/* * Tiny Code Generator for QEMU * * Copyright (c) 2008 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "../tcg-pool.c.inc" #ifdef CONFIG_DEBUG_TCG static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = { "%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%o6", "%o7", "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%i6", "%i7", }; #endif #ifdef __arch64__ # define SPARC64 1 #else # define SPARC64 0 #endif /* Note that sparcv8plus can only hold 64 bit quantities in %g and %o registers. These are saved manually by the kernel in full 64-bit slots. The %i and %l registers are saved by the register window mechanism, which only allocates space for 32 bits. Given that this window spill/fill can happen on any signal, we must consider the high bits of the %i and %l registers garbage at all times. */ #if SPARC64 # define ALL_64 0xffffffffu #else # define ALL_64 0xffffu #endif /* Define some temporary registers. T2 is used for constant generation. */ #define TCG_REG_T1 TCG_REG_G1 #define TCG_REG_T2 TCG_REG_O7 #ifndef CONFIG_SOFTMMU # define TCG_GUEST_BASE_REG TCG_REG_I5 #endif #define TCG_REG_TB TCG_REG_I1 #define USE_REG_TB (sizeof(void *) > 4) static const int tcg_target_reg_alloc_order[] = { TCG_REG_L0, TCG_REG_L1, TCG_REG_L2, TCG_REG_L3, TCG_REG_L4, TCG_REG_L5, TCG_REG_L6, TCG_REG_L7, TCG_REG_I0, TCG_REG_I1, TCG_REG_I2, TCG_REG_I3, TCG_REG_I4, TCG_REG_I5, TCG_REG_G2, TCG_REG_G3, TCG_REG_G4, TCG_REG_G5, TCG_REG_O0, TCG_REG_O1, TCG_REG_O2, TCG_REG_O3, TCG_REG_O4, TCG_REG_O5, }; static const int tcg_target_call_iarg_regs[6] = { TCG_REG_O0, TCG_REG_O1, TCG_REG_O2, TCG_REG_O3, TCG_REG_O4, TCG_REG_O5, }; static const int tcg_target_call_oarg_regs[] = { TCG_REG_O0, TCG_REG_O1, TCG_REG_O2, TCG_REG_O3, }; #define INSN_OP(x) ((x) << 30) #define INSN_OP2(x) ((x) << 22) #define INSN_OP3(x) ((x) << 19) #define INSN_OPF(x) ((x) << 5) #define INSN_RD(x) ((x) << 25) #define INSN_RS1(x) ((x) << 14) #define INSN_RS2(x) (x) #define INSN_ASI(x) ((x) << 5) #define INSN_IMM10(x) ((1 << 13) | ((x) & 0x3ff)) #define INSN_IMM11(x) ((1 << 13) | ((x) & 0x7ff)) #define INSN_IMM13(x) ((1 << 13) | ((x) & 0x1fff)) #define INSN_OFF16(x) ((((x) >> 2) & 0x3fff) | ((((x) >> 16) & 3) << 20)) #define INSN_OFF19(x) (((x) >> 2) & 0x07ffff) #define INSN_COND(x) ((x) << 25) #define COND_N 0x0 #define COND_E 0x1 #define COND_LE 0x2 #define COND_L 0x3 #define COND_LEU 0x4 #define COND_CS 0x5 #define COND_NEG 0x6 #define COND_VS 0x7 #define COND_A 0x8 #define COND_NE 0x9 #define COND_G 0xa #define COND_GE 0xb #define COND_GU 0xc #define COND_CC 0xd #define COND_POS 0xe #define COND_VC 0xf #define BA (INSN_OP(0) | INSN_COND(COND_A) | INSN_OP2(0x2)) #define RCOND_Z 1 #define RCOND_LEZ 2 #define RCOND_LZ 3 #define RCOND_NZ 5 #define RCOND_GZ 6 #define RCOND_GEZ 7 #define MOVCC_ICC (1 << 18) #define MOVCC_XCC (1 << 18 | 1 << 12) #define BPCC_ICC 0 #define BPCC_XCC (2 << 20) #define BPCC_PT (1 << 19) #define BPCC_PN 0 #define BPCC_A (1 << 29) #define BPR_PT BPCC_PT #define ARITH_ADD (INSN_OP(2) | INSN_OP3(0x00)) #define ARITH_ADDCC (INSN_OP(2) | INSN_OP3(0x10)) #define ARITH_AND (INSN_OP(2) | INSN_OP3(0x01)) #define ARITH_ANDN (INSN_OP(2) | INSN_OP3(0x05)) #define ARITH_OR (INSN_OP(2) | INSN_OP3(0x02)) #define ARITH_ORCC (INSN_OP(2) | INSN_OP3(0x12)) #define ARITH_ORN (INSN_OP(2) | INSN_OP3(0x06)) #define ARITH_XOR (INSN_OP(2) | INSN_OP3(0x03)) #define ARITH_SUB (INSN_OP(2) | INSN_OP3(0x04)) #define ARITH_SUBCC (INSN_OP(2) | INSN_OP3(0x14)) #define ARITH_ADDC (INSN_OP(2) | INSN_OP3(0x08)) #define ARITH_SUBC (INSN_OP(2) | INSN_OP3(0x0c)) #define ARITH_UMUL (INSN_OP(2) | INSN_OP3(0x0a)) #define ARITH_SMUL (INSN_OP(2) | INSN_OP3(0x0b)) #define ARITH_UDIV (INSN_OP(2) | INSN_OP3(0x0e)) #define ARITH_SDIV (INSN_OP(2) | INSN_OP3(0x0f)) #define ARITH_MULX (INSN_OP(2) | INSN_OP3(0x09)) #define ARITH_UDIVX (INSN_OP(2) | INSN_OP3(0x0d)) #define ARITH_SDIVX (INSN_OP(2) | INSN_OP3(0x2d)) #define ARITH_MOVCC (INSN_OP(2) | INSN_OP3(0x2c)) #define ARITH_MOVR (INSN_OP(2) | INSN_OP3(0x2f)) #define ARITH_ADDXC (INSN_OP(2) | INSN_OP3(0x36) | INSN_OPF(0x11)) #define ARITH_UMULXHI (INSN_OP(2) | INSN_OP3(0x36) | INSN_OPF(0x16)) #define SHIFT_SLL (INSN_OP(2) | INSN_OP3(0x25)) #define SHIFT_SRL (INSN_OP(2) | INSN_OP3(0x26)) #define SHIFT_SRA (INSN_OP(2) | INSN_OP3(0x27)) #define SHIFT_SLLX (INSN_OP(2) | INSN_OP3(0x25) | (1 << 12)) #define SHIFT_SRLX (INSN_OP(2) | INSN_OP3(0x26) | (1 << 12)) #define SHIFT_SRAX (INSN_OP(2) | INSN_OP3(0x27) | (1 << 12)) #define RDY (INSN_OP(2) | INSN_OP3(0x28) | INSN_RS1(0)) #define WRY (INSN_OP(2) | INSN_OP3(0x30) | INSN_RD(0)) #define JMPL (INSN_OP(2) | INSN_OP3(0x38)) #define RETURN (INSN_OP(2) | INSN_OP3(0x39)) #define SAVE (INSN_OP(2) | INSN_OP3(0x3c)) #define RESTORE (INSN_OP(2) | INSN_OP3(0x3d)) #define SETHI (INSN_OP(0) | INSN_OP2(0x4)) #define CALL INSN_OP(1) #define LDUB (INSN_OP(3) | INSN_OP3(0x01)) #define LDSB (INSN_OP(3) | INSN_OP3(0x09)) #define LDUH (INSN_OP(3) | INSN_OP3(0x02)) #define LDSH (INSN_OP(3) | INSN_OP3(0x0a)) #define LDUW (INSN_OP(3) | INSN_OP3(0x00)) #define LDSW (INSN_OP(3) | INSN_OP3(0x08)) #define LDX (INSN_OP(3) | INSN_OP3(0x0b)) #define STB (INSN_OP(3) | INSN_OP3(0x05)) #define STH (INSN_OP(3) | INSN_OP3(0x06)) #define STW (INSN_OP(3) | INSN_OP3(0x04)) #define STX (INSN_OP(3) | INSN_OP3(0x0e)) #define LDUBA (INSN_OP(3) | INSN_OP3(0x11)) #define LDSBA (INSN_OP(3) | INSN_OP3(0x19)) #define LDUHA (INSN_OP(3) | INSN_OP3(0x12)) #define LDSHA (INSN_OP(3) | INSN_OP3(0x1a)) #define LDUWA (INSN_OP(3) | INSN_OP3(0x10)) #define LDSWA (INSN_OP(3) | INSN_OP3(0x18)) #define LDXA (INSN_OP(3) | INSN_OP3(0x1b)) #define STBA (INSN_OP(3) | INSN_OP3(0x15)) #define STHA (INSN_OP(3) | INSN_OP3(0x16)) #define STWA (INSN_OP(3) | INSN_OP3(0x14)) #define STXA (INSN_OP(3) | INSN_OP3(0x1e)) #define MEMBAR (INSN_OP(2) | INSN_OP3(0x28) | INSN_RS1(15) | (1 << 13)) #define NOP (SETHI | INSN_RD(TCG_REG_G0) | 0) #ifndef ASI_PRIMARY_LITTLE #define ASI_PRIMARY_LITTLE 0x88 #endif #define LDUH_LE (LDUHA | INSN_ASI(ASI_PRIMARY_LITTLE)) #define LDSH_LE (LDSHA | INSN_ASI(ASI_PRIMARY_LITTLE)) #define