/* * S/390 FPU helper routines * * Copyright (c) 2009 Ulrich Hecht * Copyright (c) 2009 Alexander Graf * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "s390x-internal.h" #include "tcg_s390x.h" #include "exec/exec-all.h" #include "exec/helper-proto.h" #include "fpu/softfloat.h" /* #define DEBUG_HELPER */ #ifdef DEBUG_HELPER #define HELPER_LOG(x...) qemu_log(x) #else #define HELPER_LOG(x...) #endif static inline Int128 RET128(float128 f) { return int128_make128(f.low, f.high); } static inline float128 ARG128(Int128 i) { return make_float128(int128_gethi(i), int128_getlo(i)); } uint8_t s390_softfloat_exc_to_ieee(unsigned int exc) { uint8_t s390_exc = 0; s390_exc |= (exc & float_flag_invalid) ? S390_IEEE_MASK_INVALID : 0; s390_exc |= (exc & float_flag_divbyzero) ? S390_IEEE_MASK_DIVBYZERO : 0; s390_exc |= (exc & float_flag_overflow) ? S390_IEEE_MASK_OVERFLOW : 0; s390_exc |= (exc & float_flag_underflow) ? S390_IEEE_MASK_UNDERFLOW : 0; s390_exc |= (exc & (float_flag_inexact | float_flag_invalid_cvti)) ? S390_IEEE_MASK_INEXACT : 0; return s390_exc; } /* Should be called after any operation that may raise IEEE exceptions. */ static void handle_exceptions(CPUS390XState *env, bool XxC, uintptr_t retaddr) { unsigned s390_exc, qemu_exc; /* Get the exceptions raised by the current operation. Reset the fpu_status contents so that the next operation has a clean slate. */ qemu_exc = env->fpu_status.float_exception_flags; if (qemu_exc == 0) { return; } env->fpu_status.float_exception_flags = 0; s390_exc = s390_softfloat_exc_to_ieee(qemu_exc); /* * IEEE-Underflow exception recognition exists if a tininess condition * (underflow) exists and * - The mask bit in the FPC is zero and the result is inexact * - The mask bit in the FPC is one * So tininess conditions that are not inexact don't trigger any * underflow action in case the mask bit is not one. */ if (!(s390_exc & S390_IEEE_MASK_INEXACT) && !((env->fpc >> 24) & S390_IEEE_MASK_UNDERFLOW)) { s390_exc &= ~S390_IEEE_MASK_UNDERFLOW; } /* * FIXME: * 1. Right now, all inexact conditions are indicated as * "truncated" (0) and never as "incremented" (1) in the DXC. * 2. Only traps due to invalid/divbyzero are suppressing. Other traps * are completing, meaning the target register has to be written! * This, however will mean that we have to write the register before * triggering the trap - impossible right now. */ /* * invalid/divbyzero cannot coexist with other conditions. * overflow/underflow however can coexist with inexact, we have to * handle it separately. */ if (s390_exc & ~S390_IEEE_MASK_INEXACT) { if (s390_exc & ~S390_IEEE_MASK_INEXACT & env->fpc >> 24) { /* trap condition - inexact reported along */ tcg_s390_data_exception(env, s390_exc, retaddr); } /* nontrap condition - inexact handled differently */ env->fpc |= (s390_exc & ~S390_IEEE_MASK_INEXACT) << 16; } /* inexact handling */ if (s390_exc & S390_IEEE_MASK_INEXACT && !XxC) { /* trap condition - overflow/underflow _not_ reported along */ if (s390_exc & S390_IEEE_MASK_INEXACT & env->fpc >> 24) { tcg_s390_data_exception(env, s390_exc & S390_IEEE_MASK_INEXACT, retaddr); } /* nontrap condition */ env->fpc |= (s390_exc & S390_IEEE_MASK_INEXACT) << 16; } } int float_comp_to_cc(CPUS390XState *env, FloatRelation float_compare) { switch (float_compare) { case float_relation_equal: return 0; case float_relation_less: return 1; case float_relation_greater: return 2; case float_relation_unordered: return 3; default: cpu_abort(env_cpu(env), "unknown return value for float compare\n"); } } /* condition codes for unary FP ops */ uint32_t set_cc_nz_f32(float32 v) { if (float32_is_any_nan(v)) { return 3; } else if (float32_is_zero(v)) { return 0; } else if (float32_is_neg(v)) { return 1; } else { return 2; } } uint32_t set_cc_nz_f64(float64 v) { if (float64_is_any_nan(v)) { return 3; } else if (float64_is_zero(v)) { return 0; } else if (float64_is_neg(v)) { return 1; } else { return 2; } } uint32_t set_cc_nz_f128(float128 v) { if (float128_is_any_nan(v)) { return 3; } else if (float128_is_zero(v)) { return 0; } else if (float128_is_neg(v)) { return 1; } else { return 2; } } /* condition codes for FP to integer conversion ops */ static uint32_t set_cc_conv_f32(float32 v, float_status *stat) { if (stat->float_exception_flags & float_flag_invalid) { return 3; } else { return set_cc_nz_f32(v); } } static uint32_t set_cc_conv_f64(float64 v, float_status *stat) { if (stat->float_exception_flags & float_flag_invalid) { return 3; } else { return set_cc_nz_f64(v); } } static uint32_t set_cc_conv_f128(float128 v, float_status *stat) { if (stat->float_exception_flags & float_flag_invalid) { return 3; } else { return set_cc_nz_f128(v); } } static inline uint8_t round_from_m34(uint32_t m34) { return extract32(m34, 0, 4); } static inline bool xxc_from_m34(uint32_t m34) { /* XxC is bit 1 of m4 */ return extract32(m34, 4 + 3 - 1, 1); } /* 32-bit FP addition */ uint64_t HELPER(aeb)(CPUS390XState *env, uint64_t f1, uint64_t f2) { float32 ret = float32_add(f1, f2, &env->fpu_status); handle_exceptions(env, false, GETPC()); return ret; } /* 64-bit FP addition */ uint64_t HELPER(adb)(CPUS390XState *env, uint64_t f1, uint64_t f2) { float64 ret = float64_add(f1, f2, &env->fpu_status); handle_exceptions(env, false, GETPC()); return ret; } /* 128-bit FP addition */ Int128 HELPER(axb)(CPUS390XState *env, Int128 a, Int128 b) { float128 ret = float128_add(ARG128(a), ARG128(b), &env->fpu_status); handle_exceptions(env, false, GETPC()); return RET128(ret); } /* 32-bit FP subtraction */ uint64_t HELPER(seb)(CPUS390XState *env, uint64_t f1, uint64_t f2) { float32 ret = float32_sub(f1, f2, &env->fpu_status); handle_exceptions(env, false, GETPC()); return ret; } /* 64-bit FP subtraction */ uint64_t HELPER(sdb)(CPUS390XState *env, uint64_t f1, uint64_t f2) { float64 ret = float64_sub(f1, f2, &env->fpu_status); handle_exceptions(env, false, GETPC()); return ret; } /* 128-bit FP subtraction */ Int128 HELPER(sxb)(CPUS390XState *env, Int128 a, Int128 b) { float128 ret = float128_sub(ARG128(a), ARG128(b), &env->fpu_status); handle_exceptions(env, false, GETPC()); return RET128(ret); } /* 32-bit FP division */ uint64_t HELPER(deb)(CPUS390XState *env, uint64_t f1, uint64_t f2) { float32 ret = float32_div(f1, f2, &env->fpu_status); handle_exceptions(env, false, GETPC()); return ret; } /* 64-bit FP division */ uint64_t HELPER(ddb)(CPUS390XState *env, uint64_t f1, uint64_t f2) { float64 ret = float64_div(f1, f2, &env->fpu_status); handle_exceptions(env, false, GETPC()); return ret; } /* 128-bit FP division */ Int128 HELPER(dxb)(CPUS390XState *env, Int128 a, Int128 b) { float128 ret = float128_div(ARG128(a), ARG128(b), &env->fpu_status); handle_exceptions(env, false, GETPC()); return RET128(ret); } /* 32-bit FP multiplication */ uint64_t HELPER(meeb)(CPUS390XState *env, uint64_t f1, uint64_t f2) { float32 ret = float32_mul(f1, f2, &env->fpu_status); handle_exceptions(env, false, GETPC()); return ret; } /* 64-bit FP multiplication */ uint64_t HELPER(mdb)(CPUS390XState *env, uint64_t f1, uint64_t f2) { float64 ret = float64_mul(f1, f2, &env->fpu_status); handle_exceptions(env, false, GETPC()); return ret; } /* 64/32-bit FP multiplication */ uint64_t HELPER(mdeb)(CPUS390XState *env, uint64_t f1, uint64_t f2) { float64 f1_64 = float32_to_float64(f1, &env->fpu_status); float64 ret = float32_to_float64(f2, &env->fpu_status); ret = float64_mul(f1_64, ret, &env->fpu_status); handle_exceptions(env, false, GETPC()); return ret; } /* 128-bit FP multiplication */ Int128 HELPER(mxb)(CPUS390XState *env, Int128 a, Int128 b) { float128 ret = float128_mul(ARG128(a), ARG128(b), &env->fpu_status); handle_exceptions(env, false, GETPC()); return RET128(ret); } /* 128/64-bit FP multiplication */ Int128 HELPER(mxdb)(CPUS390XState *env, uint64_t f1, uint64_t f2) { float128 f1_128 = float64_to_float128(f1, &env->fpu_status); float128 ret = float64_to_float128(f2, &env->fpu_status); ret = float128_mul(f1_128, ret, &env->fpu_status); handle_exceptions(env, false, GETPC()); return RET128(ret); } /* convert 32-bit float to 64-bit float */ uint64_t HELPER(ldeb)(CPUS390XState *env, uint64_t f2) { float64 ret = float32_to_float64(f2, &env->fpu_status); handle_exceptions(env, false, GETPC()); return ret; } /* convert 128-bit float to 64-bit float */ uint64_t HELPER(ldxb)(CPUS390XState *env, Int128 a, uint32_t m34) { int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34)); float64 ret = float128_to_float64(ARG128(a), &env->fpu_status); s390_restore_bfp_rounding_mode(env, old_mode); handle_exceptions(env, xxc_from_m34(m34), GETPC()); return ret; } /* convert 64-bit float to 128-bit float */ Int128 HELPER(lxdb)(CPUS390XState *env, uint64_t f2) { float128 ret = float64_to_float128(f2, &env->fpu_status); handle_exceptions(env, false, GETPC()); return RET128(ret); } /* convert 32-bit float to 128-bit float */ Int128 HELPER(lxeb)(CPUS390XState *env, uint64_t f2) { float128 ret = float32_to_float128(f2, &env->fpu_status); handle_exceptions(env, false, GETPC()); return RET128(ret); } /* convert 64-bit float to 32-bit float */ uint64_t HELPER(ledb)(CPUS390XState *env, uint64_t f2, uint32_t m34) { int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34)); float32 ret = float64_to_float32(f2, &env->fpu_status); s390_restore_bfp_rounding_mode(env, old_mode); handle_exceptions(env, xxc_from_m34(m34), GETPC()); return ret; } /* convert 128-bit float to 32-bit float */ uint64_t HELPER(lexb)(CPUS390XState *env, Int128 a, uint32_t m34) { int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34)); float32 ret = float128_to_float32(ARG128(a), &env->fpu_status); s390_restore_bfp_rounding_mode(env, old_mode); handle_exceptions(env, xxc_from_m34(m34), GETPC()); return