/* * Copyright (C) 2016, Emilio G. Cota <cota@braap.org> * * License: GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "qemu/processor.h" #include "qemu/atomic.h" #include "qemu/qht.h" #include "qemu/rcu.h" #include "qemu/xxhash.h" struct thread_stats { size_t rd; size_t not_rd; size_t in; size_t not_in; size_t rm; size_t not_rm; size_t rz; size_t not_rz; }; struct thread_info { void (*func)(struct thread_info *); struct thread_stats stats; /* * Seed is in the range [1..UINT64_MAX], because the RNG requires * a non-zero seed. To use, subtract 1 and compare against the * threshold with </>=. This lets threshold = 0 never match (0% hit), * and threshold = UINT64_MAX always match (100% hit). */ uint64_t seed; bool write_op; /* writes alternate between insertions and removals */ bool resize_down; } QEMU_ALIGNED(64); /* avoid false sharing among threads */ static struct qht ht; static QemuThread *rw_threads; #define DEFAULT_RANGE (4096) #define DEFAULT_QHT_N_ELEMS DEFAULT_RANGE static unsigned int duration = 1; static unsigned int n_rw_threads = 1; static unsigned long lookup_range = DEFAULT_RANGE; static unsigned long update_range = DEFAULT_RANGE; static size_t init_range = DEFAULT_RANGE; static size_t init_size = DEFAULT_RANGE; static size_t n_ready_threads; static long populate_offset; static long *keys; static size_t resize_min; static size_t resize_max; static struct thread_info *rz_info; static unsigned long resize_delay = 1000; static double resize_rate; /* 0.0 to 1.0 */ static unsigned int n_rz_threads = 1; static QemuThread *rz_threads; static bool precompute_hash; static double update_rate; /* 0.0 to 1.0 */ static uint64_t update_threshold; static uint64_t resize_threshold; static size_t qht_n_elems = DEFAULT_QHT_N_ELEMS; static int qht_mode; static bool test_start; static bool test_stop; static struct thread_info *rw_info; static const char commands_string[] = " -d = duration, in seconds\n" " -n = number of threads\n" "\n" " -o = offset at which keys start\n" " -p = precompute hashes\n" "\n" " -g = set -s,-k,-K,-l,-r to the same value\n" " -s = initial size hint\n" " -k = initial number of keys\n" " -K = initial range of keys (will be rounded up to pow2)\n" " -l = lookup range of keys (will be rounded up to pow2)\n" " -r = update range of keys (will be rounded up to pow2)\n" "\n" " -u = update rate (0.0 to 100.0), 50/50 split of insertions/removals\n" "\n" " -R = enable auto-resize\n" " -S = resize rate (0.0 to 100.0)\n" " -D = delay (in us) between potential resizes\n" " -N = number of resize threads"; static void usage_complete(int argc, char *argv[]) { fprintf(stderr, "Usage: %s [options]\n", argv[0]); fprintf(stderr, "options:\n%s\n", commands_string); exit(-1); } static bool is_equal(const void *ap, const void *bp) { const long *a = ap; const long *b = bp; return *a == *b; } static uint32_t h(unsigned long v) { return qemu_xxhash2(v); } static uint32_t hval(unsigned long v) { return v; } static uint32_t (*hfunc)(unsigned long v) = h; /* * From: https://en.wikipedia.org/wiki/Xorshift * This is faster than rand_r(), and gives us a wider range (RAND_MAX is only * guaranteed to be >= INT_MAX). */ static uint64_t xorshift64star(uint64_t x) { x ^= x >> 12; /* a */ x ^= x << 25; /* b */ x ^= x >> 27; /* c */ return x * UINT64_C(2685821657736338717); } static void do_rz(struct thread_info *info) { struct thread_stats *stats = &info->stats; uint64_t r = info->seed - 1; if (r < resize_threshold) { size_t size = info->resize_down ? resize_min : resize_max; bool resized; resized = qht_resize(&ht, size); info->resize_down = !info->resize_down; if (resized) { stats->rz++; } else { stats->not_rz++; } } g_usleep(resize_delay); } static void do_rw(struct thread_info *info) { struct thread_stats *stats = &info->stats; uint64_t