_init(&d); for (i = 0; i < iterations; i++) { e1000e_send_verify(&d); e1000e_receive_verify(&d); } data_test_clear(&d); } static void test_e1000e_hotplug(gconstpointer data) { static const uint8_t slot = 0x06; qtest_start("-device e1000e"); qpci_plug_device_test("e1000e", "e1000e_net", slot, NULL); qpci_unplug_acpi_device_test("e1000e_net", slot); qtest_end(); } int main(int argc, char **argv) { g_test_init(&argc, &argv, NULL); qtest_add_data_func("e1000e/init", NULL, test_e1000e_init); qtest_add_data_func("e1000e/tx", NULL, test_e1000e_tx); qtest_add_data_func("e1000e/rx", NULL, test_e1000e_rx); qtest_add_data_func("e1000e/multiple_transfers", NULL, test_e1000e_multiple_transfers); qtest_add_data_func("e1000e/hotplug", NULL, test_e1000e_hotplug); return g_test_run(); }