LDUW_LE (LDUWA | INSN_ASI(ASI_PRIMARY_LITTLE)) #define LDSW_LE (LDSWA | INSN_ASI(ASI_PRIMARY_LITTLE)) #define LDX_LE (LDXA | INSN_ASI(ASI_PRIMARY_LITTLE)) #define STH_LE (STHA | INSN_ASI(ASI_PRIMARY_LITTLE)) #define STW_LE (STWA | INSN_ASI(ASI_PRIMARY_LITTLE)) #define STX_LE (STXA | INSN_ASI(ASI_PRIMARY_LITTLE)) #ifndef use_vis3_instructions bool use_vis3_instructions; #endif static inline int check_fit_i64(int64_t val, unsigned int bits) { return val == sextract64(val, 0, bits); } static inline int check_fit_i32(int32_t val, unsigned int bits) { return val == sextract32(val, 0, bits); } #define check_fit_tl check_fit_i64 #if SPARC64 # define check_fit_ptr check_fit_i64 #else # define check_fit_ptr check_fit_i32 #endif static bool patch_reloc(tcg_insn_unit *code_ptr, int type, intptr_t value, intptr_t addend) { uint32_t insn = *code_ptr; intptr_t pcrel; value += addend; pcrel = tcg_ptr_byte_diff((tcg_insn_unit *)value, code_ptr); switch (type) { case R_SPARC_WDISP16: assert(check_fit_ptr(pcrel >> 2, 16)); insn &= ~INSN_OFF16(-1); insn |= INSN_OFF16(pcrel); break; case R_SPARC_WDISP19: assert(check_fit_ptr(pcrel >> 2, 19)); insn &= ~INSN_OFF19(-1); insn |= INSN_OFF19(pcrel); break; default: g_assert_not_reached(); } *code_ptr = insn; return true; } /* parse target specific constraints */ static const char *target_parse_constraint(TCGArgConstraint *ct, const char *ct_str, TCGType type) { switch (*ct_str++) { case 'r': ct->ct |= TCG_CT_REG; ct->u.regs = 0xffffffff; break; case 'R': ct->ct |= TCG_CT_REG; ct->u.regs = ALL_64; break; case 'A': /* qemu_ld/st address constraint */ ct->ct |= TCG_CT_REG; ct->u.regs = TARGET_LONG_BITS == 64 ? ALL_64 : 0xffffffff; reserve_helpers: tcg_regset_reset_reg(ct->u.regs, TCG_REG_O0); tcg_regset_reset_reg(ct->u.regs, TCG_REG_O1); tcg_regset_reset_reg(ct->u.regs, TCG_REG_O2); break; case 's': /* qemu_st data 32-bit constraint */ ct->ct |= TCG_CT_REG; ct->u.regs = 0xffffffff; goto reserve_helpers; case 'S': /* qemu_st data 64-bit constraint */ ct->ct |= TCG_CT_REG; ct->u.regs = ALL_64; goto reserve_helpers; case 'I': ct->ct |= TCG_CT_CONST_S11; break; case 'J': ct->ct |= TCG_CT_CONST_S13; break; case 'Z': ct->ct |= TCG_CT_CONST_ZERO; break; default: return NULL; } return ct_str; } /* test if a constant matches the constraint */ static inline int tcg_target_const_match(tcg_target_long val, TCGType type, const TCGArgConstraint *arg_ct) { int ct = arg_ct->ct; if (ct & TCG_CT_CONST) { return 1; } if (type == TCG_TYPE_I32) { val = (int32_t)val; } if ((ct & TCG_CT_CONST_ZERO) && val == 0) { return 1; } else if ((ct & TCG_CT_CONST_S11) && check_fit_tl(val, 11)) { return 1; } else if ((ct & TCG_CT_CONST_S13) && check_fit_tl(val, 13)) { return 1; } else { return 0; } } static inline void tcg_out_arith(TCGContext *s, TCGReg rd, TCGReg rs1, TCGReg rs2, int op) { tcg_out32(s, op | INSN_RD(rd) | INSN_RS1(rs1) | INSN_RS2(rs2)); } static inline void tcg_out_arithi(TCGContext *s, TCGReg rd, TCGReg rs1, int32_t offset, int op) { tcg_out32(s, op | INSN_RD(rd) | INSN_RS1(rs1) | INSN_IMM13(offset)); } static void tcg_out_arithc(TCGContext *s, TCGReg rd, TCGReg rs1, int32_t val2, int val2const, int op) { tcg_out32(s, op | INSN_RD(rd) | INSN_RS1(rs1) | (val2const ? INSN_IMM13(val2) : INSN_RS2(val2))); } static inline bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg) { if (ret != arg) { tcg_out_arith(s, ret, arg, TCG_REG_G0, ARITH_OR); } return true; } static inline void tcg_out_sethi(TCGContext *s, TCGReg ret, uint32_t arg) { tcg_out32(s, SETHI | INSN_RD(ret) | ((arg & 0xfffffc00) >> 10)); } static inline void tcg_out_movi_imm13(TCGContext *s, TCGReg ret, int32_t arg) { tcg_out_arithi(s, ret, TCG_REG_G0, arg, ARITH_OR); } static void tcg_out_movi_int(TCGContext *s, TCGType type, TCGReg ret, tcg_target_long arg, bool in_prologue) { tcg_target_long hi, lo = (int32_t)arg; tcg_target_long test, lsb; /* Make sure we test 32-bit constants for imm13 properly. */ if (type == TCG_TYPE_I32) { arg = lo; } /* A 13-bit constant sign-extended to 64-bits. */ if (check_fit_tl(arg, 13)) { tcg_out_movi_imm13(s, ret, arg); return; } /* A 13-bit constant relative to the TB. */ if (!in_prologue && USE_REG_TB) { test = arg - (uintptr_t)s->code_gen_ptr; if (check_fit_ptr(test, 13)) { tcg_out_arithi(s, ret, TCG_REG_TB, test, ARITH_ADD); return; } } /* A 32-bit constant, or 32-bit zero-extended to 64-bits. */ if (type == TCG_TYPE_I32 || arg == (uint32_t)arg) { tcg_out_sethi(s, ret, arg); if (arg & 0x3ff) { tcg_out_arithi(s, ret, ret, arg & 0x3ff, ARITH_OR); } return; } /* A 32-bit constant sign-extended to 64-bits. */ if (arg == lo) { tcg_out_sethi(s, ret, ~arg); tcg_out_arithi(s, ret, ret, (arg & 0x3ff) | -0x400, ARITH_XOR); return; } /* A 21-bit constant, shifted. */ lsb = ctz64(arg); test = (tcg_target_long)arg >> lsb; if (check_fit_tl(test, 13)) { tcg_out_movi_imm13(s, ret, test); tcg_out_arithi(s, ret, ret, lsb, SHIFT_SLLX); return; } else if (lsb > 10 && test == extract64(test, 0, 21)) { tcg_out_sethi(s, ret, test << 10); tcg_out_arithi(s, ret, ret, lsb - 10, SHIFT_SLLX); return; } /* A 64-bit constant decomposed into 2 32-bit pieces. */ if (check_fit_i32(lo, 13)) { hi = (arg - lo) >> 32; tcg_out_movi(s, TCG_TYPE_I32, ret, hi); tcg_out_arithi(s, ret, ret, 32, SHIFT_SLLX); tcg_out_arithi(s, ret, ret, lo, ARITH_ADD); } else { hi = arg >> 32; tcg_out_movi(s, TCG_TYPE_I32, ret, hi); tcg_out_movi(s, TCG_TYPE_I32, TCG_REG_T2, lo); tcg_out_arithi(s, ret, ret, 32, SHIFT_SLLX); tcg_out_arith(s, ret, ret, TCG_REG_T2, ARITH_OR); } } static inline void tcg_out_movi(TCGContext *s, TCGType type, TCGReg ret, tcg_target_long arg) { tcg_out_movi_int(s, type, ret, arg, false); } static inline void tcg_out_ldst_rr(TCGContext *s, TCGReg data, TCGReg a1, TCGReg a2, int op) { tcg_out32(s, op | INSN_RD(data) | INSN_RS1(a1) | INSN_RS2(a2)); } static void tcg_out_ldst(TCGContext *s, TCGReg ret, TCGReg addr, intptr_t offset, int op) { if (check_fit_ptr(offset, 13)) { tcg_out32(s, op | INSN_RD(ret) | INSN_RS1(addr) | INSN_IMM13(offset)); } else { tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_T1, offset); tcg_out_ldst_rr(s, ret, addr, TCG_REG_T1, op); } } static inline void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg1, intptr_t arg2) { tcg_out_ldst(s, ret, arg1, arg2, (type == TCG_TYPE_I32 ? LDUW : LDX)); } static inline void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg, TCGReg arg1, intptr_t arg2) { tcg_out_ldst(s, arg, arg1, arg2, (type == TCG_TYPE_I32 ? STW : STX)); } static inline bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val, TCGReg base, intptr_t ofs) { if (val == 0) { tcg_out_st(s, type, TCG_REG_G0, base, ofs); return true; } return false; } static void tcg_out_ld_ptr(TCGContext *s, TCGReg ret, uintptr_t arg) { intptr_t diff = arg - (uintptr_t)s->code_gen_ptr; if (USE_REG_TB && check_fit_ptr(diff, 13)) { tcg_out_ld(s, TCG_TYPE_PTR, ret, TCG_REG_TB, diff); return; } tcg_out_movi(s, TCG_TYPE_PTR, ret, arg & ~0x3ff); tcg_out_ld(s, TCG_TYPE_PTR, ret, ret, arg & 0x3ff); } static inline void tcg_out_sety(TCGContext *s, TCGReg rs) { tcg_out32(s, WRY | INSN_RS1(TCG_REG_G0) | INSN_RS2(rs)); } static inline void tcg_out_rdy(TCGContext *s, TCGReg rd) { tcg_out32(s, RDY | INSN_RD(rd)); } static void tcg_out_div32(TCGContext *s, TCGReg rd, TCGReg rs1, int32_t val2, int val2const, int uns) { /* Load Y with the sign/zero extension of RS1 to 64-bits. */ if (uns) { tcg_out_sety(s, TCG_REG_G0); } else { tcg_out_arithi(s, TCG_REG_T1, rs1, 31, SHIFT_SRA); tcg_out_sety(s, TCG_REG_T1); } tcg_out_arithc(s, rd, rs1, val2, val2const, uns ? ARITH_UDIV : ARITH_SDIV); } static inline void tcg_out_nop(TCGContext *s) { tcg_out32(s, NOP); } static const uint8_t tcg_cond_to_bcond[] = { [TCG_COND_EQ] = COND_E, [TCG_COND_NE] = COND_NE, [TCG_COND_LT] = COND_L, [TCG_COND_GE] = COND_GE, [TCG_COND_LE] = COND_LE, [TCG_COND_GT] = COND_G, [TCG_COND_LTU] = COND_CS, [TCG_COND_GEU] = COND_CC, [TCG_COND_LEU] = COND_LEU, [TCG_COND_GTU] = COND_GU, }; static const uint8_t tcg_cond_to_rcond[] = { [TCG_COND_EQ] = RCOND_Z, [TCG_COND_NE] = RCOND_NZ, [TCG_COND_LT] = RCOND_LZ, [TCG_COND_GT] = RCOND_GZ, [TCG_COND_LE] = RCOND_LEZ, [TCG_COND_GE] = RCOND_GEZ }; static void tcg_out_bpcc0(TCGContext *s, int scond, int flags, int off19) { tcg_out32(s, INSN_OP(0) | INSN_OP2(1) | INSN_COND(scond) | flags | off19); } static void tcg_out_bpcc(TCGContext *s, int scond, int flags, TCGLabel *l) { int off19 = 0; if (l->has_value) { off19 = INSN_OFF19(tcg_pcrel_diff(s, l->u.value_ptr)); } else { tcg_out_reloc(s, s->code_ptr, R_SPARC_WDISP19, l, 0); } tcg_out_bpcc0(s, scond, flags, off19); } static void tcg_out_cmp(TCGContext *s, TCGReg c1, int32_t c2, int c2const) { tcg_out_arithc(s, TCG_REG_G0, c1, c2, c2const, ARITH_SUBCC); } static void tcg_out_brcond_i32(TCGContext *s, TCGCond cond, TCGReg arg1, int32_t arg2, int const_arg2, TCGLabel *l) { tcg_out_cmp(s, arg1, arg2, const_arg2); tcg_out_bpcc(s, tcg_cond_to_bcond[cond], BPCC_ICC | BPCC_PT, l); tcg_out_nop(s); } static void tcg_out_movcc(TCGContext *s, TCGCond cond, int cc, TCGReg ret, int32_t v1, int v1const) { tcg_out32(s, ARITH_MOVCC | cc | INSN_RD(ret) | INSN_RS1(tcg_cond_to_bcond[cond]) | (v1const ? INSN_IMM11(v1) : INSN_RS2(v1))); } static void tcg_out_movcond_i32(TCGContext *s, TCGCond cond, TCGReg ret, TCGReg c1, int32_t c2, int c2const, int32_t v1, int v1const) { tcg_out_cmp(s, c1, c2, c2const); tcg_out_movcc(s, cond, MOVCC_ICC, ret, v1, v1const); } static void tcg_out_brcond_i64(TCGContext *s, TCGCond cond, TCGReg arg1, int32_t arg2, int const_arg2, TCGLabel *l) { /* For 64-bit signed comparisons vs zero, we can avoid the compare. */ if (arg2 == 0 && !is_unsigned_cond(cond)) { int off16 = 0; if (l->has_value) { off16 = INSN_OFF16(tcg_pcrel_diff(s, l->u.value_ptr)); } else { tcg_out_reloc(s, s->code_ptr, R_SPARC_WDISP16, l, 0); } tcg_out32(s, INSN_OP(0) | INSN_OP2(3) | BPR_PT | INSN_RS1(arg1) | INSN_COND(tcg_cond_to_rcond[cond]) | off16); } else { tcg_out_cmp(s, arg1, arg2, const_arg2); tcg_out_bpcc(s, tcg_cond_to_bcond[cond], BPCC_XCC | BPCC_PT, l); } tcg_out_nop(s); } static void tcg_out_movr(TCGContext *s, TCGCond cond, TCGReg ret, TCGReg c1, int32_t v1, int v1const) { tcg_out32(s, ARITH_MOVR | INSN_RD(ret) | INSN_RS1(c1) | (tcg_cond_to_rcond[cond] << 10) | (v1const ? INSN_IMM10(v1) : INSN_RS2(v1))); } static void tcg_out_movcond_i64(TCGContext *s, TCGCond cond, TCGReg ret, TCGReg c1, int32_t c2, int c2const, int32_t v1, int v1const) { /* For 64-bit signed comparisons vs zero, we can avoid the compare. Note that the immediate range is one bit smaller, so we must check for that as well. */ if (c2 == 0 && !is_unsigned_cond(cond) && (!v1const || check_fit_i32(v1, 10))) { tcg_out_movr(s, cond, ret, c1, v1, v1const); } else { tcg_out_cmp(s, c1, c2, c2const); tcg_out_movcc(s, cond, MOVCC_XCC, ret, v1, v1const); } } static void tcg_out_setcond_i32(TCGContext *s, TCGCond cond, TCGReg ret, TCGReg c1, int32_t c2, int c2const) { /* For 32-bit comparisons, we can play games with ADDC/SUBC. */ switch (cond) { case TCG_COND_LTU: case TCG_COND_GEU: /* The result of the comparison is in the carry bit. */ break; case TCG_COND_EQ: case TCG_COND_NE: /* For equality, we can transform to inequality vs zero. */ if (c2 != 0) { tcg_out_arithc(s, TCG_REG_T1, c1, c2, c2const, ARITH_XOR); c2 = TCG_REG_T1; } else { c2 = c1; } c1 = TCG_REG_G0, c2const = 0; cond = (cond == TCG_COND_EQ ? TCG_COND_GEU : TCG_COND_LTU); break; case TCG_COND_GTU: case TCG_COND_LEU: /* If we don't need to load a constant into a register, we can swap the operands on GTU/LEU. There's no benefit to loading the constant into a temporary register. */ if (!c2const || c2 == 0) { TCGReg t = c1; c1 = c2; c2 = t; c2const = 0; cond = tcg_swap_cond(cond); break; } /* FALLTHRU */ default: tcg_out_cmp(s, c1, c2, c2const); tcg_out_movi_imm13(s, ret, 0); tcg_out_movcc(s, cond, MOVCC_ICC, ret, 1, 1); return; } tcg_out_cmp(s, c1, c2, c2const); if (cond == TCG_COND_LTU) { tcg_out_arithi(s, ret, TCG_REG_G0, 0, ARITH_ADDC); } else { tcg_out_arithi(s, ret, TCG_REG_G0, -1, ARITH_SUBC); } } static void tcg_out_setcond_i64(TCGContext *s, TCGCond cond, TCGReg