/* * Tiny Code Generator for QEMU * * Copyright (c) 2008 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "elf.h" #include "../tcg-pool.c.inc" #include "../tcg-ldst.c.inc" /* * Standardize on the _CALL_FOO symbols used by GCC: * Apple XCode does not define _CALL_DARWIN. * Clang defines _CALL_ELF (64-bit) but not _CALL_SYSV or _CALL_AIX. */ #if TCG_TARGET_REG_BITS == 64 # ifdef _CALL_AIX /* ok */ # elif defined(_CALL_ELF) && _CALL_ELF == 1 # define _CALL_AIX # elif defined(_CALL_ELF) && _CALL_ELF == 2 /* ok */ # else # error "Unknown ABI" # endif #else # if defined(_CALL_SYSV) || defined(_CALL_DARWIN) /* ok */ # elif defined(__APPLE__) # define _CALL_DARWIN # elif defined(__ELF__) # define _CALL_SYSV # else # error "Unknown ABI" # endif #endif #if TCG_TARGET_REG_BITS == 64 # define TCG_TARGET_CALL_ARG_I32 TCG_CALL_ARG_EXTEND # define TCG_TARGET_CALL_RET_I128 TCG_CALL_RET_NORMAL #else # define TCG_TARGET_CALL_ARG_I32 TCG_CALL_ARG_NORMAL # define TCG_TARGET_CALL_RET_I128 TCG_CALL_RET_BY_REF #endif #ifdef _CALL_SYSV # define TCG_TARGET_CALL_ARG_I64 TCG_CALL_ARG_EVEN # define TCG_TARGET_CALL_ARG_I128 TCG_CALL_ARG_BY_REF #else # define TCG_TARGET_CALL_ARG_I64 TCG_CALL_ARG_NORMAL # define TCG_TARGET_CALL_ARG_I128 TCG_CALL_ARG_NORMAL #endif /* For some memory operations, we need a scratch that isn't R0. For the AIX calling convention, we can re-use the TOC register since we'll be reloading it at every call. Otherwise R12 will do nicely as neither a call-saved register nor a parameter register. */ #ifdef _CALL_AIX # define TCG_REG_TMP1 TCG_REG_R2 #else # define TCG_REG_TMP1 TCG_REG_R12 #endif #define TCG_REG_TMP2 TCG_REG_R11 #define TCG_VEC_TMP1 TCG_REG_V0 #define TCG_VEC_TMP2 TCG_REG_V1 #define TCG_REG_TB TCG_REG_R31 #define USE_REG_TB (TCG_TARGET_REG_BITS == 64) /* Shorthand for size of a pointer. Avoid promotion to unsigned. */ #define SZP ((int)sizeof(void *)) /* Shorthand for size of a register. */ #define SZR (TCG_TARGET_REG_BITS / 8) #define TCG_CT_CONST_S16 0x100 #define TCG_CT_CONST_S32 0x400 #define TCG_CT_CONST_U32 0x800 #define TCG_CT_CONST_ZERO 0x1000 #define TCG_CT_CONST_MONE 0x2000 #define TCG_CT_CONST_WSZ 0x4000 #define ALL_GENERAL_REGS 0xffffffffu #define ALL_VECTOR_REGS 0xffffffff00000000ull #define have_isel (cpuinfo & CPUINFO_ISEL) #ifndef CONFIG_SOFTMMU #define TCG_GUEST_BASE_REG 30 #endif #ifdef CONFIG_DEBUG_TCG static const char tcg_target_reg_names[TCG_TARGET_NB_REGS][4] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", }; #endif static const int tcg_target_reg_alloc_order[] = { TCG_REG_R14, /* call saved registers */ TCG_REG_R15, TCG_REG_R16, TCG_REG_R17, TCG_REG_R18, TCG_REG_R19, TCG_REG_R20, TCG_REG_R21, TCG_REG_R22, TCG_REG_R23, TCG_REG_R24, TCG_REG_R25, TCG_REG_R26, TCG_REG_R27, TCG_REG_R28, TCG_REG_R29, TCG_REG_R30, TCG_REG_R31, TCG_REG_R12, /* call clobbered, non-arguments */ TCG_REG_R11, TCG_REG_R2, TCG_REG_R13, TCG_REG_R10, /* call clobbered, arguments */ TCG_REG_R9, TCG_REG_R8, TCG_REG_R7, TCG_REG_R6, TCG_REG_R5, TCG_REG_R4, TCG_REG_R3, /* V0 and V1 reserved as temporaries; V20 - V31 are call-saved */ TCG_REG_V2, /* call clobbered, vectors */ TCG_REG_V3, TCG_REG_V4, TCG_REG_V5, TCG_REG_V6, TCG_REG_V7, TCG_REG_V8, TCG_REG_V9, TCG_REG_V10, TCG_REG_V11, TCG_REG_V12, TCG_REG_V13, TCG_REG_V14, TCG_REG_V15, TCG_REG_V16, TCG_REG_V17, TCG_REG_V18, TCG_REG_V19, }; static const int tcg_target_call_iarg_regs[] = { TCG_REG_R3, TCG_REG_R4, TCG_REG_R5, TCG_REG_R6, TCG_REG_R7, TCG_REG_R8, TCG_REG_R9, TCG_REG_R10 }; static TCGReg tcg_target_call_oarg_reg(TCGCallReturnKind kind, int slot) { tcg_debug_assert(kind == TCG_CALL_RET_NORMAL); tcg_debug_assert(slot >= 0 && slot <= 1); return TCG_REG_R3 + slot; } static const int tcg_target_callee_save_regs[] = { #ifdef _CALL_DARWIN TCG_REG_R11, #endif TCG_REG_R14, TCG_REG_R15, TCG_REG_R16, TCG_REG_R17, TCG_REG_R18, TCG_REG_R19, TCG_REG_R20, TCG_REG_R21, TCG_REG_R22, TCG_REG_R23, TCG_REG_R24, TCG_REG_R25, TCG_REG_R26, TCG_REG_R27, /* currently used for the global env */ TCG_REG_R28, TCG_REG_R29, TCG_REG_R30, TCG_REG_R31 }; /* For PPC, we use TB+4 instead of TB as the base. */ static inline ptrdiff_t ppc_tbrel_diff(TCGContext *s, const void *target) { return tcg_tbrel_diff(s, target) - 4; } static inline bool in_range_b(tcg_target_long target) { return target == sextract64(target, 0, 26); } static uint32_t reloc_pc24_val(const tcg_insn_unit *pc, const tcg_insn_unit *target) { ptrdiff_t disp = tcg_ptr_byte_diff(target, pc); tcg_debug_assert(in_range_b(disp)); return disp & 0x3fffffc; } static bool reloc_pc24(tcg_insn_unit *src_rw, const tcg_insn_unit *target) { const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw); ptrdiff_t disp = tcg_ptr_byte_diff(target, src_rx); if (in_range_b(disp)) { *src_rw = (*src_rw & ~0x3fffffc) | (disp & 0x3fffffc); return true; } return false; } static uint16_t reloc_pc14_val(const tcg_insn_unit *pc, const tcg_insn_unit *target) { ptrdiff_t disp = tcg_ptr_byte_diff(target, pc); tcg_debug_assert(disp == (int16_t) disp); return disp & 0xfffc; } static bool reloc_pc14(tcg_insn_unit *src_rw, const tcg_insn_unit *target) { const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw); ptrdiff_t disp = tcg_ptr_byte_diff(target, src_rx); if (disp == (int16_t) disp) { *src_rw = (*src_rw & ~0xfffc) | (disp & 0xfffc); return true; } return false; } /* test if a constant matches the constraint */ static bool tcg_target_const_match(int64_t val, TCGType type, int ct, int vece) { if (ct & TCG_CT_CONST) { return 1; } /* The only 32-bit constraint we use aside from TCG_CT_CONST is TCG_CT_CONST_S16. */ if (type == TCG_TYPE_I32) { val = (int32_t)val; } if ((ct & TCG_CT_CONST_S16) && val == (int16_t)val) { return 1; } else if ((ct & TCG_CT_CONST_S32) && val == (int32_t)val) { return 1; } else if ((ct & TCG_CT_CONST_U32) && val == (uint32_t)val) { return 1; } else if ((ct & TCG_CT_CONST_ZERO) && val == 0) { return 1; } else if ((ct & TCG_CT_CONST_MONE) && val == -1) { return 1; } else if ((ct & TCG_CT_CONST_WSZ) && val == (type == TCG_TYPE_I32 ? 32 : 64)) { return 1; } return 0; } #define OPCD(opc) ((opc)<<26) #define XO19(opc) (OPCD(19)|((opc)<<1)) #define MD30(opc) (OPCD(30)|((opc)<<2)) #define MDS30(opc) (OPCD(30)|((opc)<<1)) #define XO31(opc) (OPCD(31)|((opc)<<1)) #define XO58(opc) (OPCD(58)|(opc)) #define XO62(opc) (OPCD(62)|(opc)) #define VX4(opc) (OPCD(4)|(opc)) #define B OPCD( 18) #define BC OPCD( 16) #define LBZ OPCD( 34) #define LHZ OPCD( 40) #define LHA OPCD( 42) #define LWZ OPCD( 32) #define LWZUX XO31( 55) #define LD XO58( 0) #define LDX XO31( 21) #define LDU XO58( 1) #define LDUX XO31( 53) #define LWA XO58( 2) #define LWAX XO31(341) #define LQ OPCD( 56) #define STB OPCD( 38) #define STH OPCD( 44) #define STW OPCD( 36) #define STD XO62( 0) #define STDU XO62( 1) #define STDX XO31(149) #define STQ XO62( 2) #define ADDIC OPCD( 12) #define ADDI OPCD( 14) #define ADDIS OPCD( 15) #define ORI OPCD( 24) #define ORIS OPCD( 25) #define XORI OPCD( 26) #define XORIS OPCD( 27) #define ANDI OPCD( 28) #define ANDIS OPCD( 29) #define MULLI OPCD( 7) #define CMPLI OPCD( 10) #define CMPI OPCD( 11) #define SUBFIC OPCD( 8) #define LWZU OPCD( 33) #define STWU OPCD( 37) #define RLWIMI OPCD( 20) #define RLWINM OPCD( 21) #define RLWNM OPCD( 23) #define RLDICL MD30( 0) #define RLDICR MD30( 1) #define RLDIMI MD30( 3) #define RLDCL MDS30( 8) #define BCLR XO19( 16) #define BCCTR XO19(528) #define CRAND XO19(257) #define CRANDC XO19(129) #define CRNAND XO19(225) #define CROR XO19(449) #define CRNOR XO19( 33) #define ADDPCIS XO19( 2) #define EXTSB XO31(954) #define EXTSH XO31(922) #define EXTSW XO31(986) #define ADD XO31(266) #define ADDE XO31(138) #define ADDME XO31(234) #define ADDZE XO31(202) #define ADDC XO31( 10) #define AND XO31( 28) #define SUBF XO31( 40) #define SUBFC XO31( 8) #define SUBFE XO31(136) #define SUBFME XO31(232) #define SUBFZE XO31(200) #define OR XO31(444) #define XOR XO31(316) #define MULLW XO31(235) #define MULHW XO31( 75) #define MULHWU XO31( 11) #define DIVW XO31(491) #define DIVWU XO31(459) #define MODSW XO31(779) #define MODUW XO31(267) #define CMP XO31( 0) #define CMPL XO31( 32) #define LHBRX XO31(790) #define LWBRX XO31(534) #define LDBRX XO31(532) #define STHBRX XO31(918) #define STWBRX XO31(662) #define STDBRX XO31(660) #define MFSPR XO31(339) #define MTSPR XO31(467) #define SRAWI XO31(824) #define NEG XO31(104) #define MFCR XO31( 19) #define MFOCRF (MFCR | (1u << 20)) #define NOR XO31(124) #define CNTLZW XO31( 26) #define CNTLZD XO31( 58) #define CNTTZW XO31(538) #define CNTTZD XO31(570) #define CNTPOPW XO31(378) #define CNTPOPD XO31(506) #define ANDC XO31( 60) #define ORC XO31(412) #define EQV XO31(284) #define NAND XO31(476) #define ISEL XO31( 15) #define MULLD XO31(233) #define MULHD XO31( 73) #define MULHDU XO31( 9) #define DIVD XO31(489) #define DIVDU XO31(457) #define MODSD XO31(777) #define MODUD XO31(265) #define LBZX XO31( 87) #define LHZX XO31(279) #define LHAX XO31(343) #define LWZX XO31( 23) #define STBX XO31(215) #define STHX XO31(407) #define STWX XO31(151) #define EIEIO XO31(854) #define HWSYNC XO31(598) #define LWSYNC (HWSYNC | (1u << 21)) #define SPR(a, b) ((((a)<<5)|(b))<<11) #define LR SPR(8, 0) #define CTR SPR(9, 0) #define SLW XO31( 24) #define SRW XO31(536) #define SRAW XO31(792) #define SLD XO31( 27) #define SRD XO31(539) #define SRAD XO31(794) #define SRADI XO31(413<<1) #define BRH XO31(219) #define BRW XO31(155) #define BRD XO31(187) #define TW XO31( 4) #define TRAP (TW | TO(31)) #define SETBC XO31(384) /* v3.10 */ #define SETBCR XO31(416) /* v3.10 */ #define SETNBC XO31(448) /* v3.10 */ #define SETNBCR XO31(480) /* v3.10 */ #define NOP ORI /* ori 0,0,0 */ #define LVX XO31(103) #define LVEBX XO31(7) #define LVEHX XO31(39) #define LVEWX XO31(71) #define LXSDX (XO31(588) | 1) /* v2.06, force tx=1 */ #define LXVDSX (XO31(332) | 1) /* v2.06, force tx=1 */ #define LXSIWZX (XO31(12) | 1) /* v2.07, force tx=1 */ #define LXV (OPCD(61) | 8 | 1) /* v3.00, force tx=1 */ #define LXSD (OPCD(57) | 2) /* v3.00 */ #define LXVWSX (XO31(364) | 1) /* v3.00, force tx=1 */ #define STVX XO31(231) #define STVEWX XO31(199) #define STXSDX (XO31(716) | 1) /* v2.06, force sx=1 */ #define STXSIWX (XO31(140) | 1) /* v2.07, force sx=1 */ #define STXV (OPCD(61) | 8 | 5) /* v3.00, force sx=1 */ #define STXSD (OPCD(61) | 2) /* v3.00 */ #define VADDSBS VX4(768) #define VADDUBS VX4(512) #define VADDUBM VX4(0) #define VADDSHS VX4(832) #define VADDUHS VX4(576) #define VADDUHM VX4(64) #define VADDSWS VX4(896) #define VADDUWS VX4(640) #define VADDUWM VX4(128) #define VADDUDM VX4(192) /* v2.07 */ #define VSUBSBS VX4(1792) #define VSUBUBS VX4(1536) #define VSUBUBM VX4(1024) #define VSUBSHS VX4(1856) #define VSUBUHS VX4(1600) #define VSUBUHM VX4(1088) #define VSUBSWS VX4(1920) #define VSUBUWS VX4(1664) #define VSUBUWM VX4(1152) #define VSUBUDM VX4(1216) /* v2.07 */ #define VNEGW (VX4(1538) | (6 << 16)) /* v3.00 */ #define VNEGD (VX4(1538) | (7 << 16)) /* v3.00 */ #define VMAXSB VX4(258) #define VMAXSH VX4(322) #define VMAXSW VX4(386) #define VMAXSD VX4(450) /* v2.07 */ #define VMAXUB VX4(2) #define VMAXUH VX4(66) #define VMAXUW VX4(130) #define VMAXUD VX4(194) /* v2.07 */ #define VMINSB VX4(770) #define VMINSH VX4(834) #define VMINSW VX4(898) #define VMINSD VX4(962) /* v2.07 */ #define VMINUB VX4(514) #define VMINUH VX4(578) #define VMINUW VX4(642) #define VMINUD VX4(706) /* v2.07 */ #define VCMPEQUB VX4(6) #define VCMPEQUH VX4(70) #define VCMPEQUW VX4(134) #define VCMPEQUD VX4(199) /* v2.07 */ #define VCMPGTSB VX4(774) #define VCMPGTSH VX4(838) #define VCMPGTSW VX4(902) #define VCMPGTSD VX4(967) /* v2.07 */ #define VCMPGTUB VX4(518) #define VCMPGTUH VX4(582) #define VCMPGTUW VX4(646) #define VCMPGTUD VX4(711) /* v2.07 */ #define VCMPNEB VX4(7) /* v3.00 */ #define VCMPNEH VX4(71) /* v3.00 */ #define VCMPNEW VX4(135) /* v3.00 */ #define VSLB VX4(260) #define VSLH VX4(324) #define VSLW VX4(388) #define VSLD VX4(1476) /* v2.07 */ #define VSRB VX4(516) #define VSRH VX4(580) #define VSRW VX4(644) #define VSRD VX4(1732) /* v2.07 */ #define VSRAB VX4(772) #define VSRAH VX4(836) #define VSRAW VX4(900) #define VSRAD VX4(964) /* v2.07 */ #define VRLB VX4(4) #define VRLH VX4(68) #define VRLW VX4(132) #define VRLD VX4(196) /* v2.07 */ #define VMULEUB VX4(520) #define VMULEUH VX4(584) #define VMULEUW VX4(648) /* v2.07 */ #define VMULOUB VX4(8) #define VMULOUH VX4(72) #define VMULOUW VX4(136) /* v2.07 */ #define VMULUWM VX4(137) /* v2.07 */ #define VMULLD VX4(457) /* v3.10 */ #define VMSUMUHM VX4(38) #define VMRGHB VX4(12) #define VMRGHH VX4(76) #define VMRGHW VX4(140) #define VMRGLB VX4(268) #define