ret; } /* 32-bit FP compare */ uint32_t HELPER(ceb)(CPUS390XState *env, uint64_t f1, uint64_t f2) { FloatRelation cmp = float32_compare_quiet(f1, f2, &env->fpu_status); handle_exceptions(env, false, GETPC()); return float_comp_to_cc(env, cmp); } /* 64-bit FP compare */ uint32_t HELPER(cdb)(CPUS390XState *env, uint64_t f1, uint64_t f2) { FloatRelation cmp = float64_compare_quiet(f1, f2, &env->fpu_status); handle_exceptions(env, false, GETPC()); return float_comp_to_cc(env, cmp); } /* 128-bit FP compare */ uint32_t HELPER(cxb)(CPUS390XState *env, Int128 a, Int128 b) { FloatRelation cmp = float128_compare_quiet(ARG128(a), ARG128(b), &env->fpu_status); handle_exceptions(env, false, GETPC()); return float_comp_to_cc(env, cmp); } int s390_swap_bfp_rounding_mode(CPUS390XState *env, int m3) { int ret = env->fpu_status.float_rounding_mode; switch (m3) { case 0: /* current mode */ break; case 1: /* round to nearest with ties away from 0 */ set_float_rounding_mode(float_round_ties_away, &env->fpu_status); break; case 3: /* round to prepare for shorter precision */ set_float_rounding_mode(float_round_to_odd, &env->fpu_status); break; case 4: /* round to nearest with ties to even */ set_float_rounding_mode(float_round_nearest_even, &env->fpu_status); break; case 5: /* round to zero */ set_float_rounding_mode(float_round_to_zero, &env->fpu_status); break; case 6: /* round to +inf */ set_float_rounding_mode(float_round_up, &env->fpu_status); break; case 7: /* round to -inf */ set_float_rounding_mode(float_round_down, &env->fpu_status); break; default: g_assert_not_reached(); } return ret; } void s390_restore_bfp_rounding_mode(CPUS390XState *env, int old_mode) { set_float_rounding_mode(old_mode, &env->fpu_status); } /* convert 64-bit int to 32-bit float */ uint64_t HELPER(cegb)(CPUS390XState *env, int64_t v2, uint32_t m34) { int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34)); float32 ret = int64_to_float32(v2, &env->fpu_status); s390_restore_bfp_rounding_mode(env, old_mode); handle_exceptions(env, xxc_from_m34(m34), GETPC()); return ret; } /* convert 64-bit int to 64-bit float */ uint64_t HELPER(cdgb)(CPUS390XState *env, int64_t v2, uint32_t m34) { int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34)); float64 ret = int64_to_float64(v2, &env->fpu_status); s390_restore_bfp_rounding_mode(env, old_mode); handle_exceptions(env, xxc_from_m34(m34), GETPC()); return ret; } /* convert 64-bit int to 128-bit float */ Int128 HELPER(cxgb)(CPUS390XState *env, int64_t v2, uint32_t m34) { int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34)); float128 ret = int64_to_float128(v2, &env->fpu_status); s390_restore_bfp_rounding_mode(env, old_mode); handle_exceptions(env, xxc_from_m34(m34), GETPC()); return RET128(ret); } /* convert 64-bit uint to 32-bit float */ uint64_t HELPER(celgb)(CPUS390XState *env, uint64_t v2, uint32_t m34) { int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34)); float32 ret = uint64_to_float32(v2, &env->fpu_status); s390_restore_bfp_rounding_mode(env, old_mode); handle_exceptions(env, xxc_from_m34(m34), GETPC()); return ret; } /* convert 64-bit uint to 64-bit float */ uint64_t HELPER(cdlgb)(CPUS390XState *env, uint64_t v2, uint32_t