ret, TCGReg c1, int32_t c2, int c2const) { if (use_vis3_instructions) { switch (cond) { case TCG_COND_NE: if (c2 != 0) { break; } c2 = c1, c2const = 0, c1 = TCG_REG_G0; /* FALLTHRU */ case TCG_COND_LTU: tcg_out_cmp(s, c1, c2, c2const); tcg_out_arith(s, ret, TCG_REG_G0, TCG_REG_G0, ARITH_ADDXC); return; default: break; } } /* For 64-bit signed comparisons vs zero, we can avoid the compare if the input does not overlap the output. */ if (c2 == 0 && !is_unsigned_cond(cond) && c1 != ret) { tcg_out_movi_imm13(s, ret, 0); tcg_out_movr(s, cond, ret, c1, 1, 1); } else { tcg_out_cmp(s, c1, c2, c2const); tcg_out_movi_imm13(s, ret, 0); tcg_out_movcc(s, cond, MOVCC_XCC, ret, 1, 1); } } static void tcg_out_addsub2_i32(TCGContext *s, TCGReg rl, TCGReg rh, TCGReg al, TCGReg ah, int32_t bl, int blconst, int32_t bh, int bhconst, int opl, int oph) { TCGReg tmp = TCG_REG_T1; /* Note that the low parts are fully consumed before tmp is set. */ if (rl != ah && (bhconst || rl != bh)) { tmp = rl; } tcg_out_arithc(s, tmp, al, bl, blconst, opl); tcg_out_arithc(s, rh, ah, bh, bhconst, oph); tcg_out_mov(s, TCG_TYPE_I32, rl, tmp); } static void tcg_out_addsub2_i64(TCGContext *s, TCGReg rl, TCGReg rh, TCGReg al, TCGReg ah, int32_t bl, int blconst, int32_t bh, int bhconst, bool is_sub) { TCGReg tmp = TCG_REG_T1; /* Note that the low parts are fully consumed before tmp is set. */ if (rl != ah && (bhconst || rl != bh)) { tmp = rl; } tcg_out_arithc(s, tmp, al, bl, blconst, is_sub ? ARITH_SUBCC : ARITH_ADDCC); if (use_vis3_instructions && !is_sub) { /* Note that ADDXC doesn't accept immediates. */ if (bhconst && bh != 0) { tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_T2, bh); bh = TCG_REG_T2; } tcg_out_arith(s, rh, ah, bh, ARITH_ADDXC); } else if (bh == TCG_REG_G0) { /* If we have a zero, we can perform the operation in two insns, with the arithmetic first, and a conditional move into place. */ if (rh == ah) { tcg_out_arithi(s, TCG_REG_T2, ah, 1, is_sub ? ARITH_SUB : ARITH_ADD); tcg_out_movcc(s, TCG_COND_LTU, MOVCC_XCC, rh, TCG_REG_T2, 0); } else { tcg_out_arithi(s, rh, ah, 1, is_sub ? ARITH_SUB : ARITH_ADD); tcg_out_movcc(s, TCG_COND_GEU, MOVCC_XCC, rh, ah, 0); } } else { /* Otherwise adjust BH as if there is carry into T2 ... */ if (bhconst) { tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_T2, bh + (is_sub ? -1 : 1)); } else { tcg_out_arithi(s, TCG_REG_T2, bh, 1, is_sub ? ARITH_SUB : ARITH_ADD); } /* ... smoosh T2 back to original BH if carry is clear ... */ tcg_out_movcc(s, TCG_COND_GEU, MOVCC_XCC, TCG_REG_T2, bh, bhconst); /* ... and finally perform the arithmetic with the new operand. */ tcg_out_arith(s, rh, ah, TCG_REG_T2, is_sub ? ARITH_SUB : ARITH_ADD); } tcg_out_mov(s, TCG_TYPE_I64, rl, tmp); } static void tcg_out_call_nodelay(TCGContext *s, tcg_insn_unit *dest, bool in_prologue) { ptrdiff_t disp = tcg_pcrel_diff(s, dest); if (disp == (int32_t)disp) { tcg_out32(s, CALL | (uint32_t)disp >> 2); } else { uintptr_t desti = (uintptr_t)dest; tcg_out_movi_int(s, TCG_TYPE_PTR, TCG_REG_T1, desti & ~0xfff, in_prologue); tcg_out_arithi(s, TCG_REG_O7, TCG_REG_T1, desti & 0xfff, JMPL); } } static void tcg_out_call(TCGContext *s, tcg_insn_unit *dest) { tcg_out_call_nodelay(s, dest, false); tcg_out_nop(s); } static void tcg_out_mb(TCGContext *s, TCGArg a0) { /* Note that the TCG memory order constants mirror the Sparc MEMBAR. */ tcg_out32(s, MEMBAR | (a0 & TCG_MO_ALL)); } #ifdef CONFIG_SOFTMMU static tcg_insn_unit *qemu_ld_trampoline[16]; static tcg_insn_unit *qemu_st_trampoline[16]; static void emit_extend(TCGContext *s, TCGReg r, int op) { /* Emit zero extend of 8, 16 or 32 bit data as * required by the MO_* value op; do nothing for 64 bit. */ switch (op & MO_SIZE) { case MO_8: tcg_out_arithi(s, r, r, 0xff, ARITH_AND); break; case MO_16: tcg_out_arithi(s, r, r, 16, SHIFT_SLL); tcg_out_arithi(s, r, r, 16, SHIFT_SRL); break; case MO_32: if (SPARC64) { tcg_out_arith(s, r, r, 0, SHIFT_SRL); } break; case MO_64: break; } } static void build_trampolines(TCGContext *s) { static void * const qemu_ld_helpers[16] = { [MO_UB] = helper_ret_ldub_mmu, [MO_SB] = helper_ret_ldsb_mmu, [MO_LEUW] = helper_le_lduw_mmu, [MO_LESW] = helper_le_ldsw_mmu, [MO_LEUL] = helper_le_ldul_mmu, [MO_LEQ] = helper_le_ldq_mmu, [MO_BEUW] = helper_be_lduw_mmu, [MO_BESW] = helper_be_ldsw_mmu, [MO_BEUL] = helper_be_ldul_mmu, [MO_BEQ] = helper_be_ldq_mmu, }; static void * const qemu_st_helpers[16] = { [MO_UB] = helper_ret_stb_mmu, [MO_LEUW] = helper_le_stw_mmu, [MO_LEUL] = helper_le_stl_mmu, [MO_LEQ] = helper_le_stq_mmu, [MO_BEUW] = helper_be_stw_mmu, [MO_BEUL] = helper_be_stl_mmu, [MO_BEQ] = helper_be_stq_mmu, }; int i; TCGReg ra; for (i = 0; i < 16; ++i) { if (qemu_ld_helpers[i] == NULL) { continue; } /* May as well align the trampoline. */ while ((uintptr_t)s->code_ptr & 15) { tcg_out_nop(s); } qemu_ld_trampoline[i] = s->code_ptr; if (SPARC64 || TARGET_LONG_BITS == 32) { ra = TCG_REG_O3; } else { /* Install the high part of the address. */ tcg_out_arithi(s, TCG_REG_O1, TCG_REG_O2, 32, SHIFT_SRLX); ra = TCG_REG_O4; } /* Set the retaddr operand. */ tcg_out_mov(s, TCG_TYPE_PTR, ra, TCG_REG_O7); /* Set the env operand. */ tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_O0, TCG_AREG0); /* Tail call. */ tcg_out_call_nodelay(s, qemu_ld_helpers[i], true); tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_O7, ra); } for (i = 0; i < 16; ++i) { if (qemu_st_helpers[i] == NULL) { continue; } /* May as well align the trampoline. */ while ((uintptr_t)s->code_ptr & 15) { tcg_out_nop(s); } qemu_st_trampoline[i] = s->code_ptr; if (SPARC64) { emit_extend(s, TCG_REG_O2, i); ra = TCG_REG_O4; } else { ra = TCG_REG_O1; if (TARGET_LONG_BITS == 64) { /* Install the high part of the address. */ tcg_out_arithi(s, ra, ra + 1, 32, SHIFT_SRLX); ra += 2; } else { ra += 1; } if ((i & MO_SIZE) == MO_64) { /* Install the high part of the data. */ tcg_out_arithi(s, ra, ra + 1, 32, SHIFT_SRLX); ra += 2; } else { emit_extend(s, ra, i); ra += 1; } /* Skip the oi argument. */ ra += 1; } /* Set the retaddr operand. */ if (ra >= TCG_REG_O6) { tcg_out_st(s, TCG_TYPE_PTR, TCG_REG_O7, TCG_REG_CALL_STACK, TCG_TARGET_CALL_STACK_OFFSET); ra = TCG_REG_G1; } tcg_out_mov(s, TCG_TYPE_PTR, ra, TCG_REG_O7); /* Set the env operand. */ tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_O0, TCG_AREG0); /* Tail call. */ tcg_out_call_nodelay(s, qemu_st_helpers[i], true); tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_O7, ra); } } #endif /* Generate global QEMU prologue and epilogue code */ static void tcg_target_qemu_prologue(TCGContext *s) { int tmp_buf_size, frame_size; /* The TCG temp buffer is at the top of the frame, immediately below the frame pointer. */ tmp_buf_size = CPU_TEMP_BUF_NLONGS * (int)sizeof(long); tcg_set_frame(s, TCG_REG_I6, TCG_TARGET_STACK_BIAS - tmp_buf_size, tmp_buf_size); /* TCG_TARGET_CALL_STACK_OFFSET includes the stack bias, but is otherwise the minimal frame usable by callees. */ frame_size = TCG_TARGET_CALL_STACK_OFFSET - TCG_TARGET_STACK_BIAS; frame_size += TCG_STATIC_CALL_ARGS_SIZE + tmp_buf_size; frame_size += TCG_TARGET_STACK_ALIGN - 1; frame_size &= -TCG_TARGET_STACK_ALIGN; tcg_out32(s, SAVE | INSN_RD(TCG_REG_O6) | INSN_RS1(TCG_REG_O6) | INSN_IMM13(-frame_size)); #ifndef CONFIG_SOFTMMU if (guest_base != 0) { tcg_out_movi_int(s, TCG_TYPE_PTR, TCG_GUEST_BASE_REG, guest_base, true); tcg_regset_set_reg(s->reserved_regs, TCG_GUEST_BASE_REG); } #endif /* We choose TCG_REG_TB such that no move is required. */ if (USE_REG_TB) { QEMU_BUILD_BUG_ON(TCG_REG_TB != TCG_REG_I1); tcg_regset_set_reg(s->reserved_regs, TCG_REG_TB); } tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I1, 0, JMPL); /* delay slot */ tcg_out_nop(s); /* Epilogue for goto_ptr. */ s->code_gen_epilogue = s->code_ptr; tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I7, 8, RETURN); /* delay slot */ tcg_out_movi_imm13(s, TCG_REG_O0, 0); #ifdef CONFIG_SOFTMMU build_trampolines(s); #endif } static void tcg_out_nop_fill(tcg_insn_unit *p, int count) { int i; for (i = 0; i < count; ++i) { p[i] = NOP; } } #if defined(CONFIG_SOFTMMU) /* We expect to use a 13-bit negative offset from ENV. */ QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) > 0); QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) < -(1 << 12)); /* Perform the TLB load and compare. Inputs: ADDRLO and ADDRHI contain the possible two parts of the address. MEM_INDEX and S_BITS are the memory context and log2 size of the load. WHICH is the offset into the CPUTLBEntry structure of the slot to read. This should be offsetof addr_read or addr_write. The result of the TLB comparison is in %[ix]cc. The sanitized address is in the returned register, maybe %o0. The TLB addend is in %o1. */ static TCGReg tcg_out_tlb_load(TCGContext *s, TCGReg addr, int mem_index, MemOp opc, int which) { int fast_off = TLB_MASK_TABLE_OFS(mem_index); int mask_off = fast_off + offsetof(CPUTLBDescFast, mask); int table_off = fast_off + offsetof(CPUTLBDescFast, table); const TCGReg r0 = TCG_REG_O0; const TCGReg r1 = TCG_REG_O1; const TCGReg r2 = TCG_REG_O2; unsigned s_bits = opc & MO_SIZE; unsigned a_bits = get_alignment_bits(opc); tcg_target_long compare_mask; /* Load tlb_mask[mmu_idx] and tlb_table[mmu_idx]. */ tcg_out_ld(s, TCG_TYPE_PTR, r0, TCG_AREG0, mask_off); tcg_out_ld(s, TCG_TYPE_PTR, r1, TCG_AREG0, table_off); /* Extract the page index, shifted into place for tlb index. */ tcg_out_arithi(s, r2, addr, TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS, SHIFT_SRL); tcg_out_arith(s, r2, r2, r0, ARITH_AND); /* Add the tlb_table pointer, creating the CPUTLBEntry address into R2. */ tcg_out_arith(s, r2, r2, r1, ARITH_ADD); /* Load the tlb comparator and the addend. */ tcg_out_ld(s, TCG_TYPE_TL, r0, r2, which); tcg_out_ld(s, TCG_TYPE_PTR, r1, r2, offsetof(CPUTLBEntry, addend)); /* Mask out the page offset, except for the required alignment. We don't support unaligned accesses. */ if (a_bits < s_bits) { a_bits = s_bits; } compare_mask = (tcg_target_ulong)TARGET_PAGE_MASK | ((1 << a_bits) - 1); if (check_fit_tl(compare_mask, 13)) { tcg_out_arithi(s, r2, addr, compare_mask, ARITH_AND); } else { tcg_out_movi(s, TCG_TYPE_TL, r2, compare_mask); tcg_out_arith(s, r2, addr, r2, ARITH_AND); } tcg_out_cmp(s, r0, r2, 0); /* If the guest address must be zero-extended, do so now. */ if (SPARC64 && TARGET_LONG_BITS == 32) { tcg_out_arithi(s, r0, addr, 0, SHIFT_SRL); return r0; } return addr; } #endif /* CONFIG_SOFTMMU */ static const int qemu_ld_opc[16] = { [MO_UB] = LDUB, [MO_SB] = LDSB, [MO_BEUW] = LDUH, [MO_BESW] = LDSH, [MO_BEUL] = LDUW, [MO_BESL] = LDSW, [MO_BEQ] = LDX, [MO_LEUW] = LDUH_LE, [MO_LESW] = LDSH_LE, [MO_LEUL] = LDUW_LE, [MO_LESL] = LDSW_LE, [MO_LEQ] = LDX_LE, }; static const int qemu_st_opc[16] = { [MO_UB] = STB, [MO_BEUW] = STH, [MO_BEUL] = STW, [MO_BEQ] = STX, [MO_LEUW] = STH_LE, [MO_LEUL] = STW_LE, [MO_LEQ] = STX_LE, }; static void tcg_out_qemu_ld(TCGContext *s, TCGReg data, TCGReg addr, TCGMemOpIdx oi, bool is_64) { MemOp memop = get_memop(oi); #ifdef CONFIG_SOFTMMU unsigned memi = get_mmuidx(oi); TCGReg addrz, param; tcg_insn_unit *func; tcg_insn_unit *label_ptr; addrz = tcg_out_tlb_load(s, addr, memi, memop, offsetof(CPUTLBEntry, addr_read)); /* The fast path is exactly one insn. Thus we can perform the entire TLB Hit in the (annulled) delay slot of the branch over the TLB Miss case. */ /* beq,a,pt %[xi]cc, label0 */ label_ptr = s->code_ptr; tcg_out_bpcc0(s, COND_E, BPCC_A | BPCC_PT | (TARGET_LONG_BITS == 64 ? BPCC_XCC : BPCC_ICC), 0); /* delay slot */ tcg_out_ldst_rr(s, data, addrz, TCG_REG_O1, qemu_ld_opc[memop & (MO_BSWAP | MO_SSIZE)]); /* TLB Miss. */ param = TCG_REG_O1; if (!SPARC64 && TARGET_LONG_BITS == 64) { /* Skip the high-part; we'll perform the extract in the trampoline. */ param++; } tcg_out_mov(s, TCG_TYPE_REG, param++, addrz); /* We use the helpers to extend SB and SW data, leaving the case of SL needing explicit extending below. */ if ((memop & MO_SSIZE) == MO_SL) { func = qemu_ld_trampoline[memop & (MO_BSWAP | MO_SIZE)]; } else { func = qemu_ld_trampoline[memop & (MO_BSWAP | MO_SSIZE)]; } tcg_debug_assert(func != NULL); tcg_out_call_nodelay(s, func, false); /* delay slot */ tcg_out_movi(s, TCG_TYPE_I32, param, oi); /* Recall that all of the helpers return 64-bit results. Which complicates things for sparcv8plus. */ if (SPARC64) { /* We let the helper sign-extend SB and SW, but leave SL for here. */ if (is_64 && (memop & MO_SSIZE) == MO_SL) { tcg_out_arithi(s, data, TCG_REG_O0, 0, SHIFT_SRA); } else { tcg_out_mov(s, TCG_TYPE_REG, data, TCG_REG_O0); } } else { if ((memop & MO_SIZE) == MO_64) { tcg_out_arithi(s, TCG_REG_O0, TCG_REG_O0, 32, SHIFT_SLLX); tcg_out_arithi(s, TCG_REG_O1, TCG_REG_O1, 0, SHIFT_SRL); tcg_out_arith(s, data, TCG_REG_O0, TCG_REG_O1, ARITH_OR); } else if (is_64) { /* Re-extend from 32-bit rather than reassembling when we know the high register must be an extension. */ tcg_out_arithi(s, data, TCG_REG_O1, 0, memop & MO_SIGN ? SHIFT_SRA : SHIFT_SRL); } else { tcg_out_mov(s, TCG_TYPE_I32, data, TCG_REG_O1); } } *label_ptr |= INSN_OFF19(tcg_ptr_byte_diff(s->code_ptr, label_ptr)); #else if (SPARC64 && TARGET_LONG_BITS == 32) { tcg_out_arithi(s, TCG_REG_T1, addr, 0, SHIFT_SRL); addr = TCG_REG_T1; } tcg_out_ldst_rr(s, data, addr, (guest_base ? TCG_GUEST_BASE_REG : TCG_REG_G0), qemu_ld_opc[memop & (MO_BSWAP | MO_SSIZE)]); #endif /* CONFIG_SOFTMMU */ } static void tcg_out_qemu_st(TCGContext *s, TCGReg data, TCGReg addr, TCGMemOpIdx oi) { MemOp memop = get_memop(oi); #ifdef CONFIG_SOFTMMU unsigned memi = get_mmuidx(oi); TCGReg addrz, param; tcg_insn_unit *func; tcg_insn_unit *label_ptr; addrz = tcg_out_tlb_load(s, addr, memi, memop, offsetof(CPUTLBEntry, addr_write)); /* The fast path is exactly one insn. Thus we can perform the entire TLB Hit in the (annulled) delay slot of the branch over TLB Miss. */ /* beq,a,pt %[xi]cc, label0 */ label_ptr = s->code_ptr; tcg_out_bpcc0(s, COND_E, BPCC_A | BPCC_PT | (TARGET_LONG_BITS == 64 ? BPCC_XCC : BPCC_ICC), 0); /* delay slot */ tcg_out_ldst_rr(s, data, addrz, TCG_REG_O1, qemu_st_opc[memop & (MO_BSWAP | MO_SIZE)]); /* TLB Miss. */ param = TCG_REG_O1; if (!SPARC64 && TARGET_LONG_BITS == 64) { /* Skip the high-part; we'll perform the extract in the trampoline. */ param++; } tcg_out_mov(s, TCG_TYPE_REG, param++, addrz); if (!SPARC64 && (memop & MO_SIZE) == MO_64) { /* Skip the high-part; we'll perform the extract in the trampoline. */ param++; } tcg_out_mov(s, TCG_TYPE_REG, param++, data); func = qemu_st_trampoline[memop & (MO_BSWAP | MO_SIZE)]; tcg_debug_assert(func != NULL); tcg_out_call_nodelay(s, func, false); /* delay slot */ tcg_out_movi(s, TCG_TYPE_I32, param, oi); *label_ptr |= INSN_OFF19(tcg_ptr_byte_diff(s->code_ptr, label_ptr)); #else if (SPARC64 && TARGET_LONG_BITS == 32) { tcg_out_arithi(s, TCG_REG_T1, addr, 0, SHIFT_SRL); addr = TCG_REG_T1; } tcg_out_ldst_rr(s, data, addr, (guest_base ? TCG_GUEST_BASE_REG : TCG_REG_G0), qemu_st_opc[memop & (MO_BSWAP | MO_SIZE)]); #endif /* CONFIG_SOFTMMU */ } static void tcg_out_op(TCGContext *s, TCGOpcode opc, const TCGArg args[TCG_MAX_OP_ARGS], const int const_args[TCG_MAX_OP_ARGS]) { TCGArg a0, a1, a2; int c, c2; /* Hoist the loads of the most common arguments. */ a0 = args[0]; a1 = args[1]; a2 = args[2]; c2 = const_args[2]; switch (opc) { case INDEX_op_exit_tb: if (check_fit_ptr(a0, 13)) { tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I7, 8, RETURN); tcg_out_movi_imm13(s, TCG_REG_O0, a0); break; } else if (USE_REG_TB) { intptr_t tb_diff = a0 - (uintptr_t)s->code_gen_ptr; if (check_fit_ptr(tb_diff, 13)) { tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I7, 8, RETURN); /* Note that TCG_REG_TB has been unwound to O1. */ tcg_out_arithi(s, TCG_REG_O0, TCG_REG_O1, tb_diff, ARITH_ADD); break; } } tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_I0, a0 & ~0x3ff); tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I7, 8, RETURN); tcg_out_arithi(s, TCG_REG_O0, TCG_REG_O0, a0 & 0x3ff, ARITH_OR); break; case INDEX_op_goto_tb: if (s->tb_jmp_insn_offset) { /* direct jump method */ if (USE_REG_TB) { /* make sure the patch is 8-byte aligned. */ if ((intptr_t)s->code_ptr & 4) { tcg_out_nop(s); } s->tb_jmp_insn_offset[a0] = tcg_current_code_size(s); tcg_out_sethi(s, TCG_REG_T1, 0); tcg_out_arithi(s, TCG_REG_T1, TCG_REG_T1, 0, ARITH_OR); tcg_out_arith(s, TCG_REG_G0, TCG_REG_TB, TCG_REG_T1, JMPL); tcg_out_arith(s, TCG_REG_TB, TCG_REG_TB, TCG_REG_T1, ARITH_ADD); } else { s->tb_jmp_insn_offset[a0] = tcg_current_code_size(s); tcg_out32(s, CALL); tcg_out_nop(s); } } else { /* indirect jump method */ tcg_out_ld_ptr(s, TCG_REG_TB, (uintptr_t)(s->tb_jmp_target_addr + a0)); tcg_out_arithi(s, TCG_REG_G0, TCG_REG_TB, 0, JMPL); tcg_out_nop(s); } set_jmp_reset_offset(s, a0); /* For the unlinked path of goto_tb, we need to reset TCG_REG_TB to the beginning of this TB. */ if (USE_REG_TB) { c = -tcg_current_code_size(s); if (check_fit_i32(c, 13)) { tcg_out_arithi(s, TCG_REG_TB, TCG_REG_TB, c, ARITH_ADD); } else { tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_T1, c); tcg_out_arith(s, TCG_REG_TB, TCG_REG_TB, TCG_REG_T1, ARITH_ADD); } } break; case INDEX_op_goto_ptr: tcg_out_arithi(s, TCG_REG_G0, a0, 0, JMPL); if (USE_REG_TB) { tcg_out_arith(s, TCG_REG_TB, a0, TCG_REG_G0, ARITH_OR); } else { tcg_out_nop(s); } break; case INDEX_op_br: tcg_out_bpcc(s, COND_A, BPCC_PT, arg_label(a0)); tcg_out_nop(s); break; #define OP_32_64(x) \ glue(glue(case INDEX_op_, x), _i32): \ glue(glue(case INDEX_op_, x), _i64) OP_32_64(ld8u): tcg_out_ldst(s, a0, a1, a2, LDUB); break; OP_32_64(ld8s): tcg_out_ldst(s, a0, a1, a2, LDSB); break; OP_32_64(ld16u): tcg_out_ldst(s, a0, a1, a2, LDUH); break; OP_32_64(ld16s): tcg_out_ldst(s, a0, a1, a2, LDSH); break; case INDEX_op_ld_i32: case INDEX_op_ld32u_i64: tcg_out_ldst(s, a0, a1, a2, LDUW); break; OP_32_64(st8): tcg_out_ldst(s, a0, a1, a2, STB); break; OP_32_64(st16): tcg_out_ldst(s, a0, a1, a2, STH); break; case INDEX_op_st_i32: case INDEX_op_st32_i64: tcg_out_ldst(s, a0, a1, a2, STW); break; OP_32_64(add): c = ARITH_ADD; goto gen_arith; OP_32_64(sub): c = ARITH_SUB; goto gen_arith; OP_32_64(and): c = ARITH_AND; goto gen_arith; OP_32_64(andc): c = ARITH_ANDN; goto