VMRGLH VX4(332) #define VMRGLW VX4(396) #define VPKUHUM VX4(14) #define VPKUWUM VX4(78) #define VAND VX4(1028) #define VANDC VX4(1092) #define VNOR VX4(1284) #define VOR VX4(1156) #define VXOR VX4(1220) #define VEQV VX4(1668) /* v2.07 */ #define VNAND VX4(1412) /* v2.07 */ #define VORC VX4(1348) /* v2.07 */ #define VSPLTB VX4(524) #define VSPLTH VX4(588) #define VSPLTW VX4(652) #define VSPLTISB VX4(780) #define VSPLTISH VX4(844) #define VSPLTISW VX4(908) #define VSLDOI VX4(44) #define XXPERMDI (OPCD(60) | (10 << 3) | 7) /* v2.06, force ax=bx=tx=1 */ #define XXSEL (OPCD(60) | (3 << 4) | 0xf) /* v2.06, force ax=bx=cx=tx=1 */ #define XXSPLTIB (OPCD(60) | (360 << 1) | 1) /* v3.00, force tx=1 */ #define MFVSRD (XO31(51) | 1) /* v2.07, force sx=1 */ #define MFVSRWZ (XO31(115) | 1) /* v2.07, force sx=1 */ #define MTVSRD (XO31(179) | 1) /* v2.07, force tx=1 */ #define MTVSRWZ (XO31(243) | 1) /* v2.07, force tx=1 */ #define MTVSRDD (XO31(435) | 1) /* v3.00, force tx=1 */ #define MTVSRWS (XO31(403) | 1) /* v3.00, force tx=1 */ #define RT(r) ((r)<<21) #define RS(r) ((r)<<21) #define RA(r) ((r)<<16) #define RB(r) ((r)<<11) #define TO(t) ((t)<<21) #define SH(s) ((s)<<11) #define MB(b) ((b)<<6) #define ME(e) ((e)<<1) #define BO(o) ((o)<<21) #define MB64(b) ((b)<<5) #define FXM(b) (1 << (19 - (b))) #define VRT(r) (((r) & 31) << 21) #define VRA(r) (((r) & 31) << 16) #define VRB(r) (((r) & 31) << 11) #define VRC(r) (((r) & 31) << 6) #define LK 1 #define TAB(t, a, b) (RT(t) | RA(a) | RB(b)) #define SAB(s, a, b) (RS(s) | RA(a) | RB(b)) #define TAI(s, a, i) (RT(s) | RA(a) | ((i) & 0xffff)) #define SAI(s, a, i) (RS(s) | RA(a) | ((i) & 0xffff)) #define BF(n) ((n)<<23) #define BI(n, c) (((c)+((n)*4))<<16) #define BT(n, c) (((c)+((n)*4))<<21) #define BA(n, c) (((c)+((n)*4))<<16) #define BB(n, c) (((c)+((n)*4))<<11) #define BC_(n, c) (((c)+((n)*4))<<6) #define BO_COND_TRUE BO(12) #define BO_COND_FALSE BO( 4) #define BO_ALWAYS BO(20) enum { CR_LT, CR_GT, CR_EQ, CR_SO }; static const uint32_t tcg_to_bc[] = { [TCG_COND_EQ] = BC | BI(7, CR_EQ) | BO_COND_TRUE, [TCG_COND_NE] = BC | BI(7, CR_EQ) | BO_COND_FALSE, [TCG_COND_LT] = BC | BI(7, CR_LT) | BO_COND_TRUE, [TCG_COND_GE] = BC | BI(7, CR_LT) | BO_COND_FALSE, [TCG_COND_LE] = BC | BI(7, CR_GT) | BO_COND_FALSE, [TCG_COND_GT] = BC | BI(7, CR_GT) | BO_COND_TRUE, [TCG_COND_LTU] = BC | BI(7, CR_LT) | BO_COND_TRUE, [TCG_COND_GEU] = BC | BI(7, CR_LT) | BO_COND_FALSE, [TCG_COND_LEU] = BC | BI(7, CR_GT) | BO_COND_FALSE, [TCG_COND_GTU] = BC | BI(7, CR_GT) | BO_COND_TRUE, }; /* The low bit here is set if the RA and RB fields must be inverted. */ static const uint32_t tcg_to_isel[] = { [TCG_COND_EQ] = ISEL | BC_(7, CR_EQ), [TCG_COND_NE] = ISEL | BC_(7, CR_EQ) | 1, [TCG_COND_LT] = ISEL | BC_(7, CR_LT), [TCG_COND_GE] = ISEL | BC_(7, CR_LT) | 1, [TCG_COND_LE] = ISEL | BC_(7, CR_GT) | 1, [TCG_COND_GT] = ISEL | BC_(7, CR_GT), [TCG_COND_LTU] = ISEL | BC_(7, CR_LT), [TCG_COND_GEU] = ISEL | BC_(7, CR_LT) | 1, [TCG_COND_LEU] = ISEL | BC_(7, CR_GT) | 1, [TCG_COND_GTU] = ISEL | BC_(7, CR_GT), }; static bool patch_reloc(tcg_insn_unit *code_ptr, int type, intptr_t value, intptr_t addend) { const tcg_insn_unit *target; int16_t lo; int32_t hi; value += addend; target = (const tcg_insn_unit *)value; switch (type) { case R_PPC_REL14: return reloc_pc14(code_ptr, target); case R_PPC_REL24: return reloc_pc24(code_ptr, target); case R_PPC_ADDR16: /* * We are (slightly) abusing this relocation type. In particular, * assert that the low 2 bits are zero, and do not modify them. * That way we can use this with LD et al that have opcode bits * in the low 2 bits of the insn. */ if ((value & 3) || value != (int16_t)value) { return false; } *code_ptr = (*code_ptr & ~0xfffc) | (value & 0xfffc); break; case R_PPC_ADDR32: /* * We are abusing this relocation type. Again, this points to * a pair of insns, lis + load. This is an absolute address * relocation for PPC32 so the lis cannot be removed. */ lo = value; hi = value - lo; if (hi + lo != value) { return false; } code_ptr[0] = deposit32(code_ptr[0], 0, 16, hi >> 16); code_ptr[1] = deposit32(code_ptr[1], 0, 16, lo); break; default: g_assert_not_reached(); } return true; } static void tcg_out_mem_long(TCGContext *s, int opi, int opx, TCGReg rt, TCGReg base, tcg_target_long offset); static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg) { if (ret == arg) { return true; } switch (type) { case TCG_TYPE_I64: tcg_debug_assert(TCG_TARGET_REG_BITS == 64); /* fallthru */ case TCG_TYPE_I32: if (ret < TCG_REG_V0) { if (arg < TCG_REG_V0) { tcg_out32(s, OR | SAB(arg, ret, arg)); break; } else if (have_isa_2_07) { tcg_out32(s, (type == TCG_TYPE_I32 ? MFVSRWZ : MFVSRD) | VRT(arg) | RA(ret)); break; } else { /* Altivec does not support vector->integer moves. */ return false; } } else if (arg < TCG_REG_V0) { if (have_isa_2_07) { tcg_out32(s, (type == TCG_TYPE_I32 ? MTVSRWZ : MTVSRD) | VRT(ret) | RA(arg)); break; } else { /* Altivec does not support integer->vector moves. */ return false; } } /* fallthru */ case TCG_TYPE_V64: case TCG_TYPE_V128: tcg_debug_assert(ret >= TCG_REG_V0 && arg >= TCG_REG_V0); tcg_out32(s, VOR | VRT(ret) | VRA(arg) | VRB(arg)); break; default: g_assert_not_reached(); } return true; } static inline void tcg_out_rld(TCGContext *s, int op, TCGReg ra, TCGReg rs, int sh, int mb) { tcg_debug_assert(TCG_TARGET_REG_BITS == 64); sh = SH(sh & 0x1f) | (((sh >> 5) & 1) << 1); mb = MB64((mb >> 5) | ((mb << 1) & 0x3f)); tcg_out32(s, op | RA(ra) | RS(rs) | sh | mb); } static inline void tcg_out_rlw(TCGContext *s, int op, TCGReg ra, TCGReg rs, int sh, int mb, int me) { tcg_out32(s, op | RA(ra) | RS(rs) | SH(sh) | MB(mb) | ME(me)); } static void tcg_out_ext8s(TCGContext *s, TCGType type, TCGReg dst, TCGReg src) { tcg_out32(s, EXTSB | RA(dst) | RS(src)); } static void tcg_out_ext8u(TCGContext *s, TCGReg dst, TCGReg src) { tcg_out32(s, ANDI | SAI(src, dst, 0xff)); } static void tcg_out_ext16s(TCGContext *s, TCGType type, TCGReg dst, TCGReg src) { tcg_out32(s, EXTSH | RA(dst) | RS(src)); } static void tcg_out_ext16u(TCGContext *s, TCGReg dst, TCGReg src) { tcg_out32(s, ANDI | SAI(src, dst, 0xffff)); } static void tcg_out_ext32s(TCGContext *s, TCGReg dst, TCGReg src) { tcg_debug_assert(TCG_TARGET_REG_BITS == 64); tcg_out32(s, EXTSW | RA(dst) | RS(src)); } static void tcg_out_ext32u(TCGContext *s, TCGReg dst, TCGReg src) { tcg_debug_assert(TCG_TARGET_REG_BITS == 64); tcg_out_rld(s, RLDICL, dst, src, 0, 32); } static void tcg_out_exts_i32_i64(TCGContext *s, TCGReg dst, TCGReg src) { tcg_out_ext32s(s, dst, src); } static void tcg_out_extu_i32_i64(TCGContext *s, TCGReg dst, TCGReg src) { tcg_out_ext32u(s, dst, src); } static void tcg_out_extrl_i64_i32(TCGContext *s, TCGReg rd, TCGReg rn) { tcg_debug_assert(TCG_TARGET_REG_BITS == 64); tcg_out_mov(s, TCG_TYPE_I32, rd, rn); } static inline void tcg_out_shli32(TCGContext *s, TCGReg dst, TCGReg src, int c) { tcg_out_rlw(s, RLWINM, dst, src, c, 0, 31 - c); } static inline void tcg_out_shli64(TCGContext *s, TCGReg dst, TCGReg src, int c) { tcg_out_rld(s, RLDICR, dst, src, c, 63 - c); } static inline void tcg_out_sari32(TCGContext *s, TCGReg dst, TCGReg src, int c) { /* Limit immediate shift count lest we create an illegal insn. */ tcg_out32(s, SRAWI | RA(dst) | RS(src) | SH(c & 31)); } static inline void tcg_out_shri32(TCGContext *s, TCGReg dst, TCGReg src, int c) { tcg_out_rlw(s, RLWINM, dst, src, 32 - c, c, 31); } static inline void tcg_out_shri64(TCGContext *s, TCGReg dst, TCGReg src, int c) { tcg_out_rld(s, RLDICL, dst, src, 64 - c, c); } static inline void tcg_out_sari64(TCGContext *s, TCGReg dst, TCGReg src, int c) { tcg_out32(s, SRADI | RA(dst) | RS(src) | SH(c & 0x1f) | ((c >> 4) & 2)); } static void tcg_out_addpcis(TCGContext *s, TCGReg dst, intptr_t imm) { uint32_t d0, d1, d2; tcg_debug_assert((imm & 0xffff) == 0); tcg_debug_assert(imm == (int32_t)imm); d2 = extract32(imm, 16, 1); d1 = extract32(imm, 17, 5); d0 = extract32(imm, 22, 10); tcg_out32(s, ADDPCIS | RT(dst) | (d1 << 16) | (d0 << 6) | d2); } static void tcg_out_bswap16(TCGContext *s, TCGReg dst, TCGReg src, int flags) { TCGReg tmp = dst == src ? TCG_REG_R0 : dst; if (have_isa_3_10) { tcg_out32(s, BRH | RA(dst) | RS(src)); if (flags & TCG_BSWAP_OS) { tcg_out_ext16s(s, TCG_TYPE_REG, dst, dst); } else if ((flags & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) { tcg_out_ext16u(s, dst, dst); } return; } /* * In the following, * dep(a, b, m) -> (a & ~m) | (b & m) * * Begin with: src = xxxxabcd */ /* tmp = rol32(src, 24) & 0x000000ff = 0000000c */ tcg_out_rlw(s, RLWINM, tmp, src, 24, 24, 31); /* tmp = dep(tmp, rol32(src, 8), 0x0000ff00) = 000000dc */ tcg_out_rlw(s, RLWIMI, tmp, src, 8, 16, 23); if (flags & TCG_BSWAP_OS) { tcg_out_ext16s(s, TCG_TYPE_REG, dst, tmp); } else { tcg_out_mov(s, TCG_TYPE_REG, dst, tmp); } } static void tcg_out_bswap32(TCGContext *s, TCGReg dst, TCGReg src, int flags) { TCGReg tmp = dst == src ? TCG_REG_R0 : dst; if (have_isa_3_10) { tcg_out32(s, BRW | RA(dst) | RS(src)); if (flags & TCG_BSWAP_OS) { tcg_out_ext32s(s, dst, dst); } else if ((flags & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) { tcg_out_ext32u(s, dst, dst); } return; } /* * Stolen from gcc's builtin_bswap32. * In the following, * dep(a, b, m) -> (a & ~m) | (b & m) * * Begin with: src = xxxxabcd */ /* tmp = rol32(src, 8) & 0xffffffff = 0000bcda */ tcg_out_rlw(s, RLWINM, tmp, src, 8, 0, 31); /* tmp = dep(tmp, rol32(src, 24), 0xff000000) = 0000dcda */ tcg_out_rlw(s, RLWIMI, tmp, src, 24, 0, 7); /* tmp = dep(tmp, rol32(src, 24), 0x0000ff00) = 0000dcba */ tcg_out_rlw(s, RLWIMI, tmp, src, 24, 16, 23); if (flags & TCG_BSWAP_OS) { tcg_out_ext32s(s, dst, tmp); } else { tcg_out_mov(s, TCG_TYPE_REG, dst, tmp); } } static void tcg_out_bswap64(TCGContext *s, TCGReg dst, TCGReg src) { TCGReg t0 = dst == src ? TCG_REG_R0 : dst; TCGReg t1 = dst == src ? dst : TCG_REG_R0; if (have_isa_3_10) { tcg_out32(s, BRD | RA(dst) | RS(src)); return; } /* * In the following, * dep(a, b, m) -> (a & ~m) | (b & m) * * Begin with: src = abcdefgh */ /* t0 = rol32(src, 8) & 0xffffffff = 0000fghe */ tcg_out_rlw(s, RLWINM, t0, src, 8, 0, 31); /* t0 = dep(t0, rol32(src, 24), 0xff000000) = 0000hghe */ tcg_out_rlw(s, RLWIMI, t0, src, 24, 0, 7); /* t0 = dep(t0, rol32(src, 24), 0x0000ff00) = 0000hgfe */ tcg_out_rlw(s, RLWIMI, t0, src, 24, 16, 23); /* t0 = rol64(t0, 32) = hgfe0000 */ tcg_out_rld(s, RLDICL, t0, t0, 32, 0); /* t1 = rol64(src, 32) = efghabcd */ tcg_out_rld(s, RLDICL, t1, src, 32, 0); /* t0 = dep(t0, rol32(t1, 24), 0xffffffff) = hgfebcda */ tcg_out_rlw(s, RLWIMI, t0, t1, 8, 0, 31); /* t0 = dep(t0, rol32(t1, 24), 0xff000000) = hgfedcda */ tcg_out_rlw(s, RLWIMI, t0, t1, 24, 0, 7); /* t0 = dep(t0, rol32(t1, 24), 0x0000ff00) = hgfedcba */ tcg_out_rlw(s, RLWIMI, t0, t1, 24, 16, 23); tcg_out_mov(s, TCG_TYPE_REG, dst, t0); } /* Emit a move into ret of arg, if it can be done in one insn. */ static bool tcg_out_movi_one(TCGContext *s, TCGReg ret, tcg_target_long arg) { if (arg == (int16_t)arg) { tcg_out32(s, ADDI | TAI(ret, 0, arg)); return true; } if (arg == (int32_t)arg && (arg & 0xffff) == 0) { tcg_out32(s, ADDIS | TAI(ret, 0, arg >> 16)); return true; } return false; } static void tcg_out_movi_int(TCGContext *s, TCGType type, TCGReg ret, tcg_target_long arg, bool in_prologue) { intptr_t tb_diff; tcg_target_long tmp; int shift; tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || type == TCG_TYPE_I32); if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I32) { arg = (int32_t)arg; } /* Load 16-bit immediates with one insn. */ if (tcg_out_movi_one(s, ret, arg)) { return; } /* Load addresses within the TB with one insn. */ tb_diff = ppc_tbrel_diff(s, (void *)arg); if (!in_prologue && USE_REG_TB && tb_diff == (int16_t)tb_diff) { tcg_out32(s, ADDI | TAI(ret, TCG_REG_TB, tb_diff)); return; } /* Load 32-bit immediates with two insns. Note that we've already eliminated bare ADDIS, so we know both insns are required. */ if (TCG_TARGET_REG_BITS == 32 || arg == (int32_t)arg) { tcg_out32(s, ADDIS | TAI(ret, 0, arg >> 16)); tcg_out32(s, ORI | SAI(ret, ret, arg)); return; } if (arg == (uint32_t)arg && !