m34) { int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34)); float64 ret = uint64_to_float64(v2, &env->fpu_status); s390_restore_bfp_rounding_mode(env, old_mode); handle_exceptions(env, xxc_from_m34(m34), GETPC()); return ret; } /* convert 64-bit uint to 128-bit float */ Int128 HELPER(cxlgb)(CPUS390XState *env, uint64_t v2, uint32_t m34) { int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34)); float128 ret = uint64_to_float128(v2, &env->fpu_status); s390_restore_bfp_rounding_mode(env, old_mode); handle_exceptions(env, xxc_from_m34(m34), GETPC()); return RET128(ret); } /* convert 32-bit float to 64-bit int */ uint64_t HELPER(cgeb)(CPUS390XState *env, uint64_t v2, uint32_t m34) { int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34)); int64_t ret = float32_to_int64(v2, &env->fpu_status); uint32_t cc = set_cc_conv_f32(v2, &env->fpu_status); s390_restore_bfp_rounding_mode(env, old_mode); handle_exceptions(env, xxc_from_m34(m34), GETPC()); env->cc_op = cc; if (float32_is_any_nan(v2)) { return INT64_MIN; } return ret; } /* convert 64-bit float to 64-bit int */ uint64_t HELPER(cgdb)(CPUS390XState *env, uint64_t v2, uint32_t m34) { int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34)); int64_t ret = float64_to_int64(v2, &env->fpu_status); uint32_t cc = set_cc_conv_f64(v2, &env->fpu_status); s390_restore_bfp_rounding_mode(env, old_mode); handle_exceptions(env, xxc_from_m34(m34), GETPC()); env->cc_op = cc; if (float64_is_any_nan(v2)) { return INT64_MIN; } return ret; } /* convert 128-bit float to 64-bit int */ uint64_t HELPER(cgxb)(CPUS390XState *env, Int128 i2, uint32_t m34) { int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34)); float128 v2 = ARG128(i2); int64_t ret = float128_to_int64(v2, &env->fpu_status); uint32_t cc = set_cc_conv_f128(v2, &env->fpu_status); s390_restore_bfp_rounding_mode(env, old_mode); handle_exceptions(env, xxc_from_m34(m34), GETPC()); env->cc_op = cc; if (float128_is_any_nan(v2)) { return INT64_MIN; } return ret; } /* convert 32-bit float to 32-bit int */ uint64_t HELPER(cfeb)(CPUS390XState *env, uint64_t v2, uint32_t m34) { int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34)); int32_t ret = float32_to_int32(v2, &env->fpu_status); uint32_t cc = set_cc_conv_f32(v2, &env->fpu_status); s390_restore_bfp_rounding_mode(env, old_mode); handle_exceptions(env, xxc_from_m34(m34), GETPC()); env->cc_op = cc; if (float32_is_any_nan(v2)) { return INT32_MIN; } return ret; } /* convert 64-bit float to 32-bit int */ uint64_t HELPER(cfdb)(CPUS390XState *env, uint64_t v2, uint32_t m34) { int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34)); int32_t ret = float64_to_int32(v2, &env->fpu_status); uint32_t cc = set_cc_conv_f64(v2, &env->fpu_status); s390_restore_bfp_rounding_mode(env, old_mode); handle_exceptions(env, xxc_from_m34(m34), GETPC()); env->cc_op = cc; if (float64_is_any_nan(v2)) { return INT32_MIN; } return ret; } /* convert 128-bit float to 32-bit int */ uint64_t HELPER(cfxb)(CPUS390XState *env, Int128 i2, uint32_t m34) { int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34)); float128 v2 = ARG128(i2); int32_t ret = float128_to_int32(v2, &env->fpu_status); uint32_t cc = set_cc_conv_f128(v2, &env->fpu_status); s390_restore_bfp_rounding_mode(env, old_mode); handle_exceptions(env, xxc_from_m34(m34), GETPC()); env->cc_op = cc; if (float128_is_any_nan(v2)) { return INT32_MIN; } return ret; } /* convert 32-bit float to 64-bit uint */ uint64_t HELPER(clgeb)(CPUS390XState *env, uint64_t v2, uint32_t m34) { int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34)); uint64_t ret = float32_to_uint64(v2, &env->fpu_status); uint32_t cc = set_cc_conv_f32(v2, &env->fpu_status); s390_restore_bfp_rounding_mode(env, old_mode); handle_exceptions(env, xxc_from_m34(m34), GETPC()); env->cc_op = cc; if (float32_is_any_nan(v2)) { return 0; } return ret; } /* convert 64-bit float to 64-bit uint */ uint64_t HELPER(clgdb)(CPUS390XState *env, uint64_t v2, uint32_t m34) { int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34)); uint64_t ret = float64_to_uint64(v2, &env->fpu_status); uint32_t cc = set_cc_conv_f64(v2, &env->fpu_status); s390_restore_bfp_rounding_mode(env, old_mode); handle_exceptions(env, xxc_from_m34(m34), GETPC()); env->cc_op = cc; if (float64_is_any_nan(v2)) { return 0; } return ret; } /* convert 128-bit float to 64-bit uint */ uint64_t HELPER(clgxb)(CPUS390XState *env, Int128 i2, uint32_t m34) { int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34)); float128 v2 = ARG128(i2); uint64_t ret = float128_to_uint64(v2, &env->fpu_status); uint32_t cc = set_cc_conv_f128(v2, &env->fpu_status); s390_restore_bfp_rounding_mode(env, old_mode); handle_exceptions(env, xxc_from_m34(m34), GETPC()); env->cc_op = cc; if (float128_is_any_nan(v2)) { return 0; } return ret; } /* convert 32-bit float to 32-bit uint */ uint64_t HELPER(clfeb)(CPUS390XState *env, uint64_t v2, uint32_t m34) { int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34)); uint32_t ret = float32_to_uint32(v2, &env->fpu_status); uint32_t cc = set_cc_conv_f32(v2, &env->fpu_status); s390_restore_bfp_rounding_mode(env, old_mode); handle_exceptions(env, xxc_from_m34(m34), GETPC()); env->cc_op = cc; if (float32_is_any_nan(v2)) { return 0; } return ret; } /* convert 64-bit float to 32-bit uint */ uint64_t HELPER(clfdb)(CPUS390XState *env, uint64_t v2, uint32_t m34) { int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34)); uint32_t ret = float64_to_uint32(v2, &env->fpu_status); uint32_t cc = set_cc_conv_f64(v2, &env->fpu_status); s390_restore_bfp_rounding_mode(env, old_mode); handle_exceptions(env, xxc_from_m34(m34), GETPC()); env->cc_op = cc; if (float64_is_any_nan(v2)) { return 0; } return ret; } /* convert 128-bit float to 32-bit uint */ uint64_t HELPER(clfxb)(CPUS390XState *env, Int128 i2, uint32_t m34) { int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34)); float128 v2 = ARG128(i2); uint32_t ret = float128_to_uint32(v2, &env->fpu_status); uint32_t cc = set_cc_conv_f128(v2, &env->fpu_status); s390_restore_bfp_rounding_mode(env, old_mode); handle_exceptions(env, xxc_from_m34(m34), GETPC()); env->cc_op = cc; if (float128_is_any_nan(v2)) { return 0; } return ret; } /* round to integer 32-bit */ uint64_t HELPER(fieb)(CPUS390XState *env, uint64_t f2, uint32_t m34) { int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34)); float32 ret = float32_round_to_int(f2, &env->fpu_status); s390_restore_bfp_rounding_mode(env, old_mode); handle_exceptions(env, xxc_from_m34(m34), GETPC()); return