gen_arith; OP_32_64(or): c = ARITH_OR; goto gen_arith; OP_32_64(orc): c = ARITH_ORN; goto gen_arith; OP_32_64(xor): c = ARITH_XOR; goto gen_arith; case INDEX_op_shl_i32: c = SHIFT_SLL; do_shift32: /* Limit immediate shift count lest we create an illegal insn. */ tcg_out_arithc(s, a0, a1, a2 & 31, c2, c); break; case INDEX_op_shr_i32: c = SHIFT_SRL; goto do_shift32; case INDEX_op_sar_i32: c = SHIFT_SRA; goto do_shift32; case INDEX_op_mul_i32: c = ARITH_UMUL; goto gen_arith; OP_32_64(neg): c = ARITH_SUB; goto gen_arith1; OP_32_64(not): c = ARITH_ORN; goto gen_arith1; case INDEX_op_div_i32: tcg_out_div32(s, a0, a1, a2, c2, 0); break; case INDEX_op_divu_i32: tcg_out_div32(s, a0, a1, a2, c2, 1); break; case INDEX_op_brcond_i32: tcg_out_brcond_i32(s, a2, a0, a1, const_args[1], arg_label(args[3])); break; case INDEX_op_setcond_i32: tcg_out_setcond_i32(s, args[3], a0, a1, a2, c2); break; case INDEX_op_movcond_i32: tcg_out_movcond_i32(s, args[5], a0, a1, a2, c2, args[3], const_args[3]); break; case INDEX_op_add2_i32: tcg_out_addsub2_i32(s, args[0], args[1], args[2], args[3], args[4], const_args[4], args[5], const_args[5], ARITH_ADDCC, ARITH_ADDC); break; case INDEX_op_sub2_i32: tcg_out_addsub2_i32(s, args[0], args[1], args[2], args[3], args[4], const_args[4], args[5], const_args[5], ARITH_SUBCC, ARITH_SUBC); break; case INDEX_op_mulu2_i32: c = ARITH_UMUL; goto do_mul2; case INDEX_op_muls2_i32: c = ARITH_SMUL; do_mul2: /* The 32-bit multiply insns produce a full 64-bit result. If the destination register can hold it, we can avoid the slower RDY. */ tcg_out_arithc(s, a0, a2, args[3], const_args[3], c); if (SPARC64 || a0 <= TCG_REG_O7) { tcg_out_arithi(s, a1, a0, 32, SHIFT_SRLX); } else { tcg_out_rdy(s, a1); } break; case INDEX_op_qemu_ld_i32: tcg_out_qemu_ld(s, a0, a1, a2, false); break; case INDEX_op_qemu_ld_i64: tcg_out_qemu_ld(s, a0, a1, a2, true); break; case INDEX_op_qemu_st_i32: case INDEX_op_qemu_st_i64: tcg_out_qemu_st(s, a0, a1, a2); break; case INDEX_op_ld32s_i64: tcg_out_ldst(s, a0, a1, a2, LDSW); break; case INDEX_op_ld_i64: tcg_out_ldst(s, a0, a1, a2, LDX); break; case INDEX_op_st_i64: tcg_out_ldst(s, a0, a1, a2, STX); break; case INDEX_op_shl_i64: c = SHIFT_SLLX; do_shift64: /* Limit immediate shift count lest we create an illegal insn. */ tcg_out_arithc(s, a0, a1, a2 & 63, c2, c); break; case INDEX_op_shr_i64: c = SHIFT_SRLX; goto do_shift64; case INDEX_op_sar_i64: c = SHIFT_SRAX; goto do_shift64; case INDEX_op_mul_i64: c = ARITH_MULX; goto gen_arith; case INDEX_op_div_i64: c = ARITH_SDIVX; goto gen_arith; case INDEX_op_divu_i64: c = ARITH_UDIVX; goto gen_arith; case INDEX_op_ext_i32_i64: case INDEX_op_ext32s_i64: tcg_out_arithi(s, a0, a1, 0, SHIFT_SRA); break; case INDEX_op_extu_i32_i64: case INDEX_op_ext32u_i64: tcg_out_arithi(s, a0, a1, 0, SHIFT_SRL); break; case INDEX_op_extrl_i64_i32: tcg_out_mov(s, TCG_TYPE_I32, a0, a1); break; case INDEX_op_extrh_i64_i32: tcg_out_arithi(s, a0, a1, 32, SHIFT_SRLX); break; case INDEX_op_brcond_i64: tcg_out_brcond_i64(s, a2, a0, a1, const_args[1], arg_label(args[3])); break; case INDEX_op_setcond_i64: tcg_out_setcond_i64(s, args[3], a0, a1, a2, c2); break; case INDEX_op_movcond_i64: tcg_out_movcond_i64(s, args[5], a0, a1, a2, c2, args[3], const_args[3]); break; case INDEX_op_add2_i64: tcg_out_addsub2_i64(s, args[0], args[1], args[2], args[3], args[4], const_args[4], args[5], const_args[5], false); break; case INDEX_op_sub2_i64: tcg_out_addsub2_i64(s, args[0], args[1], args[2], args[3], args[4], const_args[4], args[5], const_args[5], true); break; case INDEX_op_muluh_i64: tcg_out_arith(s, args[0], args[1], args[2], ARITH_UMULXHI); break; gen_arith: tcg_out_arithc(s, a0, a1, a2, c2, c); break; gen_arith1: tcg_out_arithc(s, a0, TCG_REG_G0, a1, const_args[1], c); break; case INDEX_op_mb: tcg_out_mb(s, a0); break; case INDEX_op_mov_i32: /* Always emitted via tcg_out_mov. */ case INDEX_op_mov_i64: case INDEX_op_movi_i32: /* Always emitted via tcg_out_movi. */ case INDEX_op_movi_i64: case INDEX_op_call: /* Always emitted via tcg_out_call. */ default: tcg_abort(); } } static const TCGTargetOpDef *tcg_target_op_def(TCGOpcode op) { static const TCGTargetOpDef r = { .args_ct_str = { "r" } }; static const TCGTargetOpDef r_r = { .args_ct_str = { "r", "r" } }; static const TCGTargetOpDef R_r = { .args_ct_str = { "R", "r" } }; static const TCGTargetOpDef r_R = { .args_ct_str = { "r", "R" } }; static const TCGTargetOpDef R_R = { .args_ct_str = { "R", "R" } }; static const TCGTargetOpDef r_A = { .args_ct_str = { "r", "A" } }; static const TCGTargetOpDef R_A = { .args_ct_str = { "R", "A" } }; static const TCGTargetOpDef rZ_r = { .args_ct_str = { "rZ", "r" } }; static const TCGTargetOpDef RZ_r = { .args_ct_str = { "RZ", "r" } }; static const TCGTargetOpDef sZ_A = { .args_ct_str = { "sZ", "A" } }; static const TCGTargetOpDef SZ_A = { .args_ct_str = { "SZ", "A" } }; static const TCGTargetOpDef rZ_rJ = { .args_ct_str = { "rZ", "rJ" } }; static const TCGTargetOpDef RZ_RJ = { .args_ct_str = { "RZ", "RJ" } }; static const TCGTargetOpDef R_R_R = { .args_ct_str = { "R", "R", "R" } }; static const TCGTargetOpDef r_rZ_rJ = { .args_ct_str = { "r", "rZ", "rJ" } }; static const TCGTargetOpDef R_RZ_RJ = { .args_ct_str = { "R", "RZ", "RJ" } }; static const TCGTargetOpDef r_r_rZ_rJ = { .args_ct_str = { "r", "r", "rZ", "rJ" } }; static const TCGTargetOpDef movc_32 = { .args_ct_str = { "r", "rZ", "rJ", "rI", "0" } }; static const TCGTargetOpDef movc_64 = { .args_ct_str = { "R", "RZ", "RJ", "RI", "0" } }; static const TCGTargetOpDef add2_32 = { .args_ct_str = { "r", "r", "rZ", "rZ", "rJ", "rJ" } }; static const TCGTargetOpDef add2_64 = { .args_ct_str = { "R", "R", "RZ", "RZ", "RJ", "RI" } }; switch (op) { case INDEX_op_goto_ptr: return &r; case INDEX_op_ld8u_i32: case INDEX_op_ld8s_i32: case INDEX_op_ld16u_i32: case INDEX_op_ld16s_i32: case INDEX_op_ld_i32: case INDEX_op_neg_i32: case INDEX_op_not_i32: return &r_r; case INDEX_op_st8_i32: case INDEX_op_st16_i32: case INDEX_op_st_i32: return &rZ_r; case INDEX_op_add_i32: case INDEX_op_mul_i32: case