(arg & 0x8000)) { tcg_out32(s, ADDI | TAI(ret, 0, arg)); tcg_out32(s, ORIS | SAI(ret, ret, arg >> 16)); return; } /* Load masked 16-bit value. */ if (arg > 0 && (arg & 0x8000)) { tmp = arg | 0x7fff; if ((tmp & (tmp + 1)) == 0) { int mb = clz64(tmp + 1) + 1; tcg_out32(s, ADDI | TAI(ret, 0, arg)); tcg_out_rld(s, RLDICL, ret, ret, 0, mb); return; } } /* Load common masks with 2 insns. */ shift = ctz64(arg); tmp = arg >> shift; if (tmp == (int16_t)tmp) { tcg_out32(s, ADDI | TAI(ret, 0, tmp)); tcg_out_shli64(s, ret, ret, shift); return; } shift = clz64(arg); if (tcg_out_movi_one(s, ret, arg << shift)) { tcg_out_shri64(s, ret, ret, shift); return; } /* Load addresses within 2GB with 2 insns. */ if (have_isa_3_00) { intptr_t hi = tcg_pcrel_diff(s, (void *)arg) - 4; int16_t lo = hi; hi -= lo; if (hi == (int32_t)hi) { tcg_out_addpcis(s, TCG_REG_TMP2, hi); tcg_out32(s, ADDI | TAI(ret, TCG_REG_TMP2, lo)); return; } } /* Load addresses within 2GB of TB with 2 (or rarely 3) insns. */ if (!in_prologue && USE_REG_TB && tb_diff == (int32_t)tb_diff) { tcg_out_mem_long(s, ADDI, ADD, ret, TCG_REG_TB, tb_diff); return; } /* Use the constant pool, if possible. */ if (!in_prologue && USE_REG_TB) { new_pool_label(s, arg, R_PPC_ADDR16, s->code_ptr, ppc_tbrel_diff(s, NULL)); tcg_out32(s, LD | TAI(ret, TCG_REG_TB, 0)); return; } if (have_isa_3_00) { tcg_out_addpcis(s, TCG_REG_TMP2, 0); new_pool_label(s, arg, R_PPC_REL14, s->code_ptr, 0); tcg_out32(s, LD | TAI(ret, TCG_REG_TMP2, 0)); return; } tmp = arg >> 31 >> 1; tcg_out_movi(s, TCG_TYPE_I32, ret, tmp); if (tmp) { tcg_out_shli64(s, ret, ret, 32); } if (arg & 0xffff0000) { tcg_out32(s, ORIS | SAI(ret, ret, arg >> 16)); } if (arg & 0xffff) { tcg_out32(s, ORI | SAI(ret, ret, arg)); } } static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece, TCGReg ret, int64_t val) { uint32_t load_insn; int rel, low; intptr_t add; switch (vece) { case MO_8: low = (int8_t)val; if (low >= -16 && low < 16) { tcg_out32(s, VSPLTISB | VRT(ret) | ((val & 31) << 16)); return; } if (have_isa_3_00) { tcg_out32(s, XXSPLTIB | VRT(ret) | ((val & 0xff) << 11)); return; } break; case MO_16: low = (int16_t)val; if (low >= -16 && low < 16) { tcg_out32(s, VSPLTISH | VRT(ret) | ((val & 31) << 16)); return; } break; case MO_32: low = (int32_t)val; if (low >= -16 && low < 16) { tcg_out32(s, VSPLTISW | VRT(ret) | ((val & 31) << 16)); return; } break; } /* * Otherwise we must load the value from the constant pool. */ if (USE_REG_TB) { rel = R_PPC_ADDR16; add = ppc_tbrel_diff(s, NULL); } else if (have_isa_3_00) { tcg_out_addpcis(s, TCG_REG_TMP1, 0); rel = R_PPC_REL14; add = 0; } else { rel = R_PPC_ADDR32; add = 0; } if (have_vsx) { load_insn = type == TCG_TYPE_V64 ? LXSDX : LXVDSX; load_insn |= VRT(ret) | RB(TCG_REG_TMP1); if (TCG_TARGET_REG_BITS == 64) { new_pool_label(s, val, rel, s->code_ptr, add); } else { new_pool_l2(s, rel, s->code_ptr, add, val >> 32, val); } } else { load_insn = LVX | VRT(ret) | RB(TCG_REG_TMP1); if (TCG_TARGET_REG_BITS == 64) { new_pool_l2(s, rel, s->code_ptr, add, val, val); } else { new_pool_l4(s, rel, s->code_ptr, add, val >> 32, val, val >> 32, val); } } if (USE_REG_TB) { tcg_out32(s, ADDI | TAI(TCG_REG_TMP1, 0, 0)); load_insn |= RA(TCG_REG_TB); } else if (have_isa_3_00) { tcg_out32(s, ADDI | TAI(TCG_REG_TMP1, TCG_REG_TMP1, 0)); } else { tcg_out32(s, ADDIS | TAI(TCG_REG_TMP1, 0, 0)); tcg_out32(s, ADDI | TAI(TCG_REG_TMP1, TCG_REG_TMP1, 0)); } tcg_out32(s, load_insn); } static void tcg_out_movi(TCGContext *s, TCGType type, TCGReg ret, tcg_target_long arg) { switch (type) { case TCG_TYPE_I32: case TCG_TYPE_I64: tcg_debug_assert(ret < TCG_REG_V0); tcg_out_movi_int(s, type, ret, arg, false); break; default: g_assert_not_reached(); } } static bool tcg_out_xchg(TCGContext *s, TCGType type, TCGReg r1, TCGReg r2) { return false; } static void tcg_out_addi_ptr(TCGContext *s, TCGReg rd, TCGReg rs, tcg_target_long imm) { /* This function is only used for passing structs by reference. */ g_assert_not_reached(); } static bool mask_operand(uint32_t c, int *mb, int *me) { uint32_t lsb, test; /* Accept a bit pattern like: 0....01....1 1....10....0 0..01..10..0 Keep track of the transitions. */ if (c == 0 || c == -1) { return false; } test = c; lsb = test & -test; test += lsb; if (test & (test - 1)) { return false; } *me = clz32(lsb); *mb = test ? clz32(test & -test) + 1 : 0; return true; } static bool mask64_operand(uint64_t c, int *mb, int *me) { uint64_t lsb; if (c == 0) { return false; } lsb = c & -c; /* Accept 1..10..0. */ if (c == -lsb) { *mb = 0; *me = clz64(lsb); return true; } /* Accept 0..01..1. */ if (lsb == 1 && (c & (c + 1)) == 0) { *mb = clz64(c + 1) + 1; *me = 63; return true; } return false; } static void tcg_out_andi32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c) { int mb, me; if (mask_operand(c, &mb, &me)) { tcg_out_rlw(s, RLWINM, dst, src, 0, mb, me); } else if ((c & 0xffff) == c) { tcg_out32(s, ANDI | SAI(src, dst, c)); return; } else if ((c & 0xffff0000) == c) { tcg_out32(s, ANDIS | SAI(src, dst, c >> 16)); return; } else { tcg_out_movi(s, TCG_TYPE_I32, TCG_REG_R0, c); tcg_out32(s, AND | SAB(src, dst, TCG_REG_R0)); } } static void tcg_out_andi64(TCGContext *s, TCGReg dst, TCGReg src, uint64_t c) { int mb, me; tcg_debug_assert(TCG_TARGET_REG_BITS == 64); if (mask64_operand(c, &mb, &me)) { if (mb == 0) { tcg_out_rld(s, RLDICR, dst, src, 0, me); } else { tcg_out_rld(s, RLDICL, dst, src, 0, mb); } } else if ((c & 0xffff) == c) { tcg_out32(s, ANDI | SAI(src, dst, c)); return; } else if ((c & 0xffff0000) == c) { tcg_out32(s, ANDIS | SAI(src, dst, c >> 16)); return; } else { tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_R0, c); tcg_out32(s, AND | SAB(src, dst, TCG_REG_R0)); } } static void tcg_out_zori32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c, int op_lo, int op_hi) { if (c >> 16) { tcg_out32(s, op_hi | SAI(src, dst, c >> 16)); src = dst; } if (c & 0xffff) { tcg_out32(s, op_lo | SAI(src, dst, c)); src = dst; } } static void tcg_out_ori32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c) { tcg_out_zori32(s, dst, src, c, ORI, ORIS); } static void tcg_out_xori32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c) { tcg_out_zori32(s, dst, src, c, XORI, XORIS); } static void tcg_out_b(TCGContext *s, int mask, const tcg_insn_unit *target) { ptrdiff_t disp = tcg_pcrel_diff(s, target); if (in_range_b(disp)) { tcg_out32(s, B | (disp & 0x3fffffc) | mask); } else { tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R0, (uintptr_t)target); tcg_out32(s, MTSPR | RS(TCG_REG_R0) | CTR); tcg_out32(s, BCCTR | BO_ALWAYS | mask); } } static void tcg_out_mem_long(TCGContext *s, int opi, int opx, TCGReg rt, TCGReg base, tcg_target_long offset) { tcg_target_long orig = offset, l0, l1, extra = 0, align = 0; bool is_int_store = false; TCGReg rs = TCG_REG_TMP1; switch (opi) { case LD: case LWA: align = 3; /* FALLTHRU */ default: if (rt > TCG_REG_R0 && rt < TCG_REG_V0) { rs = rt; break; } break; case LXSD: case STXSD: align = 3; break; case LXV: case STXV: align = 15; break; case STD: align = 3; /* FALLTHRU */ case STB: case STH: case STW: is_int_store = true; break; } /* For unaligned, or very large offsets, use the indexed form. */ if (offset & align || offset != (int32_t)offset || opi == 0) { if (rs == base) { rs = TCG_REG_R0; } tcg_debug_assert(!is_int_store || rs != rt); tcg_out_movi(s, TCG_TYPE_PTR, rs, orig); tcg_out32(s, opx | TAB(rt & 31, base, rs)); return; } l0 = (int16_t)offset; offset = (offset - l0) >> 16; l1 = (int16_t)offset; if (l1 < 0 && orig >= 0) { extra = 0x4000; l1 = (int16_t)(offset - 0x4000); } if (l1) { tcg_out32(s, ADDIS | TAI(rs, base, l1)); base = rs; } if (extra) { tcg_out32(s, ADDIS | TAI(rs, base, extra)); base = rs; } if (opi != ADDI || base != rt || l0 != 0) { tcg_out32(s, opi | TAI(rt & 31, base, l0)); } } static void tcg_out_vsldoi(TCGContext *s, TCGReg ret, TCGReg va, TCGReg vb, int shb) { tcg_out32(s, VSLDOI | VRT(ret) | VRA(va) | VRB(vb) | (shb << 6)); } static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, TCGReg base, intptr_t offset) { int shift; switch (type) { case TCG_TYPE_I32: if (ret < TCG_REG_V0) { tcg_out_mem_long(s, LWZ, LWZX, ret, base, offset); break; } if (have_isa_2_07 && have_vsx) { tcg_out_mem_long(s, 0, LXSIWZX, ret, base, offset); break; } tcg_debug_assert((offset & 3) == 0); tcg_out_mem_long(s, 0, LVEWX, ret, base, offset); shift = (offset - 4) & 0xc; if (shift) { tcg_out_vsldoi(s, ret, ret, ret, shift); } break; case TCG_TYPE_I64: if (ret < TCG_REG_V0) { tcg_debug_assert(TCG_TARGET_REG_BITS == 64); tcg_out_mem_long(s, LD, LDX, ret, base, offset); break; } /* fallthru */ case TCG_TYPE_V64: tcg_debug_assert(ret >= TCG_REG_V0); if (have_vsx) { tcg_out_mem_long(s, have_isa_3_00 ? LXSD : 0, LXSDX, ret, base, offset); break; } tcg_debug_assert((offset & 7) == 0); tcg_out_mem_long(s, 0, LVX, ret, base, offset & -16); if (offset & 8) { tcg_out_vsldoi(s, ret, ret, ret, 8); } break; case TCG_TYPE_V128: tcg_debug_assert(ret >= TCG_REG_V0); tcg_debug_assert((offset & 15) == 0); tcg_out_mem_long(s, have_isa_3_00 ? LXV : 0, LVX, ret, base, offset); break; default: g_assert_not_reached(); } } static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg, TCGReg base, intptr_t offset) { int shift; switch (type) { case TCG_TYPE_I32: if (arg < TCG_REG_V0) { tcg_out_mem_long(s, STW, STWX, arg, base, offset); break; } if (have_isa_2_07 && have_vsx) { tcg_out_mem_long(s, 0, STXSIWX, arg, base, offset); break; } assert((offset & 3) == 0); tcg_debug_assert((offset & 3) == 0); shift = (offset - 4) & 0xc; if (shift) { tcg_out_vsldoi(s, TCG_VEC_TMP1, arg, arg, shift); arg = TCG_VEC_TMP1; } tcg_out_mem_long(s, 0, STVEWX, arg, base, offset); break; case TCG_TYPE_I64: if (arg < TCG_REG_V0) { tcg_debug_assert(TCG_TARGET_REG_BITS == 64); tcg_out_mem_long(s, STD, STDX, arg, base, offset); break; } /* fallthru */ case TCG_TYPE_V64: tcg_debug_assert(arg >= TCG_REG_V0); if (have_vsx) { tcg_out_mem_long(s, have_isa_3_00 ? STXSD : 0, STXSDX, arg, base, offset); break; } tcg_debug_assert((offset & 7) == 0); if (offset & 8) { tcg_out_vsldoi(s, TCG_VEC_TMP1, arg, arg, 8); arg = TCG_VEC_TMP1; } tcg_out_mem_long(s, 0, STVEWX, arg, base, offset); tcg_out_mem_long(s, 0, STVEWX, arg, base, offset + 4); break; case TCG_TYPE_V128: tcg_debug_assert(arg >= TCG_REG_V0); tcg_out_mem_long(s, have_isa_3_00 ? STXV : 0, STVX, arg, base, offset); break; default: g_assert_not_reached(); } } static inline bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val, TCGReg base, intptr_t ofs) { return false; } static void tcg_out_cmp(TCGContext *s, int cond, TCGArg arg1, TCGArg arg2, int const_arg2, int cr, TCGType type) { int imm; uint32_t op; tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || type == TCG_TYPE_I32); /* Simplify the comparisons below wrt CMPI. */ if (type == TCG_TYPE_I32) { arg2 = (int32_t)arg2; } switch (cond) { case TCG_COND_EQ: case TCG_COND_NE: if (const_arg2) { if ((int16_t) arg2 == arg2) { op = CMPI; imm = 1; break; } else if ((uint16_t) arg2 == arg2) { op = CMPLI; imm = 1; break; } } op = CMPL; imm = 0; break; case TCG_COND_LT: case TCG_COND_GE: case TCG_COND_LE: case TCG_COND_GT: if (const_arg2) { if ((int16_t) arg2 == arg2) { op = CMPI; imm = 1; break; } } op = CMP; imm = 0; break; case TCG_COND_LTU: case TCG_COND_GEU: case TCG_COND_LEU: case TCG_COND_GTU: if (const_arg2) { if ((uint16_t) arg2 == arg2) { op = CMPLI; imm = 1; break; } } op = CMPL; imm = 0; break; default: g_assert_not_reached(); } op |= BF(cr) | ((type == TCG_TYPE_I64) << 21); if (imm) { tcg_out32(s, op | RA(arg1) | (arg2 & 0xffff)); } else { if (const_arg2) { tcg_out_movi(s, type, TCG_REG_R0, arg2); arg2 = TCG_REG_R0; } tcg_out32(s, op | RA(arg1) | RB(arg2)); } } static void tcg_out_setcond_eq0(TCGContext *s, TCGType type, TCGReg dst, TCGReg src, bool neg) { if (neg && (TCG_TARGET_REG_BITS == 32 || type == TCG_TYPE_I64)) { /* * X != 0 implies X + -1 generates a carry. * RT = (~X + X) + CA * = -1 + CA * = CA ? 