/* * QEMU S390x KVM implementation * * Copyright (c) 2009 Alexander Graf * Copyright IBM Corp. 2012 * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * Contributions after 2012-10-29 are licensed under the terms of the * GNU GPL, version 2 or (at your option) any later version. * * You should have received a copy of the GNU (Lesser) General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include #include #include #include "qemu-common.h" #include "cpu.h" #include "qemu/error-report.h" #include "qemu/timer.h" #include "sysemu/sysemu.h" #include "sysemu/hw_accel.h" #include "hw/hw.h" #include "sysemu/device_tree.h" #include "qapi/qmp/qjson.h" #include "exec/gdbstub.h" #include "exec/address-spaces.h" #include "trace.h" #include "qapi-event.h" #include "hw/s390x/s390-pci-inst.h" #include "hw/s390x/s390-pci-bus.h" #include "hw/s390x/ipl.h" #include "hw/s390x/ebcdic.h" #include "exec/memattrs.h" #include "hw/s390x/s390-virtio-ccw.h" /* #define DEBUG_KVM */ #ifdef DEBUG_KVM #define DPRINTF(fmt, ...) \ do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) \ do { } while (0) #endif #define kvm_vm_check_mem_attr(s, attr) \ kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr) #define IPA0_DIAG 0x8300 #define IPA0_SIGP 0xae00 #define IPA0_B2 0xb200 #define IPA0_B9 0xb900 #define IPA0_EB 0xeb00 #define IPA0_E3 0xe300 #define PRIV_B2_SCLP_CALL 0x20 #define PRIV_B2_CSCH 0x30 #define PRIV_B2_HSCH 0x31 #define PRIV_B2_MSCH 0x32 #define PRIV_B2_SSCH 0x33 #define PRIV_B2_STSCH 0x34 #define PRIV_B2_TSCH 0x35 #define PRIV_B2_TPI 0x36 #define PRIV_B2_SAL 0x37 #define PRIV_B2_RSCH 0x38 #define PRIV_B2_STCRW 0x39 #define PRIV_B2_STCPS 0x3a #define PRIV_B2_RCHP 0x3b #define PRIV_B2_SCHM 0x3c #define PRIV_B2_CHSC 0x5f #define PRIV_B2_SIGA 0x74 #define PRIV_B2_XSCH 0x76 #define PRIV_EB_SQBS 0x8a #define PRIV_EB_PCISTB 0xd0 #define PRIV_EB_SIC 0xd1 #define PRIV_B9_EQBS 0x9c #define PRIV_B9_CLP 0xa0 #define PRIV_B9_PCISTG 0xd0 #define PRIV_B9_PCILG 0xd2 #define PRIV_B9_RPCIT 0xd3 #define PRIV_E3_MPCIFC 0xd0 #define PRIV_E3_STPCIFC 0xd4 #define DIAG_TIMEREVENT 0x288 #define DIAG_IPL 0x308 #define DIAG_KVM_HYPERCALL 0x500 #define DIAG_KVM_BREAKPOINT 0x501 #define ICPT_INSTRUCTION 0x04 #define ICPT_PROGRAM 0x08 #define ICPT_EXT_INT 0x14 #define ICPT_WAITPSW 0x1c #define ICPT_SOFT_INTERCEPT 0x24 #define ICPT_CPU_STOP 0x28 #define ICPT_OPEREXC 0x2c #define ICPT_IO 0x40 #define NR_LOCAL_IRQS 32 /* * Needs to be big enough to contain max_cpus emergency signals * and in addition NR_LOCAL_IRQS interrupts */ #define VCPU_IRQ_BUF_SIZE (sizeof(struct kvm_s390_irq) * \ (max_cpus + NR_LOCAL_IRQS)) static CPUWatchpoint hw_watchpoint; /* * We don't use a list because this structure is also used to transmit the * hardware breakpoints to the kernel. */ static struct kvm_hw_breakpoint *hw_breakpoints; static int nb_hw_breakpoints; const KVMCapabilityInfo kvm_arch_required_capabilities[] = { KVM_CAP_LAST_INFO }; static QemuMutex qemu_sigp_mutex; static int cap_sync_regs; static int cap_async_pf; static int cap_mem_op; static int cap_s390_irq; static int cap_ri; static void *legacy_s390_alloc(size_t size, uint64_t *align); static int kvm_s390_query_mem_limit(KVMState *s, uint64_t *memory_limit) { struct kvm_device_attr attr = { .group = KVM_S390_VM_MEM_CTRL, .attr = KVM_S390_VM_MEM_LIMIT_SIZE, .addr = (uint64_t) memory_limit, }; return kvm_vm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr); } int kvm_s390_set_mem_limit(KVMState *s, uint64_t new_limit, uint64_t *hw_limit) { int rc; struct kvm_device_attr attr = { .group = KVM_S390_VM_MEM_CTRL, .attr = KVM_S390_VM_MEM_LIMIT_SIZE, .addr = (uint64_t) &new_limit, }; if (!kvm_vm_check_mem_attr(s, KVM_S390_VM_MEM_LIMIT_SIZE)) { return 0; } rc = kvm_s390_query_mem_limit(s, hw_limit); if (rc) { return rc; } else if (*hw_limit < new_limit) { return -E2BIG; } return