INDEX_op_div_i32: case INDEX_op_divu_i32: case INDEX_op_sub_i32: case INDEX_op_and_i32: case INDEX_op_andc_i32: case INDEX_op_or_i32: case INDEX_op_orc_i32: case INDEX_op_xor_i32: case INDEX_op_shl_i32: case INDEX_op_shr_i32: case INDEX_op_sar_i32: case INDEX_op_setcond_i32: return &r_rZ_rJ; case INDEX_op_brcond_i32: return &rZ_rJ; case INDEX_op_movcond_i32: return &movc_32; case INDEX_op_add2_i32: case INDEX_op_sub2_i32: return &add2_32; case INDEX_op_mulu2_i32: case INDEX_op_muls2_i32: return &r_r_rZ_rJ; case INDEX_op_ld8u_i64: case INDEX_op_ld8s_i64: case INDEX_op_ld16u_i64: case INDEX_op_ld16s_i64: case INDEX_op_ld32u_i64: case INDEX_op_ld32s_i64: case INDEX_op_ld_i64: case INDEX_op_ext_i32_i64: case INDEX_op_extu_i32_i64: return &R_r; case INDEX_op_st8_i64: case INDEX_op_st16_i64: case INDEX_op_st32_i64: case INDEX_op_st_i64: return &RZ_r; case INDEX_op_add_i64: case INDEX_op_mul_i64: case INDEX_op_div_i64: case INDEX_op_divu_i64: case INDEX_op_sub_i64: case INDEX_op_and_i64: case INDEX_op_andc_i64: case INDEX_op_or_i64: case INDEX_op_orc_i64: case INDEX_op_xor_i64: case INDEX_op_shl_i64: case INDEX_op_shr_i64: case INDEX_op_sar_i64: case INDEX_op_setcond_i64: return &R_RZ_RJ; case INDEX_op_neg_i64: case INDEX_op_not_i64: case INDEX_op_ext32s_i64: case INDEX_op_ext32u_i64: return &R_R; case INDEX_op_extrl_i64_i32: case INDEX_op_extrh_i64_i32: return &r_R; case INDEX_op_brcond_i64: return &RZ_RJ; case INDEX_op_movcond_i64: return &movc_64; case INDEX_op_add2_i64: case INDEX_op_sub2_i64: return &add2_64; case INDEX_op_muluh_i64: return &R_R_R; case INDEX_op_qemu_ld_i32: return &r_A; case INDEX_op_qemu_ld_i64: return &R_A; case INDEX_op_qemu_st_i32: return &sZ_A; case INDEX_op_qemu_st_i64: return &SZ_A; default: return NULL; } } static void tcg_target_init(TCGContext *s) { /* Only probe for the platform and capabilities if we havn't already determined maximum values at compile time. */ #ifndef use_vis3_instructions { unsigned long hwcap = qemu_getauxval(AT_HWCAP); use_vis3_instructions = (hwcap & HWCAP_SPARC_VIS3) != 0; } #endif tcg_target_available_regs[TCG_TYPE_I32] = 0xffffffff; tcg_target_available_regs[TCG_TYPE_I64] = ALL_64; tcg_target_call_clobber_regs = 0; tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G1); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G2); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G3); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G4); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G5); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G6); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G7); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O0); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O1); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O2); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O3); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O4); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O5); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O6); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O7); s->reserved_regs = 0; tcg_regset_set_reg(s->reserved_regs, TCG_REG_G0); /* zero */ tcg_regset_set_reg(s->reserved_regs, TCG_REG_G6); /* reserved for os */ tcg_regset_set_reg(s->reserved_regs, TCG_REG_G7); /* thread pointer */ tcg_regset_set_reg(s->reserved_regs, TCG_REG_I6); /* frame pointer */ tcg_regset_set_reg(s->reserved_regs, TCG_REG_I7); /* return address */ tcg_regset_set_reg(s->reserved_regs, TCG_REG_O6); /* stack pointer */ tcg_regset_set_reg(s->reserved_regs, TCG_REG_T1); /* for internal use */ tcg_regset_set_reg(s->reserved_regs, TCG_REG_T2); /* for internal use */ } #if SPARC64 # define ELF_HOST_MACHINE EM_SPARCV9 #else # define ELF_HOST_MACHINE EM_SPARC32PLUS # define ELF_HOST_FLAGS EF_SPARC_32PLUS #endif typedef struct { DebugFrameHeader h; uint8_t fde_def_cfa[SPARC64 ? 4 : 2]; uint8_t fde_win_save; uint8_t fde_ret_save[3]; } DebugFrame; static const DebugFrame debug_frame = { .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */ .h.cie.id = -1, .h.cie.version = 1, .h.cie.code_align = 1, .h.cie.data_align = -sizeof(void *) & 0x7f, .h.cie.return_column = 15, /* o7 */ /* Total FDE size does not include the "len" member. */ .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset), .fde_def_cfa = { #if SPARC64 12, 30, /* DW_CFA_def_cfa i6, 2047 */ (2047 & 0x7f) | 0x80, (2047 >> 7) #else 13, 30 /* DW_CFA_def_cfa_register i6 */ #endif }, .fde_win_save = 0x2d, /* DW_CFA_GNU_window_save */ .fde_ret_save = { 9, 15, 31 }, /* DW_CFA_register o7, i7 */ }; void tcg_register_jit(void *buf, size_t buf_size) { tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame)); } void tb_target_set_jmp_target(uintptr_t tc_ptr, uintptr_t jmp_addr, uintptr_t addr) { intptr_t tb_disp = addr - tc_ptr; intptr_t br_disp = addr - jmp_addr; tcg_insn_unit i1, i2; /* We can reach the entire address space for ILP32. For LP64, the code_gen_buffer can't be larger than 2GB. */ tcg_debug_assert(tb_disp == (int32_t)tb_disp); tcg_debug_assert(br_disp == (int32_t)br_disp); if (!USE_REG_TB) { qatomic_set((uint32_t *)jmp_addr, deposit32(CALL, 0, 30, br_disp >> 2)); flush_icache_range(jmp_addr, jmp_addr + 4); return; } /* This does not exercise the range of the branch, but we do still need to be able to load the new value of TCG_REG_TB. But this does still happen quite often. */ if (check_fit_ptr(tb_disp, 13)) { /* ba,pt %icc, addr */ i1 = (INSN_OP(0) | INSN_OP2(1) | INSN_COND(COND_A) | BPCC_ICC | BPCC_PT | INSN_OFF19(br_disp)); i2 = (ARITH_ADD | INSN_RD(TCG_REG_TB) | INSN_RS1(TCG_REG_TB) | INSN_IMM13(tb_disp)); } else if (tb_disp >= 0) { i1 = SETHI | INSN_RD(TCG_REG_T1) | ((tb_disp & 0xfffffc00) >> 10); i2 = (ARITH_OR | INSN_RD(TCG_REG_T1) | INSN_RS1(TCG_REG_T1) | INSN_IMM13(tb_disp & 0x3ff)); } else { i1 = SETHI | INSN_RD(TCG_REG_T1) | ((~tb_disp & 0xfffffc00) >> 10); i2 = (ARITH_XOR | INSN_RD(TCG_REG_T1) | INSN_RS1(TCG_REG_T1) | INSN_IMM13((tb_disp & 0x3ff) | -0x400)); } qatomic_set((uint64_t *)jmp_addr, deposit64(i2, 32, 32, i1)); flush_icache_range(jmp_addr, jmp_addr + 8); }