r = info->seed - 1; uint32_t hash; long *p; if (r >= update_threshold) { bool read; p = &keys[r & (lookup_range - 1)]; hash = hfunc(*p); read = qht_lookup(&ht, p, hash); if (read) { stats->rd++; } else { stats->not_rd++; } } else { p = &keys[r & (update_range - 1)]; hash = hfunc(*p); if (info->write_op) { bool written = false; if (qht_lookup(&ht, p, hash) == NULL) { written = qht_insert(&ht, p, hash, NULL); } if (written) { stats->in++; } else { stats->not_in++; } } else { bool removed = false; if (qht_lookup(&ht, p, hash)) { removed = qht_remove(&ht, p, hash); } if (removed) { stats->rm++; } else { stats->not_rm++; } } info->write_op = !info->write_op; } } static void *thread_func(void *p) { struct thread_info *info = p; rcu_register_thread(); qatomic_inc(&n_ready_threads); while (!qatomic_read(&test_start)) { cpu_relax(); } rcu_read_lock(); while (!qatomic_read(&test_stop)) { info->seed = xorshift64star(info->seed); info->func(info); } rcu_read_unlock(); rcu_unregister_thread(); return NULL; } /* sets everything except info->func */ static void prepare_thread_info(struct thread_info *info, int i) { /* seed for the RNG; each thread should have a different one */ info->seed = (i + 1) ^ time(NULL); /* the first update will be a write */ info->write_op = true; /* the first resize will be down */ info->resize_down = true; memset(&info->stats, 0, sizeof(info->stats)); } static void th_create_n(QemuThread **threads, struct thread_info **infos, const char *name, void (*func)(struct thread_info *), int offset, int n) { struct thread_info *info; QemuThread *th; int i; th = g_malloc(sizeof(*th) * n); *threads = th; info = qemu_memalign(64, sizeof(*info) * n); *infos = info; for (i = 0; i < n; i++) { prepare_thread_info(&info[i], offset + i); info[i].func = func; qemu_thread_create(&th[i], name, thread_func, &info[i], QEMU_THREAD_JOINABLE); } } static void create_threads(void) { th_create_n(&rw_threads, &rw_info, "rw", do_rw, 0, n_rw_threads); th_create_n(&rz_threads, &rz_info, "rz", do_rz, n_rw_threads, n_rz_threads); } static void pr_params(void) { printf("Parameters:\n"); printf(" duration: %d s\n", duration); printf(" # of threads: %u\n", n_rw_threads); printf(" initial # of keys: %zu\n", init_size); printf(" initial size hint: %zu\n", qht_n_elems); printf(" auto-resize: %s\n", qht_mode & QHT_MODE_AUTO_RESIZE ? "on" : "off"); if (resize_rate) { printf(" resize_rate: %f%%\n", resize_rate * 100.0); printf(" resize range: %zu-%zu\n", resize_min, resize_max); printf(" # resize threads %u\n", n_rz_threads); } printf(" update rate: %f%%\n", update_rate * 100.0); printf(" offset: %ld\n", populate_offset); printf(" initial key range: %zu\n", init_range); printf(" lookup range: %lu\n", lookup_range); printf(" update range: %lu\n", update_range); } static void do_threshold(double rate, uint64_t *threshold) { /* * For 0 <= rate <= 1, scale to fit in a uint64_t. * * Scale by 2**64, with a special case for 1.0. * The remainder of the possible values are scattered between 0 * and 0xfffffffffffff800 (nextafter(0x1p64, 0)). * * Note that we cannot simply scale by UINT64_MAX, because that * value is not representable as an IEEE double value. * * If we scale by the next largest value, nextafter(0x1p64, 0), * then the remainder of the possible values are scattered between * 0 and 0xfffffffffffff000. Which leaves us with a gap between * the final two inputs that is twice as large as any other. */ if (rate == 1.0) { *threshold = UINT64_MAX; } else { *threshold = rate * 0x1p64; } } static void htable_init(void) { unsigned long n = MAX(init_range, update_range); uint64_t r = time(NULL); size_t retries = 0; size_t i; /* avoid allocating memory later by allocating all the keys now */ keys = g_malloc(sizeof(*keys) * n); for (i = 0; i < n; i++) { long val = populate_offset + i; keys[i] = precompute_hash ? h(val) : hval(val); } /* some sanity checks */ g_assert_cmpuint(lookup_range, <=, n); /* compute thresholds */ do_threshold(update_rate, &update_threshold); do_threshold(resize_rate, &resize_threshold); if (resize_rate) { resize_min = n / 2; resize_max = n; assert(resize_min < resize_max); } else { n_rz_threads = 0; } /* initialize the hash table */ qht_init(&ht, is_equal, qht_n_elems, qht_mode); assert(init_size <= init_range); pr_params(); fprintf(stderr, "Initialization: populating %zu items...", init_size); for (i = 0; i < init_size; i++) { for (;;) { uint32_t hash; long *p; r = xorshift64star(r); p = &keys[r & (init_range - 1)]; hash = hfunc(*p); if (qht_insert(&ht, p, hash, NULL)) { break; } retries++; } } fprintf(stderr, " populated after %zu retries\n", retries); } static void add_stats(struct thread_stats *s, struct thread_info *info, int n) { int i; for (i = 0; i < n; i++) { struct thread_stats *stats = &info[i].stats; s->rd += stats->rd; s->not_rd += stats->not_rd; s->in += stats->in; s->not_in += stats->not_in; s->rm += stats->rm; s->not_rm += stats->not_rm; s->rz += stats->rz; s->not_rz += stats->not_rz; } } static void pr_stats(void) { struct thread_stats s = {}; double tx; add_stats(&s, rw_info, n_rw_threads); add_stats(&s, rz_info, n_rz_threads); printf("Results:\n"); if (resize_rate) { printf(" Resizes: %zu (%.2f%% of %zu)\n", s.rz, (double)s.rz / (s.rz + s.not_rz) * 100, s.rz + s.not_rz); } printf(" Read: %.2f M (%.2f%% of %.2fM)\n", (double)s.rd / 1e6, (double)s.rd / (s.rd + s.not_rd) * 100, (double)(s.rd + s.not_rd) / 1e6); printf(" Inserted: %.2f M (%.2f%% of %.2fM)\n", (double)s.in / 1e6, (double)s.in / (s.in + s.not_in) * 100, (double)(s.in + s.not_in) / 1e6); printf(" Removed: %.2f M (%.2f%% of %.2fM)\n", (double)s.rm / 1e6, (double)s.rm / (s.rm + s.not_rm) * 100, (double)(s.rm + s.not_rm) / 1e6); tx = (s.rd + s.not_rd + s.in + s.not_in + s.rm + s.not_rm) / 1e6 / duration; printf(" Throughput: %.2f MT/s\n", tx); printf(" Throughput/thread: %.2f MT/s/thread\n", tx / n_rw_threads); } static void run_test(void) { int i; while (qatomic_read(&n_ready_threads) != n_rw_threads + n_rz_threads) { cpu_relax(); } qatomic_set(&test_start, true); g_usleep(duration * G_USEC_PER_SEC); qatomic_set(&test_stop, true); for (i = 0; i < n_rw_threads; i++) { qemu_thread_join(&rw_threads[i]); } for (i = 0; i < n_rz_threads; i++) { qemu_thread_join(&rz_threads[i]); } } static void parse_args(int argc, char *argv[]) { int c; for (;;) { c = getopt(argc, argv, "d:D:g:k:K:l:hn:N:o:pr:Rs:S:u:"); if (c < 0) { break; } switch (c) { case 'd': duration = atoi(optarg); break; case 'D': resize_delay = atol(optarg); break; case 'g': init_range = pow2ceil(atol(optarg)); lookup_range = pow2ceil(atol(optarg)); update_range = pow2ceil(atol(optarg)); qht_n_elems = atol(optarg); init_size = atol(optarg); break; case 'h': usage_complete(argc, argv); exit(0); case 'k': init_size = atol(optarg); break; case 'K': init_range = pow2ceil(atol(optarg)); break; case 'l': lookup_range = pow2ceil(atol(optarg)); break; case 'n': n_rw_threads = atoi(optarg); break; case 'N': n_rz_threads = atoi(optarg); break; case 'o': populate_offset = atol(optarg); break; case 'p': precompute_hash = true; hfunc = hval; break; case 'r': update_range = pow2ceil(atol(optarg)); break; case 'R': qht_mode |= QHT_MODE_AUTO_RESIZE; break; case 's': qht_n_elems = atol(optarg); break; case 'S': resize_rate = atof(optarg) / 100.0; if (resize_rate > 1.0) { resize_rate = 1.0; } break; case 'u': update_rate = atof(optarg) / 100.0; if (update_rate > 1.0) { update_rate = 1.0; } break; } } } int main(int argc, char *argv[]) { parse_args(argc, argv); htable_init(); create_threads(); run_test(); pr_stats(); return 0; }