ret; } /* round to integer 64-bit */ uint64_t HELPER(fidb)(CPUS390XState *env, uint64_t f2, uint32_t m34) { int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34)); float64 ret = float64_round_to_int(f2, &env->fpu_status); s390_restore_bfp_rounding_mode(env, old_mode); handle_exceptions(env, xxc_from_m34(m34), GETPC()); return ret; } /* round to integer 128-bit */ Int128 HELPER(fixb)(CPUS390XState *env, Int128 a, uint32_t m34) { int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34)); float128 ret = float128_round_to_int(ARG128(a), &env->fpu_status); s390_restore_bfp_rounding_mode(env, old_mode); handle_exceptions(env, xxc_from_m34(m34), GETPC()); return RET128(ret); } /* 32-bit FP compare and signal */ uint32_t HELPER(keb)(CPUS390XState *env, uint64_t f1, uint64_t f2) { FloatRelation cmp = float32_compare(f1, f2, &env->fpu_status); handle_exceptions(env, false, GETPC()); return float_comp_to_cc(env, cmp); } /* 64-bit FP compare and signal */ uint32_t HELPER(kdb)(CPUS390XState *env, uint64_t f1, uint64_t f2) { FloatRelation cmp = float64_compare(f1, f2, &env->fpu_status); handle_exceptions(env, false, GETPC()); return float_comp_to_cc(env, cmp); } /* 128-bit FP compare and signal */ uint32_t HELPER(kxb)(CPUS390XState *env, Int128 a, Int128 b) { FloatRelation cmp = float128_compare(ARG128(a), ARG128(b), &env->fpu_status); handle_exceptions(env, false, GETPC()); return float_comp_to_cc(env, cmp); } /* 32-bit FP multiply and add */ uint64_t HELPER(maeb)(CPUS390XState *env, uint64_t f1, uint64_t f2, uint64_t f3) { float32 ret = float32_muladd(f3, f2, f1, 0, &env->fpu_status); handle_exceptions(env, false, GETPC()); return ret; } /* 64-bit FP multiply and add */ uint64_t HELPER(madb)(CPUS390XState *env, uint64_t f1, uint64_t f2, uint64_t f3) { float64 ret = float64_muladd(f3, f2, f1, 0, &env->fpu_status); handle_exceptions(env, false, GETPC()); return ret; } /* 32-bit FP multiply and subtract */ uint64_t HELPER(mseb)(CPUS390XState *env, uint64_t f1, uint64_t f2, uint64_t f3) { float32 ret = float32_muladd(f3, f2, f1, float_muladd_negate_c, &env->fpu_status); handle_exceptions(env, false, GETPC()); return ret; } /* 64-bit FP multiply and subtract */ uint64_t HELPER(msdb)(CPUS390XState *env, uint64_t f1, uint64_t f2, uint64_t f3) { float64 ret = float64_muladd(f3, f2, f1, float_muladd_negate_c, &env->fpu_status); handle_exceptions(env, false, GETPC()); return ret; } /* The rightmost bit has the number 11. */ static inline uint16_t dcmask(int bit, bool neg) { return 1 << (11 - bit - neg); } #define DEF_FLOAT_DCMASK(_TYPE) \ uint16_t _TYPE##_dcmask(CPUS390XState *env, _TYPE f1) \ { \ const bool neg = _TYPE##_is_neg(f1); \ \ /* Sorted by most common cases - only one class is possible */ \ if (_TYPE##_is_normal(f1)) { \ return dcmask(2, neg); \ } else if (_TYPE##_is_zero(f1)) { \ return dcmask(0, neg); \ } else if (_TYPE##_is_denormal(f1)) { \ return dcmask(4, neg); \ } else if (_TYPE##_is_infinity(f1)) { \ return dcmask(6, neg); \ } else if (_TYPE##_is_quiet_nan(f1, &env->fpu_status)) { \ return dcmask(8, neg); \ } \ /* signaling nan, as last remaining case */ \ return dcmask(10, neg); \ } DEF_FLOAT_DCMASK(float32) DEF_FLOAT_DCMASK(float64) DEF_FLOAT_DCMASK(float128) /* test data class 32-bit */ uint32_t HELPER(tceb)(CPUS390XState *env, uint64_t f1, uint64_t m2) { return (m2 & float32_dcmask(env, f1)) != 0; } /* test data class 64-bit */ uint32_t HELPER(tcdb)(CPUS390XState *env, uint64_t v1, uint64_t m2) { return (m2 & float64_dcmask(env, v1)) != 0; } /* test data class 128-bit */ uint32_t HELPER(tcxb)(CPUS390XState *env, Int128 a, uint64_t m2) { return (m2 & float128_dcmask(env, ARG128(a))) != 0; } /* square root 32-bit */ uint64_t HELPER(sqeb)(CPUS390XState *env, uint64_t f2) { float32 ret = float32_sqrt(f2, &env->fpu_status); handle_exceptions(env, false, GETPC()); return ret; } /* square root 64-bit */ uint64_t HELPER(sqdb)(CPUS390XState *env, uint64_t f2) { float64 ret = float64_sqrt(f2, &env->fpu_status); handle_exceptions(env, false, GETPC()); return ret; } /* square root 128-bit */ Int128 HELPER(sqxb)(CPUS390XState *env, Int128 a) { float128 ret = float128_sqrt(ARG128(a), &env->fpu_status); handle_exceptions(env, false, GETPC()); return RET128(ret); } static const int fpc_to_rnd[8] = { float_round_nearest_even, float_round_to_zero, float_round_up, float_round_down, -1, -1, -1, float_round_to_odd, }; /* set fpc */ void HELPER(sfpc)(CPUS390XState *env, uint64_t fpc) { if (fpc_to_rnd[fpc & 0x7] == -1 || fpc & 0x03030088u || (!s390_has_feat(S390_FEAT_FLOATING_POINT_EXT) && fpc & 0x4)) { tcg_s390_program_interrupt(env, PGM_SPECIFICATION, GETPC()); } /* Install everything in the main FPC. */ env->fpc = fpc; /* Install the rounding mode in the shadow fpu_status. */ set_float_rounding_mode(fpc_to_rnd[fpc & 0x7], &env->fpu_status); } /* set fpc and signal */ void HELPER(sfas)(CPUS390XState *env, uint64_t fpc) { uint32_t signalling = env->fpc; uint32_t s390_exc; if (fpc_to_rnd[fpc & 0x7] == -1 || fpc & 0x03030088u || (!s390_has_feat(S390_FEAT_FLOATING_POINT_EXT) && fpc & 0x4)) { tcg_s390_program_interrupt(env, PGM_SPECIFICATION, GETPC()); } /* * FPC is set to the FPC operand with a bitwise OR of the signalling * flags. */ env->fpc = fpc | (signalling & 0x00ff0000); set_float_rounding_mode(fpc_to_rnd[fpc & 0x7], &env->fpu_status); /* * If any signaling flag is enabled in the new FPC mask, a * simulated-iee-exception exception occurs. */ s390_exc = (signalling >> 16) & (fpc >> 24); if (s390_exc) { if (s390_exc & S390_IEEE_MASK_INVALID) { s390_exc = S390_IEEE_MASK_INVALID; } else if (s390_exc & S390_IEEE_MASK_DIVBYZERO) { s390_exc = S390_IEEE_MASK_DIVBYZERO; } else if (s390_exc & S390_IEEE_MASK_OVERFLOW) { s390_exc &= (S390_IEEE_MASK_OVERFLOW | S390_IEEE_MASK_INEXACT); } else if (s390_exc & S390_IEEE_MASK_UNDERFLOW) { s390_exc &= (S390_IEEE_MASK_UNDERFLOW | S390_IEEE_MASK_INEXACT); } else if (s390_exc & S390_IEEE_MASK_INEXACT) { s390_exc = S390_IEEE_MASK_INEXACT; } else if (s390_exc & S390_IEEE_MASK_QUANTUM) { s390_exc = S390_IEEE_MASK_QUANTUM; } tcg_s390_data_exception(env, s390_exc | 3, GETPC()); } } /* set bfp rounding mode */ void HELPER(srnm)(CPUS390XState *env, uint64_t rnd) { if (rnd > 0x7 || fpc_to_rnd[rnd & 0x7] == -1) { tcg_s390_program_interrupt(env, PGM_SPECIFICATION, GETPC()); } env->fpc = deposit32(env->fpc, 0, 3, rnd); set_float_rounding_mode(fpc_to_rnd[rnd & 0x7], &env->fpu_status); }