0 : -1 */ tcg_out32(s, ADDIC | TAI(TCG_REG_R0, src, -1)); tcg_out32(s, SUBFE | TAB(dst, src, src)); return; } if (type == TCG_TYPE_I32) { tcg_out32(s, CNTLZW | RS(src) | RA(dst)); tcg_out_shri32(s, dst, dst, 5); } else { tcg_out32(s, CNTLZD | RS(src) | RA(dst)); tcg_out_shri64(s, dst, dst, 6); } if (neg) { tcg_out32(s, NEG | RT(dst) | RA(dst)); } } static void tcg_out_setcond_ne0(TCGContext *s, TCGType type, TCGReg dst, TCGReg src, bool neg) { if (!neg && (TCG_TARGET_REG_BITS == 32 || type == TCG_TYPE_I64)) { /* * X != 0 implies X + -1 generates a carry. Extra addition * trickery means: R = X-1 + ~X + C = X-1 + (-X+1) + C = C. */ tcg_out32(s, ADDIC | TAI(TCG_REG_R0, src, -1)); tcg_out32(s, SUBFE | TAB(dst, TCG_REG_R0, src)); return; } tcg_out_setcond_eq0(s, type, dst, src, false); if (neg) { tcg_out32(s, ADDI | TAI(dst, dst, -1)); } else { tcg_out_xori32(s, dst, dst, 1); } } static TCGReg tcg_gen_setcond_xor(TCGContext *s, TCGReg arg1, TCGArg arg2, bool const_arg2) { if (const_arg2) { if ((uint32_t)arg2 == arg2) { tcg_out_xori32(s, TCG_REG_R0, arg1, arg2); } else { tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_R0, arg2); tcg_out32(s, XOR | SAB(arg1, TCG_REG_R0, TCG_REG_R0)); } } else { tcg_out32(s, XOR | SAB(arg1, TCG_REG_R0, arg2)); } return TCG_REG_R0; } static void tcg_out_setcond(TCGContext *s, TCGType type, TCGCond cond, TCGArg arg0, TCGArg arg1, TCGArg arg2, int const_arg2, bool neg) { int sh; bool inv; tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || type == TCG_TYPE_I32); /* Ignore high bits of a potential constant arg2. */ if (type == TCG_TYPE_I32) { arg2 = (uint32_t)arg2; } /* With SETBC/SETBCR, we can always implement with 2 insns. */ if (have_isa_3_10) { tcg_insn_unit bi, opc; tcg_out_cmp(s, cond, arg1, arg2, const_arg2, 7, type); /* Re-use tcg_to_bc for BI and BO_COND_{TRUE,FALSE}. */ bi = tcg_to_bc[cond] & (0x1f << 16); if (tcg_to_bc[cond] & BO(8)) { opc = neg ? SETNBC : SETBC; } else { opc = neg ? SETNBCR : SETBCR; } tcg_out32(s, opc | RT(arg0) | bi); return; } /* Handle common and trivial cases before handling anything else. */ if (arg2 == 0) { switch (cond) { case TCG_COND_EQ: tcg_out_setcond_eq0(s, type, arg0, arg1, neg); return; case TCG_COND_NE: tcg_out_setcond_ne0(s, type, arg0, arg1, neg); return; case TCG_COND_GE: tcg_out32(s, NOR | SAB(arg1, arg0, arg1)); arg1 = arg0; /* FALLTHRU */ case TCG_COND_LT: /* Extract the sign bit. */ if (type == TCG_TYPE_I32) { if (neg) { tcg_out_sari32(s, arg0, arg1, 31); } else { tcg_out_shri32(s, arg0, arg1, 31); } } else { if (neg) { tcg_out_sari64(s, arg0, arg1, 63); } else { tcg_out_shri64(s, arg0, arg1, 63); } } return; default: break; } } /* If we have ISEL, we can implement everything with 3 or 4 insns. All other cases below are also at least 3 insns, so speed up the code generator by not considering them and always using ISEL. */ if (have_isel) { int isel, tab; tcg_out_cmp(s, cond, arg1, arg2, const_arg2, 7, type); isel = tcg_to_isel[cond]; tcg_out_movi(s, type, arg0, neg ? -1 : 1); if (isel & 1) { /* arg0 = (bc ? 0 : 1) */ tab = TAB(arg0, 0, arg0); isel &= ~1; } else { /* arg0 = (bc ? 1 : 0) */ tcg_out_movi(s, type, TCG_REG_R0, 0); tab = TAB(arg0, arg0, TCG_REG_R0); } tcg_out32(s, isel | tab); return; } inv = false; switch (cond) { case TCG_COND_EQ: arg1 = tcg_gen_setcond_xor(s, arg1, arg2, const_arg2); tcg_out_setcond_eq0(s, type, arg0, arg1, neg); break; case TCG_COND_NE: arg1 = tcg_gen_setcond_xor(s, arg1, arg2, const_arg2); tcg_out_setcond_ne0(s, type, arg0, arg1, neg); break; case TCG_COND_LE: case TCG_COND_LEU: inv = true; /* fall through */ case TCG_COND_GT: case TCG_COND_GTU: sh = 30; /* CR7 CR_GT */ goto crtest; case TCG_COND_GE: case TCG_COND_GEU: inv = true; /* fall through */ case TCG_COND_LT: case TCG_COND_LTU: sh = 29; /* CR7 CR_LT */ goto crtest; crtest: tcg_out_cmp(s, cond, arg1, arg2, const_arg2, 7, type); tcg_out32(s, MFOCRF | RT(TCG_REG_R0) | FXM(7)); tcg_out_rlw(s, RLWINM, arg0, TCG_REG_R0, sh, 31, 31); if (neg && inv) { tcg_out32(s, ADDI | TAI(arg0, arg0, -1)); } else if (neg) { tcg_out32(s, NEG | RT(arg0) | RA(arg0)); } else if (inv) { tcg_out_xori32(s, arg0, arg0, 1); } break; default: g_assert_not_reached(); } } static void tcg_out_bc(TCGContext *s, int bc, TCGLabel *l) { if (l->has_value) { bc |= reloc_pc14_val(tcg_splitwx_to_rx(s->code_ptr), l->u.value_ptr); } else { tcg_out_reloc(s, s->code_ptr, R_PPC_REL14, l, 0); } tcg_out32(s, bc); } static void tcg_out_brcond(TCGContext *s, TCGCond cond, TCGArg arg1, TCGArg arg2, int const_arg2, TCGLabel *l, TCGType type) { tcg_out_cmp(s, cond, arg1, arg2, const_arg2, 7, type); tcg_out_bc(s, tcg_to_bc[cond], l); } static void tcg_out_movcond(TCGContext *s, TCGType type, TCGCond cond, TCGArg dest, TCGArg c1, TCGArg c2, TCGArg v1, TCGArg v2, bool const_c2) { /* If for some reason both inputs are zero, don't produce bad code. */ if (v1 == 0 && v2 == 0) { tcg_out_movi(s, type, dest, 0); return; } tcg_out_cmp(s, cond, c1, c2, const_c2, 7, type); if (have_isel) { int isel = tcg_to_isel[cond]; /* Swap the V operands if the operation indicates inversion. */ if (isel & 1) { int t = v1; v1 = v2; v2 = t; isel &= ~1; } /* V1 == 0 is handled by isel; V2 == 0 must be handled by hand. */ if (v2 == 0) { tcg_out_movi(s, type, TCG_REG_R0, 0); } tcg_out32(s, isel | TAB(dest, v1, v2)); } else { if (dest == v2) { cond = tcg_invert_cond(cond); v2 = v1; } else if (dest != v1) { if (v1 == 0) { tcg_out_movi(s, type, dest, 0); } else { tcg_out_mov(s, type, dest, v1); } } /* Branch forward over one insn */ tcg_out32(s, tcg_to_bc[cond] | 8); if (v2 == 0) { tcg_out_movi(s, type, dest, 0); } else { tcg_out_mov(s, type, dest, v2); } } } static void tcg_out_cntxz(TCGContext *s, TCGType type, uint32_t opc, TCGArg a0, TCGArg a1, TCGArg a2, bool const_a2) { if (const_a2 && a2 == (type == TCG_TYPE_I32 ? 32 : 64)) { tcg_out32(s, opc | RA(a0) | RS(a1)); } else { tcg_out_cmp(s, TCG_COND_EQ, a1, 0, 1, 7, type); /* Note that the only other valid constant for a2 is 0. */ if (have_isel) { tcg_out32(s, opc | RA(TCG_REG_R0) | RS(a1)); tcg_out32(s, tcg_to_isel[TCG_COND_EQ] | TAB(a0, a2, TCG_REG_R0)); } else if (!const_a2 && a0 == a2) { tcg_out32(s, tcg_to_bc[TCG_COND_EQ] | 8); tcg_out32(s, opc | RA(a0) | RS(a1)); } else { tcg_out32(s, opc | RA(a0) | RS(a1)); tcg_out32(s, tcg_to_bc[TCG_COND_NE] | 8); if (const_a2) { tcg_out_movi(s, type, a0, 0); } else { tcg_out_mov(s, type, a0, a2); } } } } static void tcg_out_cmp2(TCGContext *s, const TCGArg *args, const int *const_args) { static const struct { uint8_t bit1, bit2; } bits[] = { [TCG_COND_LT ] = { CR_LT, CR_LT }, [TCG_COND_LE ] = { CR_LT, CR_GT }, [TCG_COND_GT ] = { CR_GT, CR_GT }, [TCG_COND_GE ] = { CR_GT, CR_LT }, [TCG_COND_LTU] = { CR_LT, CR_LT }, [TCG_COND_LEU] = { CR_LT, CR_GT }, [TCG_COND_GTU] = { CR_GT, CR_GT }, [TCG_COND_GEU] = { CR_GT, CR_LT }, }; TCGCond cond = args[4], cond2; TCGArg al, ah, bl, bh; int blconst, bhconst; int op, bit1, bit2; al = args[0]; ah = args[1]; bl = args[2]; bh = args[3]; blconst = const_args[2]; bhconst = const_args[3]; switch (cond) { case TCG_COND_EQ: op = CRAND; goto do_equality; case TCG_COND_NE: op = CRNAND; do_equality: tcg_out_cmp(s, cond, al, bl, blconst, 6, TCG_TYPE_I32); tcg_out_cmp(s, cond, ah, bh, bhconst, 7, TCG_TYPE_I32); tcg_out32(s, op | BT(7, CR_EQ) | BA(6, CR_EQ) | BB(7, CR_EQ)); break; case TCG_COND_LT: case TCG_COND_LE: case TCG_COND_GT: case TCG_COND_GE: case TCG_COND_LTU: case TCG_COND_LEU: case TCG_COND_GTU: case TCG_COND_GEU: bit1 = bits[cond].bit1; bit2 = bits[cond].bit2; op = (bit1 != bit2 ? CRANDC : CRAND); cond2 = tcg_unsigned_cond(cond); tcg_out_cmp(s, cond, ah, bh, bhconst, 6, TCG_TYPE_I32); tcg_out_cmp(s, cond2, al, bl, blconst, 7, TCG_TYPE_I32); tcg_out32(s, op | BT(7, CR_EQ) | BA(6, CR_EQ) | BB(7, bit2)); tcg_out32(s, CROR | BT(7, CR_EQ) | BA(6, bit1) | BB(7, CR_EQ)); break; default: g_assert_not_reached(); } } static void tcg_out_setcond2(TCGContext *s, const TCGArg *args, const int *const_args) { tcg_out_cmp2(s, args + 1, const_args + 1); tcg_out32(s, MFOCRF | RT(TCG_REG_R0) | FXM(7)); tcg_out_rlw(s, RLWINM, args[0], TCG_REG_R0, 31, 31, 31); } static void tcg_out_brcond2 (TCGContext *s, const TCGArg *args, const int *const_args) { tcg_out_cmp2(s, args, const_args); tcg_out_bc(s, BC | BI(7, CR_EQ) | BO_COND_TRUE, arg_label(args[5])); } static void tcg_out_mb(TCGContext *s, TCGArg a0) { uint32_t insn; if (a0 & TCG_MO_ST_LD) { insn = HWSYNC; } else { insn = LWSYNC; } tcg_out32(s, insn); } static void tcg_out_call_int(TCGContext *s, int lk, const tcg_insn_unit *target) { #ifdef _CALL_AIX /* Look through the descriptor. If the branch is in range, and we don't have to spend too much effort on building the toc. */ const void *tgt = ((const void * const *)target)[0]; uintptr_t toc = ((const uintptr_t *)target)[1]; intptr_t diff = tcg_pcrel_diff(s, tgt); if (in_range_b(diff) && toc == (uint32_t)toc) { tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_TMP1, toc); tcg_out_b(s, lk, tgt); } else { /* Fold the low bits of the constant into the addresses below. */ intptr_t arg = (intptr_t)target; int ofs = (int16_t)arg; if (ofs + 8 < 0x8000) { arg -= ofs; } else { ofs = 0; } tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_TMP1, arg); tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R0, TCG_REG_TMP1, ofs); tcg_out32(s, MTSPR | RA(TCG_REG_R0) | CTR); tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R2, TCG_REG_TMP1, ofs + SZP); tcg_out32(s, BCCTR | BO_ALWAYS | lk); } #elif defined(_CALL_ELF) && _CALL_ELF == 2 intptr_t diff; /* In the ELFv2 ABI, we have to set up r12 to contain the destination address, which the callee uses to compute its TOC address. */ /* FIXME: when the branch is in range, we could avoid r12 load if we knew that the destination uses the same TOC, and what its local entry point offset is. */ tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R12, (intptr_t)target); diff = tcg_pcrel_diff(s, target); if (in_range_b(diff)) { tcg_out_b(s, lk, target); } else { tcg_out32(s, MTSPR | RS(TCG_REG_R12) | CTR); tcg_out32(s, BCCTR | BO_ALWAYS | lk); } #else tcg_out_b(s, lk, target); #endif } static void tcg_out_call(TCGContext *s, const tcg_insn_unit *target, const TCGHelperInfo *info) { tcg_out_call_int(s, LK, target); } static const uint32_t qemu_ldx_opc[(MO_SSIZE + MO_BSWAP) + 1] = { [MO_UB] = LBZX, [MO_UW] = LHZX, [MO_UL] = LWZX, [MO_UQ] = LDX, [MO_SW] = LHAX, [MO_SL] = LWAX, [MO_BSWAP | MO_UB] = LBZX, [MO_BSWAP | MO_UW] = LHBRX, [MO_BSWAP | MO_UL] = LWBRX, [MO_BSWAP | MO_UQ] = LDBRX, }; static const uint32_t qemu_stx_opc[(MO_SIZE + MO_BSWAP) + 1] = { [MO_UB] = STBX, [MO_UW] = STHX, [MO_UL] = STWX, [MO_UQ] = STDX, [MO_BSWAP | MO_UB] = STBX, [MO_BSWAP | MO_UW] = STHBRX, [MO_BSWAP | MO_UL] = STWBRX, [MO_BSWAP | MO_UQ] = STDBRX, }; static TCGReg ldst_ra_gen(TCGContext *s, const TCGLabelQemuLdst *l, int arg) { if (arg < 0) { arg = TCG_REG_TMP1; } tcg_out32(s, MFSPR | RT(arg) | LR); return arg; } /* * For the purposes of ppc32 sorting 4 input registers into 4 argument * registers, there is an outside chance we would require 3 temps. */ static const TCGLdstHelperParam ldst_helper_param = { .ra_gen = ldst_ra_gen, .ntmp = 3, .tmp = { TCG_REG_TMP1, TCG_REG_TMP2, TCG_REG_R0 } }; static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *lb) { MemOp opc = get_memop(lb->oi); if (!reloc_pc14(lb->label_ptr[0], tcg_splitwx_to_rx(s->code_ptr))) { return false; } tcg_out_ld_helper_args(s, lb, &ldst_helper_param); tcg_out_call_int(s, LK, qemu_ld_helpers[opc & MO_SIZE]); tcg_out_ld_helper_ret(s, lb, false, &ldst_helper_param); tcg_out_b(s, 0, lb->raddr); return true; } static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *lb) { MemOp opc = get_memop(lb->oi); if (!reloc_pc14(lb->label_ptr[0], tcg_splitwx_to_rx(s->code_ptr))) { return false; } tcg_out_st_helper_args(s, lb, &ldst_helper_param); tcg_out_call_int(s, LK, qemu_st_helpers[opc & MO_SIZE]); tcg_out_b(s, 0, lb->raddr); return true; } typedef struct { TCGReg base; TCGReg index; TCGAtomAlign aa; } HostAddress; bool tcg_target_has_memory_bswap(MemOp memop) { TCGAtomAlign aa; if ((memop & MO_SIZE) <= MO_64) { return true; } /* * Reject 16-byte memop with 16-byte atomicity, * but do allow a pair of 64-bit operations. */ aa = atom_and_align_for_opc(tcg_ctx, memop, MO_ATOM_IFALIGN, true); return aa.atom <= MO_64; } /* We expect to use a 16-bit negative offset from ENV. */ #define MIN_TLB_MASK_TABLE_OFS -32768 /* * For system-mode, perform the TLB load and compare. * For user-mode, perform any required alignment tests. * In both cases, return a TCGLabelQemuLdst structure if the slow path * is required and fill in @h with the host address for the fast path. */ static TCGLabelQemuLdst *prepare_host_addr(TCGContext *s, HostAddress *h, TCGReg addrlo, TCGReg addrhi, MemOpIdx oi, bool is_ld) { TCGType addr_type = s->addr_type; TCGLabelQemuLdst *ldst = NULL; MemOp opc = get_memop(oi); MemOp a_bits, s_bits; /* * Book II, Section 1.4, Single-Copy Atomicity, specifies: * * Before 3.0, "An access that is not atomic is performed as a set of * smaller disjoint atomic accesses. In general, the number and alignment * of these accesses are implementation-dependent." Thus MO_ATOM_IFALIGN. * * As of 3.0, "the non-atomic access is performed as described in * the corresponding list", which matches MO_ATOM_SUBALIGN. */ s_bits = opc & MO_SIZE; h->aa = atom_and_align_for_opc(s, opc, have_isa_3_00 ? MO_ATOM_SUBALIGN : MO_ATOM_IFALIGN, s_bits == MO_128); a_bits = h->aa.align; #ifdef CONFIG_SOFTMMU int mem_index = get_mmuidx(oi); int cmp_off = is_ld ? offsetof(CPUTLBEntry, addr_read) : offsetof(CPUTLBEntry, addr_write); int fast_off = tlb_mask_table_ofs(s, mem_index); int mask_off = fast_off + offsetof(CPUTLBDescFast, mask); int table_off = fast_off + offsetof(CPUTLBDescFast, table); ldst = new_ldst_label(s); ldst->is_ld = is_ld; ldst->oi = oi; ldst->addrlo_reg = addrlo; ldst->addrhi_reg = addrhi; /* Load tlb_mask[mmu_idx] and tlb_table[mmu_idx]. */ tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_TMP1, TCG_AREG0, mask_off); tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_TMP2, TCG_AREG0, table_off); /* Extract the page index, shifted into place for tlb index. */ if (TCG_TARGET_REG_BITS == 32) { tcg_out_shri32(s, TCG_REG_R0, addrlo, s->page_bits - CPU_TLB_ENTRY_BITS); } else { tcg_out_shri64(s, TCG_REG_R0, addrlo, s->page_bits - CPU_TLB_ENTRY_BITS); } tcg_out32(s, AND | SAB(TCG_REG_TMP1, TCG_REG_TMP1, TCG_REG_R0)); /* * Load the (low part) TLB comparator into TMP2. * For 64-bit host, always load the entire 64-bit slot for simplicity. * We will ignore the high bits with tcg_out_cmp(..., addr_type). */ if (TCG_TARGET_REG_BITS == 64) { if (cmp_off == 0) { tcg_out32(s, LDUX | TAB(TCG_REG_TMP2, TCG_REG_TMP1, TCG_REG_TMP2)); } else { tcg_out32(s, ADD | TAB(TCG_REG_TMP1, TCG_REG_TMP1, TCG_REG_TMP2)); tcg_out_ld(s, TCG_TYPE_I64, TCG_REG_TMP2, TCG_REG_TMP1, cmp_off); } } else if (cmp_off == 0 && !HOST_BIG_ENDIAN) { tcg_out32(s, LWZUX | TAB(TCG_REG_TMP2, TCG_REG_TMP1, TCG_REG_TMP2)); } else { tcg_out32(s, ADD | TAB(TCG_REG_TMP1, TCG_REG_TMP1, TCG_REG_TMP2)); tcg_out_ld(s, TCG_TYPE_I32, TCG_REG_TMP2, TCG_REG_TMP1, cmp_off + 4 * HOST_BIG_ENDIAN); } /* * Load the TLB addend for use on the fast path. * Do this asap to minimize any load use delay. */ if (TCG_TARGET_REG_BITS == 64 || addr_type == TCG_TYPE_I32) { tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_TMP1, TCG_REG_TMP1, offsetof(CPUTLBEntry, addend)); } /* Clear the non-page, non-alignment bits from the address in R0. */ if (TCG_TARGET_REG_BITS == 32) { /* * We don't support unaligned accesses on 32-bits. * Preserve the bottom bits and thus trigger a comparison * failure on unaligned accesses. */ if (a_bits < s_bits) { a_bits = s_bits; } tcg_out_rlw(s, RLWINM, TCG_REG_R0, addrlo, 0, (32 - a_bits) & 31, 31 - s->page_bits); } else { TCGReg t = addrlo; /* * If the access is unaligned, we need to make sure we fail if we * cross a page boundary. The trick is to add the access size-1 * to the address before masking the low bits. That will make the * address overflow to the next page if we cross a page boundary, * which will then force a mismatch of the TLB compare. */ if (a_bits < s_bits) { unsigned a_mask = (1 << a_bits) - 1; unsigned s_mask = (1 << s_bits) - 1; tcg_out32(s, ADDI | TAI(TCG_REG_R0, t, s_mask - a_mask)); t = TCG_REG_R0; } /* Mask the address for the requested alignment. */ if (addr_type == TCG_TYPE_I32) { tcg_out_rlw(s, RLWINM, TCG_REG_R0, t, 0, (32 - a_bits) & 31, 31 - s->page_bits); } else if (a_bits == 0) { tcg_out_rld(s, RLDICR, TCG_REG_R0, t, 0, 63 - s->page_bits); } else { tcg_out_rld(s, RLDICL, TCG_REG_R0, t, 64 - s->page_bits, s->page_bits - a_bits); tcg_out_rld(s, RLDICL, TCG_REG_R0, TCG_REG_R0, s->page_bits, 0); } } if (TCG_TARGET_REG_BITS == 32 && addr_type != TCG_TYPE_I32) { /* Low part comparison into cr7. */ tcg_out_cmp(s, TCG_COND_EQ, TCG_REG_R0, TCG_REG_TMP2, 0, 7, TCG_TYPE_I32); /* Load the high part TLB comparator into TMP2. */ tcg_out_ld(s, TCG_TYPE_I32, TCG_REG_TMP2, TCG_REG_TMP1, cmp_off + 4 * !HOST_BIG_ENDIAN); /* Load addend, deferred for this case. */ tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_TMP1, TCG_REG_TMP1, offsetof(CPUTLBEntry, addend)); /* High part comparison into cr6. */ tcg_out_cmp(s, TCG_COND_EQ, addrhi, TCG_REG_TMP2, 0, 6, TCG_TYPE_I32); /* Combine comparisons into cr7. */ tcg_out32(s, CRAND | BT(7, CR_EQ) | BA(6, CR_EQ) | BB(7, CR_EQ)); } else { /* Full comparison into cr7. */ tcg_out_cmp(s, TCG_COND_EQ, TCG_REG_R0, TCG_REG_TMP2, 0, 7, addr_type); } /* Load a pointer into the current opcode w/conditional branch-link. */ ldst->label_ptr[0] = s->code_ptr; tcg_out32(s, BC | BI(7, CR_EQ) | BO_COND_FALSE | LK); h->base = TCG_REG_TMP1; #else if (a_bits) { ldst = new_ldst_label(s); ldst->is_ld = is_ld; ldst->oi = oi; ldst->addrlo_reg = addrlo; ldst->addrhi_reg = addrhi; /* We are expecting a_bits to max out at 7, much lower than ANDI. */ tcg_debug_assert(a_bits < 16); tcg_out32(s, ANDI | SAI(addrlo, TCG_REG_R0, (1 << a_bits) - 1)); ldst->label_ptr[0] = s->code_ptr; tcg_out32(s, BC | BI(0, CR_EQ) | BO_COND_FALSE | LK); } h->base = guest_base ? TCG_GUEST_BASE_REG : 0; #endif if (TCG_TARGET_REG_BITS == 64 && addr_type == TCG_TYPE_I32) { /* Zero-extend the guest address for use in the host address. */ tcg_out_ext32u(s, TCG_REG_R0, addrlo); h->index = TCG_REG_R0; } else { h->index = addrlo; } return ldst; } static void tcg_out_qemu_ld(TCGContext *s, TCGReg datalo, TCGReg datahi, TCGReg addrlo, TCGReg addrhi, MemOpIdx oi, TCGType data_type) { MemOp opc = get_memop(oi); TCGLabelQemuLdst *ldst; HostAddress h; ldst = prepare_host_addr(s, &h, addrlo, addrhi, oi, true); if (TCG_TARGET_REG_BITS == 32 && (opc & MO_SIZE) == MO_64) { if (opc & MO_BSWAP) { tcg_out32(s, ADDI | TAI(TCG_REG_R0, h.index, 4)); tcg_out32(s, LWBRX | TAB(datalo, h.base, h.index)); tcg_out32(s, LWBRX | TAB(datahi, h.base, TCG_REG_R0)); } else if (h.base != 0) { tcg_out32(s, ADDI | TAI(TCG_REG_R0, h.index, 4)); tcg_out32(s, LWZX | TAB(datahi, h.base, h.index)); tcg_out32(s, LWZX | TAB(datalo, h.base, TCG_REG_R0)); } else if (h.index == datahi) { tcg_out32(s, LWZ | TAI(datalo, h.index, 4)); tcg_out32(s, LWZ | TAI(datahi, h.index, 0)); } else { tcg_out32(s, LWZ | TAI(datahi, h.index, 0)); tcg_out32(s, LWZ | TAI(datalo, h.index, 4)); } } else { uint32_t insn = qemu_ldx_opc[opc & (MO_BSWAP | MO_SSIZE)]; if (!have_isa_2_06 && insn == LDBRX) { tcg_out32(s, ADDI | TAI(TCG_REG_R0, h.index, 4)); tcg_out32(s, LWBRX | TAB(datalo, h.base, h.index)); tcg_out32(s, LWBRX | TAB(TCG_REG_R0, h.base, TCG_REG_R0)); tcg_out_rld(s, RLDIMI, datalo, TCG_REG_R0, 32, 0); } else if (insn) { tcg_out32(s, insn | TAB(datalo, h.base, h.index)); } else { insn = qemu_ldx_opc[opc & (MO_SIZE | MO_BSWAP)]; tcg_out32(s, insn | TAB(datalo, h.base, h.index)); tcg_out_movext(s, TCG_TYPE_REG, datalo, TCG_TYPE_REG, opc & MO_SSIZE, datalo); } } if (ldst) { ldst->type = data_type; ldst->datalo_reg = datalo; ldst->datahi_reg = datahi; ldst->raddr = tcg_splitwx_to_rx(s->code_ptr); } } static void tcg_out_qemu_st(TCGContext *s, TCGReg datalo, TCGReg datahi, TCGReg addrlo, TCGReg addrhi, MemOpIdx oi, TCGType data_type) { MemOp opc = get_memop(oi); TCGLabelQemuLdst *ldst; HostAddress h; ldst = prepare_host_addr(s, &h, addrlo, addrhi, oi, false); if (TCG_TARGET_REG_BITS == 32 && (opc & MO_SIZE) == MO_64) { if (opc & MO_BSWAP) { tcg_out32(s, ADDI | TAI(TCG_REG_R0, h.index, 4)); tcg_out32(s, STWBRX | SAB(datalo, h.base, h.index)); tcg_out32(s, STWBRX | SAB(datahi, h.base, TCG_REG_R0)); } else if (h.base != 0) { tcg_out32(s, ADDI | TAI(TCG_REG_R0, h.index, 4)); tcg_out32(s, STWX | SAB(datahi, h.base, h.index)); tcg_out32(s, STWX | SAB(datalo, h.base, TCG_REG_R0)); } else { tcg_out32(s, STW | TAI(datahi, h.index, 0)); tcg_out32(s, STW | TAI(datalo, h.index, 4)); } } else { uint32_t insn = qemu_stx_opc[opc & (MO_BSWAP | MO_SIZE)]; if (!have_isa_2_06 && insn == STDBRX) { tcg_out32(s, STWBRX | SAB(datalo, h.base, h.index)); tcg_out32(s, ADDI | TAI(TCG_REG_TMP1, h.index, 4)); tcg_out_shri64(s, TCG_REG_R0, datalo, 32); tcg_out32(s, STWBRX | SAB(TCG_REG_R0, h.base, TCG_REG_TMP1)); } else { tcg_out32(s, insn | SAB(datalo, h.base, h.index)); } } if (ldst) { ldst->type = data_type; ldst->datalo_reg = datalo; ldst->datahi_reg = datahi; ldst->raddr = tcg_splitwx_to_rx(s->code_ptr); } } static void tcg_out_qemu_ldst_i128(TCGContext *s, TCGReg datalo, TCGReg datahi, TCGReg addr_reg, MemOpIdx oi, bool is_ld) { TCGLabelQemuLdst *ldst; HostAddress h; bool need_bswap; uint32_t insn; TCGReg index; ldst = prepare_host_addr(s, &h, addr_reg, -1, oi, is_ld); /* Compose the final address, as LQ/STQ have no indexing. */ index = h.index; if (h.base != 0) { index = TCG_REG_TMP1; tcg_out32(s, ADD | TAB(index, h.base, h.index)); } need_bswap = get_memop(oi) & MO_BSWAP; if (h.aa.atom == MO_128) { tcg_debug_assert(!need_bswap); tcg_debug_assert(datalo & 1); tcg_debug_assert(datahi == datalo - 1); insn = is_ld ? LQ : STQ; tcg_out32(s, insn | TAI(datahi, index, 0)); } else { TCGReg d1, d2; if (HOST_BIG_ENDIAN ^ need_bswap) { d1 = datahi, d2 = datalo; } else { d1 = datalo, d2 = datahi; } if (need_bswap) { tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R0, 8); insn = is_ld ? LDBRX : STDBRX; tcg_out32(s, insn | TAB(d1, 0, index)); tcg_out32(s, insn | TAB(d2, index, TCG_REG_R0)); } else { insn = is_ld ? LD : STD; tcg_out32(s, insn | TAI(d1, index, 0)); tcg_out32(s, insn | TAI(d2, index, 8)); } } if (ldst) { ldst->type = TCG_TYPE_I128; ldst->datalo_reg = datalo; ldst->datahi_reg = datahi; ldst->raddr = tcg_splitwx_to_rx(s->code_ptr); } } static void tcg_out_nop_fill(tcg_insn_unit *p, int count) { int i; for (i = 0; i < count; ++i) { p[i] = NOP; } } /* Parameters for function call generation, used in tcg.c. */ #define TCG_TARGET_STACK_ALIGN 16 #ifdef _CALL_AIX # define LINK_AREA_SIZE (6 * SZR) # define LR_OFFSET (1 * SZR) # define TCG_TARGET_CALL_STACK_OFFSET (LINK_AREA_SIZE + 8 * SZR) #elif defined(_CALL_DARWIN) # define LINK_AREA_SIZE (6 * SZR) # define LR_OFFSET (2 * SZR) #elif TCG_TARGET_REG_BITS == 64 # if defined(_CALL_ELF) && _CALL_ELF == 2 # define LINK_AREA_SIZE (4 * SZR) # define LR_OFFSET (1 * SZR) # endif #else /* TCG_TARGET_REG_BITS == 32 */ # if defined(_CALL_SYSV) # define LINK_AREA_SIZE (2 * SZR) # define LR_OFFSET (1 * SZR) # endif #endif #ifndef LR_OFFSET # error "Unhandled abi" #endif #ifndef TCG_TARGET_CALL_STACK_OFFSET # define TCG_TARGET_CALL_STACK_OFFSET LINK_AREA_SIZE #endif #define CPU_TEMP_BUF_SIZE (CPU_TEMP_BUF_NLONGS * (int)sizeof(long)) #define REG_SAVE_SIZE ((int)ARRAY_SIZE(tcg_target_callee_save_regs) * SZR) #define FRAME_SIZE ((TCG_TARGET_CALL_STACK_OFFSET \ + TCG_STATIC_CALL_ARGS_SIZE \ + CPU_TEMP_BUF_SIZE \ + REG_SAVE_SIZE \ + TCG_TARGET_STACK_ALIGN - 1) \ & -TCG_TARGET_STACK_ALIGN) #define REG_SAVE_BOT (FRAME_SIZE - REG_SAVE_SIZE) static void tcg_target_qemu_prologue(TCGContext *s) { int i; #ifdef _CALL_AIX const void **desc = (const void **)s->code_ptr; desc[0] = tcg_splitwx_to_rx(desc + 2); /* entry point */ desc[1] = 0; /* environment pointer */ s->code_ptr = (void *)(desc + 2); /* skip over descriptor */ #endif tcg_set_frame(s, TCG_REG_CALL_STACK, REG_SAVE_BOT - CPU_TEMP_BUF_SIZE, CPU_TEMP_BUF_SIZE); /* Prologue */ tcg_out32(s, MFSPR | RT(TCG_REG_R0) | LR); tcg_out32(s, (SZR == 8 ? STDU : STWU) | SAI(TCG_REG_R1, TCG_REG_R1, -FRAME_SIZE)); for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); ++i) { tcg_out_st(s, TCG_TYPE_REG, tcg_target_callee_save_regs[i], TCG_REG_R1, REG_SAVE_BOT + i * SZR); } tcg_out_st(s, TCG_TYPE_PTR, TCG_REG_R0, TCG_REG_R1, FRAME_SIZE+LR_OFFSET); #ifndef CONFIG_SOFTMMU if (guest_base) { tcg_out_movi_int(s, TCG_TYPE_PTR, TCG_GUEST_BASE_REG, guest_base, true); tcg_regset_set_reg(s->reserved_regs, TCG_GUEST_BASE_REG); } #endif tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]); tcg_out32(s, MTSPR | RS(tcg_target_call_iarg_regs[1]) | CTR); tcg_out32(s, BCCTR | BO_ALWAYS); /* Epilogue */ tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr); tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R0, TCG_REG_R1, FRAME_SIZE+LR_OFFSET); for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); ++i) { tcg_out_ld(s, TCG_TYPE_REG, tcg_target_callee_save_regs[i], TCG_REG_R1, REG_SAVE_BOT + i * SZR); } tcg_out32(s, MTSPR | RS(TCG_REG_R0) | LR); tcg_out32(s, ADDI | TAI(TCG_REG_R1, TCG_REG_R1, FRAME_SIZE)); tcg_out32(s, BCLR | BO_ALWAYS); } static void tcg_out_tb_start(TCGContext *s) { /* Load TCG_REG_TB. */ if (USE_REG_TB) { if (have_isa_3_00) { /* lnia REG_TB */ tcg_out_addpcis(s, TCG_REG_TB, 0); } else { /* bcl 20,31,$+4 (preferred form for getting nia) */ tcg_out32(s, BC | BO_ALWAYS | BI(7, CR_SO) | 0x4 | LK); tcg_out32(s, MFSPR | RT(TCG_REG_TB) | LR); } } } static void tcg_out_exit_tb(TCGContext *s, uintptr_t arg) { tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R3, arg); tcg_out_b(s, 0, tcg_code_gen_epilogue); } static void tcg_out_goto_tb(TCGContext *s, int which) { uintptr_t ptr = get_jmp_target_addr(s, which); int16_t lo; /* Direct branch will be patched by tb_target_set_jmp_target. */ set_jmp_insn_offset(s, which); tcg_out32(s, NOP); /* When branch is out of range, fall through to indirect. */ if (USE_REG_TB) { ptrdiff_t offset = ppc_tbrel_diff(s, (void *)ptr); tcg_out_mem_long(s, LD, LDX, TCG_REG_TMP1, TCG_REG_TB, offset); } else if (have_isa_3_00) { ptrdiff_t offset = tcg_pcrel_diff(s, (void *)ptr) - 4; lo = offset; tcg_out_addpcis(s, TCG_REG_TMP1, offset - lo); tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_TMP1, TCG_REG_TMP1, lo); } else { lo = ptr; tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_TMP1, ptr - lo); tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_TMP1, TCG_REG_TMP1, lo); } tcg_out32(s, MTSPR | RS(TCG_REG_TMP1) | CTR); tcg_out32(s, BCCTR | BO_ALWAYS); set_jmp_reset_offset(s, which); } void tb_target_set_jmp_target(const TranslationBlock *tb, int n, uintptr_t jmp_rx, uintptr_t jmp_rw) { uintptr_t addr = tb->jmp_target_addr[n]; intptr_t diff = addr - jmp_rx; tcg_insn_unit insn; if (in_range_b(diff)) { insn = B | (diff & 0x3fffffc); } else { insn = NOP; } qatomic_set((uint32_t *)jmp_rw, insn); flush_idcache_range(jmp_rx, jmp_rw, 4); } static void tcg_out_op(TCGContext *s, TCGOpcode opc, const TCGArg args[TCG_MAX_OP_ARGS], const int const_args[TCG_MAX_OP_ARGS]) { TCGArg a0, a1, a2; switch (opc) { case INDEX_op_goto_ptr: tcg_out32(s, MTSPR | RS(args[0]) | CTR); tcg_out32(s, ADDI | TAI(TCG_REG_R3, 0, 0)); tcg_out32(s, BCCTR | BO_ALWAYS); break; case INDEX_op_br: { TCGLabel *l = arg_label(args[0]); uint32_t insn = B; if (l->has_value) { insn |= reloc_pc24_val(tcg_splitwx_to_rx(s->code_ptr), l->u.value_ptr); } else { tcg_out_reloc(s, s->code_ptr, R_PPC_REL24, l, 0); } tcg_out32(s, insn); } break; case INDEX_op_ld8u_i32: case INDEX_op_ld8u_i64: tcg_out_mem_long(s, LBZ, LBZX, args[0], args[1], args[2]); break; case INDEX_op_ld8s_i32: case INDEX_op_ld8s_i64: tcg_out_mem_long(s, LBZ, LBZX, args[0], args[1], args[2]); tcg_out_ext8s(s, TCG_TYPE_REG, args[0], args[0]); break; case INDEX_op_ld16u_i32: case INDEX_op_ld16u_i64: tcg_out_mem_long(s, LHZ, LHZX, args[0], args[1], args[2]); break; case INDEX_op_ld16s_i32: case INDEX_op_ld16s_i64: tcg_out_mem_long(s, LHA, LHAX, args[0], args[1], args[2]); break; case INDEX_op_ld_i32: case INDEX_op_ld32u_i64: tcg_out_mem_long(s, LWZ, LWZX, args[0], args[1], args[2]); break; case INDEX_op_ld32s_i64: tcg_out_mem_long(s, LWA, LWAX, args[0], args[1], args[2]); break; case INDEX_op_ld_i64: tcg_out_mem_long(s, LD, LDX, args[0], args[1], args[2]); break; case INDEX_op_st8_i32: case INDEX_op_st8_i64: tcg_out_mem_long(s, STB, STBX, args[0], args[1], args[2]); break; case INDEX_op_st16_i32: case INDEX_op_st16_i64: tcg_out_mem_long(s, STH, STHX, args[0], args[1], args[2]); break; case INDEX_op_st_i32: case INDEX_op_st32_i64: tcg_out_mem_long(s, STW, STWX, args[0], args[1], args[2]); break; case INDEX_op_st_i64: tcg_out_mem_long(s, STD, STDX, args[0], args[1], args[2]); break; case INDEX_op_add_i32: a0 = args[0], a1 = args[1], a2 = args[2]; if (const_args[2]) { do_addi_32: tcg_out_mem_long(s, ADDI, ADD, a0, a1, (int32_t)a2); } else { tcg_out32(s, ADD | TAB(a0, a1, a2)); } break; case INDEX_op_sub_i32: a0 = args[0], a1 = args[1], a2 = args[2]; if (const_args[1]) { if (const_args[2]) { tcg_out_movi(s, TCG_TYPE_I32, a0, a1 - a2); } else { tcg_out32(s, SUBFIC | TAI(a0, a2, a1)); } } else if (const_args[2]) { a2 = -a2; goto do_addi_32; } else { tcg_out32(s, SUBF | TAB(a0, a2, a1)); } break; case INDEX_op_and_i32: a0 = args[0], a1 = args[1], a2 = args[2]; if (const_args[2]) { tcg_out_andi32(s, a0, a1, a2); } else { tcg_out32(s, AND | SAB(a1, a0, a2)); } break; case INDEX_op_and_i64: a0 = args[0], a1 = args[1], a2 = args[2]; if (const_args[2]) { tcg_out_andi64(s, a0, a1, a2); } else { tcg_out32(s, AND | SAB(a1, a0, a2)); } break; case INDEX_op_or_i64: case INDEX_op_or_i32: a0 = args[0], a1 = args[1], a2 = args[2]; if (const_args[2]) { tcg_out_ori32(s, a0, a1, a2); } else { tcg_out32(s, OR | SAB(a1, a0, a2)); } break; case INDEX_op_xor_i64: case INDEX_op_xor_i32: a0 = args[0], a1 = args[1], a2 = args[2]; if (const_args[2]) { tcg_out_xori32(s, a0, a1, a2); } else { tcg_out32(s, XOR | SAB(a1, a0, a2)); } break; case INDEX_op_andc_i32: a0 = args[0], a1 = args[1], a2 = args[2]; if (const_args[2]) { tcg_out_andi32(s, a0, a1, ~a2); } else { tcg_out32(s, ANDC | SAB(a1, a0, a2)); } break; case INDEX_op_andc_i64: a0 = args[0], a1 = args[1], a2 = args[2]; if (const_args[2]) { tcg_out_andi64(s, a0, a1, ~a2); } else { tcg_out32(s, ANDC | SAB(a1, a0, a2)); } break; case INDEX_op_orc_i32: if (const_args[2]) { tcg_out_ori32(s, args[0], args[1], ~args[2]); break; } /* FALLTHRU */ case INDEX_op_orc_i64: tcg_out32(s, ORC | SAB(args[1], args[0], args[2])); break; case INDEX_op_eqv_i32: if (const_args[2]) { tcg_out_xori32(s, args[0], args[1], ~args[2]); break; } /* FALLTHRU */ case INDEX_op_eqv_i64: tcg_out32(s, EQV | SAB(args[1], args[0], args[2])); break; case INDEX_op_nand_i32: case INDEX_op_nand_i64: tcg_out32(s, NAND | SAB(args[1], args[0], args[2])); break; case INDEX_op_nor_i32: case INDEX_op_nor_i64: tcg_out32(s, NOR | SAB(args[1], args[0], args[2])); break; case INDEX_op_clz_i32: tcg_out_cntxz(s, TCG_TYPE_I32, CNTLZW, args[0], args[1], args[2], const_args[2]); break; case INDEX_op_ctz_i32: tcg_out_cntxz(s, TCG_TYPE_I32, CNTTZW, args[0], args[1], args[2], const_args[2]); break; case INDEX_op_ctpop_i32: tcg_out32(s, CNTPOPW | SAB(args[1], args[0], 0)); break; case INDEX_op_clz_i64: tcg_out_cntxz(s, TCG_TYPE_I64, CNTLZD, args[0], args[1], args[2], const_args[2]); break; case INDEX_op_ctz_i64: tcg_out_cntxz(s, TCG_TYPE_I64, CNTTZD, args[0], args[1], args[2], const_args[2]); break; case INDEX_op_ctpop_i64: tcg_out32(s, CNTPOPD | SAB(args[1], args[0], 0)); break; case INDEX_op_mul_i32: a0 = args[0], a1 = args[1], a2 = args[2]; if (const_args[2]) { tcg_out32(s, MULLI | TAI(a0, a1, a2)); } else { tcg_out32(s, MULLW | TAB(a0, a1, a2)); } break; case INDEX_op_div_i32: tcg_out32(s, DIVW | TAB(args[0], args[1], args[2])); break; case INDEX_op_divu_i32: tcg_out32(s, DIVWU | TAB(args[0], args[1], args[2])); break; case INDEX_op_rem_i32: tcg_out32(s, MODSW | TAB(args[0], args[1], args[2])); break; case INDEX_op_remu_i32: tcg_out32(s, MODUW | TAB(args[0], args[1], args[2])); break; case INDEX_op_shl_i32: if (const_args[2]) { /* Limit immediate shift count lest we create an illegal insn. */ tcg_out_shli32(s, args[0], args[1], args[2] & 31); } else { tcg_out32(s, SLW | SAB(args[1], args[0], args[2])); } break; case INDEX_op_shr_i32: if (const_args[2]) { /* Limit immediate shift count lest we create an illegal insn. */ tcg_out_shri32(s, args[0], args[1], args[2] & 31); } else { tcg_out32(s, SRW | SAB(args[1], args[0], args[2])); } break; case INDEX_op_sar_i32: if (const_args[2]) { tcg_out_sari32(s, args[0], args[1], args[2]); } else { tcg_out32(s, SRAW | SAB(args[1], args[0], args[2])); } break; case INDEX_op_rotl_i32: if (const_args[2]) { tcg_out_rlw(s, RLWINM, args[0], args[1], args[2], 0, 31); } else { tcg_out32(s, RLWNM | SAB(args[1], args[0], args[2]) | MB(0) | ME(31)); } break; case INDEX_op_rotr_i32: if (const_args[2]) { tcg_out_rlw(s, RLWINM, args[0], args[1], 32 - args[2], 0, 31); } else { tcg_out32(s, SUBFIC | TAI(TCG_REG_R0, args[2], 32)); tcg_out32(s, RLWNM | SAB(args[1], args[0], TCG_REG_R0) | MB(0) | ME(31)); } break; case INDEX_op_brcond_i32: tcg_out_brcond(s, args[2], args[0], args[1], const_args[1], arg_label(args[3]), TCG_TYPE_I32); break; case INDEX_op_brcond_i64: tcg_out_brcond(s, args[2], args[0], args[1], const_args[1], arg_label(args[3]), TCG_TYPE_I64); break; case INDEX_op_brcond2_i32: tcg_out_brcond2(s, args, const_args); break; case INDEX_op_neg_i32: case INDEX_op_neg_i64: tcg_out32(s, NEG | RT(args[0]) | RA(args[1])); break; case INDEX_op_not_i32: case INDEX_op_not_i64: tcg_out32(s, NOR | SAB(args[1], args[0], args[1])); break; case INDEX_op_add_i64: a0 = args[0], a1 = args[1], a2 = args[2]; if (const_args[2]) { do_addi_64: tcg_out_mem_long(s, ADDI, ADD, a0, a1, a2); } else { tcg_out32(s, ADD | TAB(a0, a1, a2)); } break; case INDEX_op_sub_i64: a0 = args[0], a1 = args[1], a2 = args[2]; if (const_args[1]) { if (const_args[2]) { tcg_out_movi(s, TCG_TYPE_I64, a0, a1 - a2); } else { tcg_out32(s, SUBFIC | TAI(a0, a2, a1)); } } else if (const_args[2]) { a2 = -a2; goto do_addi_64; } else { tcg_out32(s, SUBF | TAB(a0, a2, a1)); } break; case INDEX_op_shl_i64: if (const_args[2]) { /* Limit immediate shift count lest we create an illegal insn. */ tcg_out_shli64(s, args[0], args[1], args[2] & 63); } else { tcg_out32(s, SLD | SAB(args[1], args[0], args[2])); } break; case INDEX_op_shr_i64: if (const_args[2]) { /* Limit immediate shift count lest we create an illegal insn. */ tcg_out_shri64(s, args[0], args[1], args[2] & 63); } else { tcg_out32(s, SRD | SAB(args[1], args[0], args[2])); } break; case INDEX_op_sar_i64: if (const_args[2]) { tcg_out_sari64(s, args[0], args[1], args[2]); } else { tcg_out32(s, SRAD | SAB(args[1], args[0], args[2])); } break; case INDEX_op_rotl_i64: if (const_args[2]) { tcg_out_rld(s, RLDICL, args[0], args[1], args[2], 0); } else { tcg_out32(s, RLDCL | SAB(args[1], args[0], args[2]) | MB64(0)); } break; case INDEX_op_rotr_i64: if (const_args[2]) { tcg_out_rld(s, RLDICL, args[0], args[1], 64 - args[2], 0); } else { tcg_out32(s, SUBFIC | TAI(TCG_REG_R0, args[2], 64)); tcg_out32(s, RLDCL | SAB(args[1], args[0], TCG_REG_R0) | MB64(0)); } break; case INDEX_op_mul_i64: a0 = args[0], a1 = args[1], a2 = args[2]; if (const_args[2]) { tcg_out32(s, MULLI | TAI(a0, a1, a2)); } else { tcg_out32(s, MULLD | TAB(a0, a1, a2)); } break; case INDEX_op_div_i64: tcg_out32(s, DIVD | TAB(args[0], args[1], args[2])); break; case INDEX_op_divu_i64: tcg_out32(s, DIVDU | TAB(args[0], args[1], args[2])); break; case INDEX_op_rem_i64: tcg_out32(s, MODSD | TAB(args[0], args[1], args[2])); break; case INDEX_op_remu_i64: tcg_out32(s, MODUD | TAB(args[0], args[1], args[2])); break; case INDEX_op_qemu_ld_a64_i32: if (TCG_TARGET_REG_BITS == 32) { tcg_out_qemu_ld(s, args[0], -1, args[1], args[2], args[3], TCG_TYPE_I32); break; } /* fall through */ case INDEX_op_qemu_ld_a32_i32: tcg_out_qemu_ld(s, args[0], -1, args[1], -1, args[2], TCG_TYPE_I32); break; case INDEX_op_qemu_ld_a32_i64: if (TCG_TARGET_REG_BITS == 64) { tcg_out_qemu_ld(s, args[0], -1, args[1], -1, args[2], TCG_TYPE_I64); } else { tcg_out_qemu_ld(s, args[0], args[1], args[2], -1, args[3], TCG_TYPE_I64); } break; case INDEX_op_qemu_ld_a64_i64: if (TCG_TARGET_REG_BITS == 64) { tcg_out_qemu_ld(s, args[0], -1, args[1], -1, args[2], TCG_TYPE_I64); } else { tcg_out_qemu_ld(s, args[0], args[1], args[2], args[3], args[4], TCG_TYPE_I64); } break; case INDEX_op_qemu_ld_a32_i128: case INDEX_op_qemu_ld_a64_i128: tcg_debug_assert(TCG_TARGET_REG_BITS == 64); tcg_out_qemu_ldst_i128(s, args[0], args[1], args[2], args[3], true); break; case INDEX_op_qemu_st_a64_i32: if (TCG_TARGET_REG_BITS == 32) { tcg_out_qemu_st(s, args[0], -1, args[1], args[2], args[3], TCG_TYPE_I32); break; } /* fall through */ case INDEX_op_qemu_st_a32_i32: tcg_out_qemu_st(s, args[0], -1, args[1], -1, args[2], TCG_TYPE_I32); break; case INDEX_op_qemu_st_a32_i64: if (TCG_TARGET_REG_BITS == 64) { tcg_out_qemu_st(s, args[0], -1, args[1], -1, args[2], TCG_TYPE_I64); } else { tcg_out_qemu_st(s, args[0], args[1], args[2], -1, args[3], TCG_TYPE_I64); } break; case INDEX_op_qemu_st_a64_i64: if (TCG_TARGET_REG_BITS == 64) { tcg_out_qemu_st(s, args[0], -1, args[1], -1, args[2], TCG_TYPE_I64); } else { tcg_out_qemu_st(s, args[0], args[1], args[2], args[3], args[4], TCG_TYPE_I64); } break; case INDEX_op_qemu_st_a32_i128: case INDEX_op_qemu_st_a64_i128: tcg_debug_assert(TCG_TARGET_REG_BITS == 64); tcg_out_qemu_ldst_i128(s, args[0], args[1], args[2], args[3], false); break; case INDEX_op_setcond_i32: tcg_out_setcond(s, TCG_TYPE_I32, args[3], args[0], args[1], args[2], const_args[2], false); break; case INDEX_op_setcond_i64: tcg_out_setcond(s, TCG_TYPE_I64, args[3], args[0], args[1], args[2], const_args[2], false); break; case INDEX_op_negsetcond_i32: tcg_out_setcond(s, TCG_TYPE_I32, args[3], args[0], args[1], args[2], const_args[2], true); break; case INDEX_op_negsetcond_i64: tcg_out_setcond(s, TCG_TYPE_I64, args[3], args[0], args[1], args[2], const_args[2], true); break; case INDEX_op_setcond2_i32: tcg_out_setcond2(s, args, const_args); break; case INDEX_op_bswap16_i32: case INDEX_op_bswap16_i64: tcg_out_bswap16(s, args[0], args[1], args[2]); break; case INDEX_op_bswap32_i32: tcg_out_bswap32(s, args[0], args[1], 0); break; case INDEX_op_bswap32_i64: tcg_out_bswap32(s, args[0], args[1], args[2]); break; case INDEX_op_bswap64_i64: tcg_out_bswap64(s, args[0], args[1]); break; case INDEX_op_deposit_i32: if (const_args[2]) { uint32_t mask = ((2u << (args[4] - 1)) - 1) << args[3]; tcg_out_andi32(s, args[0], args[0], ~mask); } else { tcg_out_rlw(s, RLWIMI, args[0], args[2], args[3], 32 - args[3] - args[4], 31 - args[3]); } break; case INDEX_op_deposit_i64: if (const_args[2]) { uint64_t mask = ((2ull << (args[4] - 1)) - 1) << args[3]; tcg_out_andi64(s, args[0], args[0], ~mask); } else { tcg_out_rld(s, RLDIMI, args[0], args[2], args[3], 64 - args[3] - args[4]); } break; case INDEX_op_extract_i32: tcg_out_rlw(s, RLWINM, args[0], args[1], 32 - args[2], 32 - args[3], 31); break; case INDEX_op_extract_i64: tcg_out_rld(s, RLDICL, args[0], args[1], 64 - args[2], 64 - args[3]); break; case INDEX_op_movcond_i32: tcg_out_movcond(s, TCG_TYPE_I32, args[5], args[0], args[1], args[2], args[3], args[4], const_args[2]); break; case INDEX_op_movcond_i64: tcg_out_movcond(s, TCG_TYPE_I64, args[5], args[0], args[1], args[2], args[3], args[4], const_args[2]); break; #if TCG_TARGET_REG_BITS == 64 case INDEX_op_add2_i64: #else case INDEX_op_add2_i32: #endif /* Note that the CA bit is defined based on the word size of the environment. So in 64-bit mode it's always carry-out of bit 63. The fallback code using deposit works just as well for 32-bit. */ a0 = args[0], a1 = args[1]; if (a0 == args[3] || (!const_args[5] && a0 == args[5])) { a0 = TCG_REG_R0; } if (const_args[4]) { tcg_out32(s, ADDIC | TAI(a0, args[2], args[4])); } else { tcg_out32(s, ADDC | TAB(a0, args[2], args[4])); } if (const_args[5]) { tcg_out32(s, (args[5] ? ADDME : ADDZE) | RT(a1) | RA(args[3])); } else { tcg_out32(s, ADDE | TAB(a1, args[3], args[5])); } if (a0 != args[0]) { tcg_out_mov(s, TCG_TYPE_REG, args[0], a0); } break; #if TCG_TARGET_REG_BITS == 64 case INDEX_op_sub2_i64: #else case INDEX_op_sub2_i32: #endif a0 = args[0], a1 = args[1]; if (a0 == args[5] || (!const_args[3] && a0 == args[3])) { a0 = TCG_REG_R0; } if (const_args[2]) { tcg_out32(s, SUBFIC | TAI(a0, args[4], args[2])); } else { tcg_out32(s, SUBFC | TAB(a0, args[4], args[2])); } if (const_args[3]) { tcg_out32(s, (args[3] ? SUBFME : SUBFZE) | RT(a1) | RA(args[5])); } else { tcg_out32(s, SUBFE | TAB(a1, args[5], args[3])); } if (a0 != args[0]) { tcg_out_mov(s, TCG_TYPE_REG, args[0], a0); } break; case INDEX_op_muluh_i32: tcg_out32(s, MULHWU | TAB(args[0], args[1], args[2])); break; case INDEX_op_mulsh_i32: tcg_out32(s, MULHW | TAB(args[0], args[1], args[2])); break; case INDEX_op_muluh_i64: tcg_out32(s, MULHDU | TAB(args[0], args[1], args[2])); break; case INDEX_op_mulsh_i64: tcg_out32(s, MULHD | TAB(args[0], args[1], args[2])); break; case INDEX_op_mb: tcg_out_mb(s, args[0]); break; case INDEX_op_mov_i32: /* Always emitted via tcg_out_mov. */ case INDEX_op_mov_i64: case INDEX_op_call: /* Always emitted via tcg_out_call. */ case INDEX_op_exit_tb: /* Always emitted via tcg_out_exit_tb. */ case INDEX_op_goto_tb: /* Always emitted via tcg_out_goto_tb. */ case INDEX_op_ext8s_i32: /* Always emitted via tcg_reg_alloc_op. */ case INDEX_op_ext8s_i64: case INDEX_op_ext8u_i32: case INDEX_op_ext8u_i64: case INDEX_op_ext16s_i32: case INDEX_op_ext16s_i64: case INDEX_op_ext16u_i32: case INDEX_op_ext16u_i64: case INDEX_op_ext32s_i64: case INDEX_op_ext32u_i64: case INDEX_op_ext_i32_i64: case INDEX_op_extu_i32_i64: case INDEX_op_extrl_i64_i32: default: g_assert_not_reached(); } } int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece) { switch (opc) { case INDEX_op_and_vec: case INDEX_op_or_vec: case INDEX_op_xor_vec: case INDEX_op_andc_vec: case INDEX_op_not_vec: case INDEX_op_nor_vec: case INDEX_op_eqv_vec: case INDEX_op_nand_vec: return 1; case INDEX_op_orc_vec: return have_isa_2_07; case INDEX_op_add_vec: case INDEX_op_sub_vec: case INDEX_op_smax_vec: case INDEX_op_smin_vec: case INDEX_op_umax_vec: case INDEX_op_umin_vec: case INDEX_op_shlv_vec: case INDEX_op_shrv_vec: case INDEX_op_sarv_vec: case INDEX_op_rotlv_vec: return vece <= MO_32 || have_isa_2_07; case INDEX_op_ssadd_vec: case INDEX_op_sssub_vec: case INDEX_op_usadd_vec: case INDEX_op_ussub_vec: return vece <= MO_32; case INDEX_op_cmp_vec: case INDEX_op_shli_vec: case INDEX_op_shri_vec: case INDEX_op_sari_vec: case INDEX_op_rotli_vec: return vece <= MO_32 || have_isa_2_07 ? -1 : 0; case INDEX_op_neg_vec: return vece >= MO_32 && have_isa_3_00; case INDEX_op_mul_vec: switch (vece) { case MO_8: case MO_16: return -1; case MO_32: return have_isa_2_07 ? 1 : -1; case MO_64: return have_isa_3_10; } return 0; case INDEX_op_bitsel_vec: return have_vsx; case INDEX_op_rotrv_vec: return -1; default: return 0; } } static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece, TCGReg dst, TCGReg src) { tcg_debug_assert(dst >= TCG_REG_V0); /* Splat from integer reg allowed via constraints for v3.00. */ if (src < TCG_REG_V0) { tcg_debug_assert(have_isa_3_00); switch (vece) { case MO_64: tcg_out32(s, MTVSRDD | VRT(dst) | RA(src) | RB(src)); return true; case MO_32: tcg_out32(s, MTVSRWS | VRT(dst) | RA(src)); return true; default: /* Fail, so that we fall back on either dupm or mov+dup. */ return false; } } /* * Recall we use (or emulate) VSX integer loads, so the integer is * right justified within the left (zero-index) double-word. */ switch (vece) { case MO_8: tcg_out32(s, VSPLTB | VRT(dst) | VRB(src) | (7 << 16)); break; case MO_16: tcg_out32(s, VSPLTH | VRT(dst) | VRB(src) | (3 << 16)); break; case MO_32: tcg_out32(s, VSPLTW | VRT(dst) | VRB(src) | (1 << 16)); break; case MO_64: if (have_vsx) { tcg_out32(s, XXPERMDI | VRT(dst) | VRA(src) | VRB(src)); break; } tcg_out_vsldoi(s, TCG_VEC_TMP1, src, src, 8); tcg_out_vsldoi(s, dst, TCG_VEC_TMP1, src, 8); break; default: g_assert_not_reached(); } return true; } static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece, TCGReg out, TCGReg base, intptr_t offset) { int elt; tcg_debug_assert(out >= TCG_REG_V0); switch (vece) { case MO_8: if (have_isa_3_00) { tcg_out_mem_long(s, LXV, LVX, out, base, offset & -16); } else { tcg_out_mem_long(s, 0, LVEBX, out, base, offset); } elt = extract32(offset, 0, 4); #if !HOST_BIG_ENDIAN elt ^= 15; #endif tcg_out32(s, VSPLTB | VRT(out) | VRB(out) | (elt << 16)); break; case MO_16: tcg_debug_assert((offset & 1) == 0); if (have_isa_3_00) { tcg_out_mem_long(s, LXV | 8, LVX, out, base, offset & -16); } else { tcg_out_mem_long(s, 0, LVEHX, out, base, offset); } elt = extract32(offset, 1, 3); #if !HOST_BIG_ENDIAN elt ^= 7; #endif tcg_out32(s, VSPLTH | VRT(out) | VRB(out) | (elt << 16)); break; case MO_32: if (have_isa_3_00) { tcg_out_mem_long(s, 0, LXVWSX, out, base, offset); break; } tcg_debug_assert((offset & 3) == 0); tcg_out_mem_long(s, 0, LVEWX, out, base, offset); elt = extract32(offset, 2, 2); #if !HOST_BIG_ENDIAN elt ^= 3; #endif tcg_out32(s, VSPLTW | VRT(out) | VRB(out) | (elt << 16)); break; case MO_64: if (have_vsx) { tcg_out_mem_long(s, 0, LXVDSX, out, base, offset); break; } tcg_debug_assert((offset & 7) == 0); tcg_out_mem_long(s, 0, LVX, out, base, offset & -16); tcg_out_vsldoi(s, TCG_VEC_TMP1, out, out, 8); elt = extract32(offset, 3, 1); #if !HOST_BIG_ENDIAN elt = !elt; #endif if (elt) { tcg_out_vsldoi(s, out, out, TCG_VEC_TMP1, 8); } else { tcg_out_vsldoi(s, out, TCG_VEC_TMP1, out, 8); } break; default: g_assert_not_reached(); } return true; } static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, unsigned vecl, unsigned vece, const TCGArg args[TCG_MAX_OP_ARGS], const int const_args[TCG_MAX_OP_ARGS]) { static const uint32_t add_op[4] = { VADDUBM, VADDUHM, VADDUWM, VADDUDM }, sub_op[4] = { VSUBUBM, VSUBUHM, VSUBUWM, VSUBUDM }, mul_op[4] = { 0, 0, VMULUWM, VMULLD }, neg_op[4] = { 0, 0, VNEGW, VNEGD }, eq_op[4] = { VCMPEQUB, VCMPEQUH, VCMPEQUW, VCMPEQUD }, ne_op[4] = { VCMPNEB, VCMPNEH, VCMPNEW, 0 }, gts_op[4] = { VCMPGTSB, VCMPGTSH, VCMPGTSW, VCMPGTSD }, gtu_op[4] = { VCMPGTUB, VCMPGTUH, VCMPGTUW, VCMPGTUD }, ssadd_op[4] = { VADDSBS, VADDSHS, VADDSWS, 0 }, usadd_op[4] = { VADDUBS, VADDUHS, VADDUWS, 0 }, sssub_op[4] = { VSUBSBS, VSUBSHS, VSUBSWS, 0 }, ussub_op[4] = { VSUBUBS, VSUBUHS, VSUBUWS, 0 }, umin_op[4] = { VMINUB, VMINUH, VMINUW, VMINUD }, smin_op[4] = { VMINSB, VMINSH, VMINSW, VMINSD }, umax_op[4] = { VMAXUB, VMAXUH, VMAXUW, VMAXUD }, smax_op[4] = { VMAXSB, VMAXSH, VMAXSW, VMAXSD }, shlv_op[4] = { VSLB, VSLH, VSLW, VSLD }, shrv_op[4] = { VSRB, VSRH, VSRW, VSRD }, sarv_op[4] = { VSRAB, VSRAH, VSRAW, VSRAD }, mrgh_op[4] = { VMRGHB, VMRGHH, VMRGHW, 0 }, mrgl_op[4] = { VMRGLB, VMRGLH, VMRGLW, 0 }, muleu_op[4] = { VMULEUB, VMULEUH, VMULEUW, 0 }, mulou_op[4] = { VMULOUB, VMULOUH, VMULOUW, 0 }, pkum_op[4] = { VPKUHUM, VPKUWUM, 0, 0 }, rotl_op[4] = { VRLB, VRLH, VRLW, VRLD }; TCGType type = vecl + TCG_TYPE_V64; TCGArg a0 = args[0], a1 = args[1], a2 = args[2]; uint32_t insn; switch (opc) { case INDEX_op_ld_vec: tcg_out_ld(s, type, a0, a1, a2); return; case INDEX_op_st_vec: tcg_out_st(s, type, a0, a1, a2); return; case INDEX_op_dupm_vec: tcg_out_dupm_vec(s, type, vece, a0, a1, a2); return; case INDEX_op_add_vec: insn = add_op[vece]; break; case INDEX_op_sub_vec: insn = sub_op[vece]; break; case INDEX_op_neg_vec: insn = neg_op[vece]; a2 = a1; a1 = 0; break; case INDEX_op_mul_vec: insn = mul_op[vece]; break; case INDEX_op_ssadd_vec: insn = ssadd_op[vece]; break; case INDEX_op_sssub_vec: insn = sssub_op[vece]; break; case INDEX_op_usadd_vec: insn = usadd_op[vece]; break; case INDEX_op_ussub_vec: insn = ussub_op[vece]; break; case INDEX_op_smin_vec: insn = smin_op[vece]; break; case INDEX_op_umin_vec: insn = umin_op[vece]; break; case INDEX_op_smax_vec: insn = smax_op[vece]; break; case INDEX_op_umax_vec: insn = umax_op[vece]; break; case INDEX_op_shlv_vec: insn = shlv_op[vece]; break; case INDEX_op_shrv_vec: insn = shrv_op[vece]; break; case INDEX_op_sarv_vec: insn = sarv_op[vece]; break; case INDEX_op_and_vec: insn = VAND; break; case INDEX_op_or_vec: insn = VOR; break; case INDEX_op_xor_vec: insn = VXOR; break; case INDEX_op_andc_vec: insn = VANDC; break; case INDEX_op_not_vec: insn = VNOR; a2 = a1; break; case INDEX_op_orc_vec: insn = VORC; break; case INDEX_op_nand_vec: insn = VNAND; break; case INDEX_op_nor_vec: insn = VNOR; break; case INDEX_op_eqv_vec: insn = VEQV; break; case INDEX_op_cmp_vec: switch (args[3]) { case TCG_COND_EQ: insn = eq_op[vece]; break; case TCG_COND_NE: insn = ne_op[vece]; break; case TCG_COND_GT: insn = gts_op[vece]; break; case TCG_COND_GTU: insn = gtu_op[vece]; break; default: g_assert_not_reached(); } break; case INDEX_op_bitsel_vec: tcg_out32(s, XXSEL | VRT(a0) | VRC(a1) | VRB(a2) | VRA(args[3])); return; case INDEX_op_dup2_vec: assert(TCG_TARGET_REG_BITS == 32); /* With inputs a1 = xLxx, a2 = xHxx */ tcg_out32(s, VMRGHW | VRT(a0) | VRA(a2) | VRB(a1)); /* a0 = xxHL */ tcg_out_vsldoi(s, TCG_VEC_TMP1, a0, a0, 8); /* tmp = HLxx */ tcg_out_vsldoi(s, a0, a0, TCG_VEC_TMP1, 8); /* a0 = HLHL */ return; case INDEX_op_ppc_mrgh_vec: insn = mrgh_op[vece]; break; case INDEX_op_ppc_mrgl_vec: insn = mrgl_op[vece]; break; case INDEX_op_ppc_muleu_vec: insn = muleu_op[vece]; break; case INDEX_op_ppc_mulou_vec: insn = mulou_op[vece]; break; case INDEX_op_ppc_pkum_vec: insn = pkum_op[vece]; break; case INDEX_op_rotlv_vec: insn = rotl_op[vece]; break; case INDEX_op_ppc_msum_vec: tcg_debug_assert(vece == MO_16); tcg_out32(s, VMSUMUHM | VRT(a0) | VRA(a1) | VRB(a2) | VRC(args[3])); return; case INDEX_op_mov_vec: /* Always emitted via tcg_out_mov. */ case INDEX_op_dup_vec: /* Always emitted via tcg_out_dup_vec. */ default: g_assert_not_reached(); } tcg_debug_assert(insn != 0); tcg_out32(s, insn | VRT(a0) | VRA(a1) | VRB(a2)); } static void expand_vec_shi(TCGType type, unsigned vece, TCGv_vec v0, TCGv_vec v1, TCGArg imm, TCGOpcode opci) { TCGv_vec t1; if (vece == MO_32) { /* * Only 5 bits are significant, and VSPLTISB can represent -16..15. * So using negative numbers gets us the 4th bit easily. */ imm = sextract32(imm, 0, 5); } else { imm &= (8 << vece) - 1; } /* Splat w/bytes for xxspltib when 2.07 allows MO_64. */ t1 = tcg_constant_vec(type, MO_8, imm); vec_gen_3(opci, type, vece, tcgv_vec_arg(v0), tcgv_vec_arg(v1), tcgv_vec_arg(t1)); } static void expand_vec_cmp(TCGType type, unsigned vece, TCGv_vec v0, TCGv_vec v1, TCGv_vec v2, TCGCond cond) { bool need_swap = false, need_inv = false; tcg_debug_assert(vece <= MO_32 || have_isa_2_07); switch (cond) { case TCG_COND_EQ: case TCG_COND_GT: case TCG_COND_GTU: break; case TCG_COND_NE: if (have_isa_3_00 && vece <= MO_32) { break; } /* fall through */ case TCG_COND_LE: case TCG_COND_LEU: need_inv = true; break; case TCG_COND_LT: case TCG_COND_LTU: need_swap = true; break; case TCG_COND_GE: case TCG_COND_GEU: need_swap = need_inv = true; break; default: g_assert_not_reached(); } if (need_inv) { cond = tcg_invert_cond(cond); } if (need_swap) { TCGv_vec t1; t1 = v1, v1 = v2, v2 = t1; cond = tcg_swap_cond(cond); } vec_gen_4(INDEX_op_cmp_vec, type, vece, tcgv_vec_arg(v0), tcgv_vec_arg(v1), tcgv_vec_arg(v2), cond); if (need_inv) { tcg_gen_not_vec(vece, v0, v0); } } static void expand_vec_mul(TCGType type, unsigned vece, TCGv_vec v0, TCGv_vec v1, TCGv_vec v2) { TCGv_vec t1 = tcg_temp_new_vec(type); TCGv_vec t2 = tcg_temp_new_vec(type); TCGv_vec c0, c16; switch (vece) { case MO_8: case MO_16: vec_gen_3(INDEX_op_ppc_muleu_vec, type, vece, tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(v2)); vec_gen_3(INDEX_op_ppc_mulou_vec, type, vece, tcgv_vec_arg(t2), tcgv_vec_arg(v1), tcgv_vec_arg(v2)); vec_gen_3(INDEX_op_ppc_mrgh_vec, type, vece + 1, tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t2)); vec_gen_3(INDEX_op_ppc_mrgl_vec, type, vece + 1, tcgv_vec_arg(t1), tcgv_vec_arg(t1), tcgv_vec_arg(t2)); vec_gen_3(INDEX_op_ppc_pkum_vec, type, vece, tcgv_vec_arg(v0), tcgv_vec_arg(v0), tcgv_vec_arg(t1)); break; case MO_32: tcg_debug_assert(!have_isa_2_07); /* * Only 5 bits are significant, and VSPLTISB can represent -16..15. * So using -16 is a quick way to represent 16. */ c16 = tcg_constant_vec(type, MO_8, -16); c0 = tcg_constant_vec(type, MO_8, 0); vec_gen_3(INDEX_op_rotlv_vec, type, MO_32, tcgv_vec_arg(t1), tcgv_vec_arg(v2), tcgv_vec_arg(c16)); vec_gen_3(INDEX_op_ppc_mulou_vec, type, MO_16, tcgv_vec_arg(t2), tcgv_vec_arg(v1), tcgv_vec_arg(v2)); vec_gen_4(INDEX_op_ppc_msum_vec, type, MO_16, tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(t1), tcgv_vec_arg(c0)); vec_gen_3(INDEX_op_shlv_vec, type, MO_32, tcgv_vec_arg(t1), tcgv_vec_arg(t1), tcgv_vec_arg(c16)); tcg_gen_add_vec(MO_32, v0, t1, t2); break; default: g_assert_not_reached(); } tcg_temp_free_vec(t1); tcg_temp_free_vec(t2); } void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece, TCGArg a0, ...) { va_list va; TCGv_vec v0, v1, v2, t0; TCGArg a2; va_start(va, a0); v0 = temp_tcgv_vec(arg_temp(a0)); v1 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg))); a2 = va_arg(va, TCGArg); switch (opc) { case INDEX_op_shli_vec: expand_vec_shi(type, vece, v0, v1, a2, INDEX_op_shlv_vec); break; case INDEX_op_shri_vec: expand_vec_shi(type, vece, v0, v1, a2, INDEX_op_shrv_vec); break; case INDEX_op_sari_vec: expand_vec_shi(type, vece, v0, v1, a2, INDEX_op_sarv_vec); break; case INDEX_op_rotli_vec: expand_vec_shi(type, vece, v0, v1, a2, INDEX_op_rotlv_vec); break; case INDEX_op_cmp_vec: v2 = temp_tcgv_vec(arg_temp(a2)); expand_vec_cmp(type, vece, v0, v1, v2, va_arg(va, TCGArg)); break; case INDEX_op_mul_vec: v2 = temp_tcgv_vec(arg_temp(a2)); expand_vec_mul(type, vece, v0, v1, v2); break; case INDEX_op_rotlv_vec: v2 = temp_tcgv_vec(arg_temp(a2)); t0 = tcg_temp_new_vec(type); tcg_gen_neg_vec(vece, t0, v2); tcg_gen_rotlv_vec(vece, v0, v1, t0); tcg_temp_free_vec(t0); break; default: g_assert_not_reached(); } va_end(va); } static TCGConstraintSetIndex tcg_target_op_def(TCGOpcode op) { switch (op) { case INDEX_op_goto_ptr: return C_O0_I1(r); case INDEX_op_ld8u_i32: case INDEX_op_ld8s_i32: case INDEX_op_ld16u_i32: case INDEX_op_ld16s_i32: case INDEX_op_ld_i32: case INDEX_op_ctpop_i32: case INDEX_op_neg_i32: case INDEX_op_not_i32: case INDEX_op_ext8s_i32: case INDEX_op_ext16s_i32: case INDEX_op_bswap16_i32: case INDEX_op_bswap32_i32: case INDEX_op_extract_i32: case INDEX_op_ld8u_i64: case INDEX_op_ld8s_i64: case INDEX_op_ld16u_i64: case INDEX_op_ld16s_i64: case INDEX_op_ld32u_i64: case INDEX_op_ld32s_i64: case INDEX_op_ld_i64: case INDEX_op_ctpop_i64: case INDEX_op_neg_i64: case INDEX_op_not_i64: case INDEX_op_ext8s_i64: case INDEX_op_ext16s_i64: case INDEX_op_ext32s_i64: case INDEX_op_ext_i32_i64: case INDEX_op_extu_i32_i64: case INDEX_op_bswap16_i64: case INDEX_op_bswap32_i64: case INDEX_op_bswap64_i64: case INDEX_op_extract_i64: return C_O1_I1(r, r); case INDEX_op_st8_i32: case INDEX_op_st16_i32: case INDEX_op_st_i32: case INDEX_op_st8_i64: case INDEX_op_st16_i64: case INDEX_op_st32_i64: case INDEX_op_st_i64: return C_O0_I2(r, r); case INDEX_op_add_i32: case INDEX_op_and_i32: case INDEX_op_or_i32: case INDEX_op_xor_i32: case INDEX_op_andc_i32: case INDEX_op_orc_i32: case INDEX_op_eqv_i32: case INDEX_op_shl_i32: case INDEX_op_shr_i32: case INDEX_op_sar_i32: case INDEX_op_rotl_i32: case INDEX_op_rotr_i32: case INDEX_op_setcond_i32: case INDEX_op_negsetcond_i32: case INDEX_op_and_i64: case INDEX_op_andc_i64: case INDEX_op_shl_i64: case INDEX_op_shr_i64: case INDEX_op_sar_i64: case INDEX_op_rotl_i64: case INDEX_op_rotr_i64: case INDEX_op_setcond_i64: case INDEX_op_negsetcond_i64: return C_O1_I2(r, r, ri); case INDEX_op_mul_i32: case INDEX_op_mul_i64: return C_O1_I2(r, r, rI); case INDEX_op_div_i32: case INDEX_op_divu_i32: case INDEX_op_rem_i32: case INDEX_op_remu_i32: case INDEX_op_nand_i32: case INDEX_op_nor_i32: case INDEX_op_muluh_i32: case INDEX_op_mulsh_i32: case INDEX_op_orc_i64: case INDEX_op_eqv_i64: case INDEX_op_nand_i64: case INDEX_op_nor_i64: case INDEX_op_div_i64: case INDEX_op_divu_i64: case INDEX_op_rem_i64: case INDEX_op_remu_i64: case INDEX_op_mulsh_i64: case INDEX_op_muluh_i64: return C_O1_I2(r, r, r); case INDEX_op_sub_i32: return C_O1_I2(r, rI, ri); case INDEX_op_add_i64: return C_O1_I2(r, r, rT); case INDEX_op_or_i64: case INDEX_op_xor_i64: return C_O1_I2(r, r, rU); case INDEX_op_sub_i64: return C_O1_I2(r, rI, rT); case INDEX_op_clz_i32: case INDEX_op_ctz_i32: case INDEX_op_clz_i64: case INDEX_op_ctz_i64: return C_O1_I2(r, r, rZW); case INDEX_op_brcond_i32: case INDEX_op_brcond_i64: return C_O0_I2(r, ri); case INDEX_op_movcond_i32: case INDEX_op_movcond_i64: return C_O1_I4(r, r, ri, rZ, rZ); case INDEX_op_deposit_i32: case INDEX_op_deposit_i64: return C_O1_I2(r, 0, rZ); case INDEX_op_brcond2_i32: return C_O0_I4(r, r, ri, ri); case INDEX_op_setcond2_i32: return C_O1_I4(r, r, r, ri, ri); case INDEX_op_add2_i64: case INDEX_op_add2_i32: return C_O2_I4(r, r, r, r, rI, rZM); case INDEX_op_sub2_i64: case INDEX_op_sub2_i32: return C_O2_I4(r, r, rI, rZM, r, r); case INDEX_op_qemu_ld_a32_i32: return C_O1_I1(r, r); case INDEX_op_qemu_ld_a64_i32: return TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, r) : C_O1_I2(r, r, r); case INDEX_op_qemu_ld_a32_i64: return TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, r) : C_O2_I1(r, r, r); case INDEX_op_qemu_ld_a64_i64: return TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, r) : C_O2_I2(r, r, r, r); case INDEX_op_qemu_st_a32_i32: return C_O0_I2(r, r); case INDEX_op_qemu_st_a64_i32: return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(r, r) : C_O0_I3(r, r, r); case INDEX_op_qemu_st_a32_i64: return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(r, r) : C_O0_I3(r, r, r); case INDEX_op_qemu_st_a64_i64: return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(r, r) : C_O0_I4(r, r, r, r); case INDEX_op_qemu_ld_a32_i128: case INDEX_op_qemu_ld_a64_i128: return C_O2_I1(o, m, r); case INDEX_op_qemu_st_a32_i128: case INDEX_op_qemu_st_a64_i128: return C_O0_I3(o, m, r); case INDEX_op_add_vec: case INDEX_op_sub_vec: case INDEX_op_mul_vec: case INDEX_op_and_vec: case INDEX_op_or_vec: case INDEX_op_xor_vec: case INDEX_op_andc_vec: case INDEX_op_orc_vec: case INDEX_op_nor_vec: case INDEX_op_eqv_vec: case INDEX_op_nand_vec: case INDEX_op_cmp_vec: case INDEX_op_ssadd_vec: case INDEX_op_sssub_vec: case INDEX_op_usadd_vec: case INDEX_op_ussub_vec: case INDEX_op_smax_vec: case INDEX_op_smin_vec: case INDEX_op_umax_vec: case INDEX_op_umin_vec: case INDEX_op_shlv_vec: case INDEX_op_shrv_vec: case INDEX_op_sarv_vec: case INDEX_op_rotlv_vec: case INDEX_op_rotrv_vec: case INDEX_op_ppc_mrgh_vec: case INDEX_op_ppc_mrgl_vec: case INDEX_op_ppc_muleu_vec: case INDEX_op_ppc_mulou_vec: case INDEX_op_ppc_pkum_vec: case INDEX_op_dup2_vec: return C_O1_I2(v, v, v); case INDEX_op_not_vec: case INDEX_op_neg_vec: return C_O1_I1(v, v); case INDEX_op_dup_vec: return have_isa_3_00 ? C_O1_I1(v, vr) : C_O1_I1(v, v); case INDEX_op_ld_vec: case INDEX_op_dupm_vec: return C_O1_I1(v, r); case INDEX_op_st_vec: return C_O0_I2(v, r); case INDEX_op_bitsel_vec: case INDEX_op_ppc_msum_vec: return C_O1_I3(v, v, v, v); default: g_assert_not_reached(); } } static void tcg_target_init(TCGContext *s) { tcg_target_available_regs[TCG_TYPE_I32] = 0xffffffff; tcg_target_available_regs[TCG_TYPE_I64] = 0xffffffff; if (have_altivec) { tcg_target_available_regs[TCG_TYPE_V64] = 0xffffffff00000000ull; tcg_target_available_regs[TCG_TYPE_V128] = 0xffffffff00000000ull; } tcg_target_call_clobber_regs = 0; tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R0); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R2); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R3); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R4); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R5); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R6); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R7); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R8); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R9); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R10); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R11); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R12); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V0); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V1); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V2); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V3); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V4); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V5); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V6); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V7); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V8); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V9); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V10); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V11); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V12); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V13); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V14); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V15); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V16); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V17); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V18); tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V19); s->reserved_regs = 0; tcg_regset_set_reg(s->reserved_regs, TCG_REG_R0); /* tcg temp */ tcg_regset_set_reg(s->reserved_regs, TCG_REG_R1); /* stack pointer */ #if defined(_CALL_SYSV) tcg_regset_set_reg(s->reserved_regs, TCG_REG_R2); /* toc pointer */ #endif #if defined(_CALL_SYSV) || TCG_TARGET_REG_BITS == 64 tcg_regset_set_reg(s->reserved_regs, TCG_REG_R13); /* thread pointer */ #endif tcg_regset_set_reg(s->reserved_regs, TCG_REG_TMP1); tcg_regset_set_reg(s->reserved_regs, TCG_REG_TMP2); tcg_regset_set_reg(s->reserved_regs, TCG_VEC_TMP1); tcg_regset_set_reg(s->reserved_regs, TCG_VEC_TMP2); if (USE_REG_TB) { tcg_regset_set_reg(s->reserved_regs, TCG_REG_TB); /* tb->tc_ptr */ } } #ifdef __ELF__ typedef struct { DebugFrameCIE cie; DebugFrameFDEHeader fde; uint8_t fde_def_cfa[4]; uint8_t fde_reg_ofs[ARRAY_SIZE(tcg_target_callee_save_regs) * 2 + 3]; } DebugFrame; /* We're expecting a 2 byte uleb128 encoded value. */ QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14)); #if TCG_TARGET_REG_BITS == 64 # define ELF_HOST_MACHINE EM_PPC64 #else # define ELF_HOST_MACHINE EM_PPC #endif static DebugFrame debug_frame = { .cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */ .cie.id = -1, .cie.version = 1, .cie.code_align = 1, .cie.data_align = (-SZR & 0x7f), /* sleb128 -SZR */ .cie.return_column = 65, /* Total FDE size does not include the "len" member. */ .fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, fde.cie_offset), .fde_def_cfa = { 12, TCG_REG_R1, /* DW_CFA_def_cfa r1, ... */ (FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */ (FRAME_SIZE >> 7) }, .fde_reg_ofs = { /* DW_CFA_offset_extended_sf, lr, LR_OFFSET */ 0x11, 65, (LR_OFFSET / -SZR) & 0x7f, } }; void tcg_register_jit(const void *buf, size_t buf_size) { uint8_t *p = &debug_frame.fde_reg_ofs[3]; int i; for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); ++i, p += 2) { p[0] = 0x80 + tcg_target_callee_save_regs[i]; p[1] = (FRAME_SIZE - (REG_SAVE_BOT + i * SZR)) / SZR; } debug_frame.fde.func_start = (uintptr_t)buf; debug_frame.fde.func_len = buf_size; tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame)); } #endif /* __ELF__ */ #undef VMULEUB #undef VMULEUH #undef VMULEUW #undef VMULOUB #undef VMULOUH #undef VMULOUW #undef VMSUMUHM