kvm_vm_ioctl(s, KVM_SET_DEVICE_ATTR, &attr); } static bool kvm_s390_cmma_available(void) { static bool initialized, value; if (!initialized) { initialized = true; value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) && kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA); } return value; } void kvm_s390_cmma_reset(void) { int rc; struct kvm_device_attr attr = { .group = KVM_S390_VM_MEM_CTRL, .attr = KVM_S390_VM_MEM_CLR_CMMA, }; if (mem_path || !kvm_s390_cmma_available()) { return; } rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); trace_kvm_clear_cmma(rc); } static void kvm_s390_enable_cmma(void) { int rc; struct kvm_device_attr attr = { .group = KVM_S390_VM_MEM_CTRL, .attr = KVM_S390_VM_MEM_ENABLE_CMMA, }; rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); trace_kvm_enable_cmma(rc); } static void kvm_s390_set_attr(uint64_t attr) { struct kvm_device_attr attribute = { .group = KVM_S390_VM_CRYPTO, .attr = attr, }; int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute); if (ret) { error_report("Failed to set crypto device attribute %lu: %s", attr, strerror(-ret)); } } static void kvm_s390_init_aes_kw(void) { uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW; if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap", NULL)) { attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW; } if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { kvm_s390_set_attr(attr); } } static void kvm_s390_init_dea_kw(void) { uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW; if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap", NULL)) { attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW; } if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { kvm_s390_set_attr(attr); } } void kvm_s390_crypto_reset(void) { if (s390_has_feat(S390_FEAT_MSA_EXT_3)) { kvm_s390_init_aes_kw(); kvm_s390_init_dea_kw(); } } int kvm_arch_init(MachineState *ms, KVMState *s) { cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS); cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF); cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP); cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ); if (!kvm_check_extension(s, KVM_CAP_S390_GMAP) || !kvm_check_extension(s, KVM_CAP_S390_COW)) { phys_mem_set_alloc(legacy_s390_alloc); } kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0); kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0); kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0); if (ri_allowed()) { if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) { cap_ri = 1; } } qemu_mutex_init(&qemu_sigp_mutex); return 0; } int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) { return 0; } unsigned long kvm_arch_vcpu_id(CPUState *cpu) { return cpu->cpu_index; } int kvm_arch_init_vcpu(CPUState *cs) { S390CPU *cpu = S390_CPU(cs); kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state); cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE); return 0; } void kvm_s390_reset_vcpu(S390CPU *cpu) { CPUState *cs = CPU(cpu); /* The initial reset call is needed here to reset in-kernel * vcpu data that we can't access directly from QEMU * (i.e. with older kernels which don't support sync_regs/ONE_REG). * Before this ioctl cpu_synchronize_state() is called in common kvm * code (kvm-all) */ if (kvm_vcpu_ioctl(cs, KVM_S390_INITIAL_RESET, NULL)) { error_report("Initial CPU reset failed on CPU %i", cs->cpu_index); } } static int can_sync_regs(CPUState *cs, int regs) { return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs; } int kvm_arch_put_registers(CPUState *cs, int level) { S390CPU *cpu = S390_CPU(cs); CPUS390XState *env = &cpu->env; struct kvm_sregs sregs; struct kvm_regs regs; struct kvm_fpu fpu = {}; int r; int i; /* always save the PSW and the GPRS*/ cs->kvm_run->psw_addr = env->psw.addr; cs->kvm_run->psw_mask = env->psw.mask; if (can_sync_regs(cs, KVM_SYNC_GPRS)) { for (i = 0; i < 16; i++) { cs->kvm_run->s.regs.gprs[i] = env->regs[i]; cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS; } } else { for (i = 0; i < 16; i++) { regs.gprs[i] = env->regs[i]; } r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s); if (r < 0) { return r; } } if (can_sync_regs(cs, KVM_SYNC_VRS)) { for (i = 0; i < 32; i++) { cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0].ll; cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1].ll; } cs->kvm_run->s.regs.fpc = env->fpc; cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS; } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { for (i = 0; i < 16; i++) { cs->kvm_run->s.regs.fprs[i] = get_freg(env, i)->ll; } cs->kvm_run->s.regs.fpc = env->fpc; cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS; } else { /* Floating point */ for (i = 0; i < 16; i++) { fpu.fprs[i] = get_freg(env, i)->ll; } fpu.fpc = env->fpc; r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu); if (r < 0) { return r; } } /* Do we need to save more than that? */ if (level == KVM_PUT_RUNTIME_STATE) { return 0; } if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { cs->kvm_run->s.regs.cputm = env->cputm; cs->kvm_run->s.regs.ckc = env->ckc; cs->kvm_run->s.regs.todpr = env->todpr; cs->kvm_run->s.regs.gbea = env->gbea; cs->kvm_run->s.regs.pp = env->pp; cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0; } else { /* * These ONE_REGS are not protected by a capability. As they are only * necessary for migration we just trace a possible error, but don't * return with an error return code. */ kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp); } if (can_sync_regs(cs, KVM_SYNC_RICCB)) { memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64); cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB; } /* pfault parameters */ if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { cs->kvm_run->s.regs.pft = env->pfault_token; cs->kvm_run->s.regs.pfs = env->pfault_select; cs->kvm_run->s.regs.pfc = env->pfault_compare; cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT; } else if (cap_async_pf) { r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); if (r < 0) { return r; } r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); if (r < 0) { return r; } r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); if (r < 0) { return r; } } /* access registers and control registers*/ if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) { for (i = 0; i < 16; i++) { cs->kvm_run->s.regs.acrs[i] = env->aregs[i]; cs->kvm_run->s.regs.crs[i] = env->cregs[i]; } cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS; cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS; } else { for (i = 0; i < 16; i++) { sregs.acrs[i] = env->aregs[i]; sregs.crs[i] = env->cregs[i]; } r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); if (r < 0) { return r; } } /* Finally the prefix */ if (can_sync_regs(cs, KVM_SYNC_PREFIX)) { cs->kvm_run->s.regs.prefix = env->psa; cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX; } else { /* prefix is only supported via sync regs */ } return 0; } int kvm_arch_get_registers(CPUState *cs) { S390CPU *cpu = S390_CPU(cs); CPUS390XState *env = &cpu->env; struct kvm_sregs sregs; struct kvm_regs regs; struct kvm_fpu fpu; int i, r; /* get the PSW */ env->psw.addr = cs->kvm_run->psw_addr; env->psw.mask = cs->kvm_run->psw_mask; /* the GPRS */ if (can_sync_regs(cs, KVM_SYNC_GPRS)) { for (i = 0; i < 16; i++) { env->regs[i] = cs->kvm_run->s.regs.gprs[i]; } } else { r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); if (r < 0) { return r; } for (i = 0; i < 16; i++) { env->regs[i] = regs.gprs[i]; } } /* The ACRS and CRS */ if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) { for (i = 0; i < 16; i++) { env->aregs[i] = cs->kvm_run->s.regs.acrs[i]; env->cregs[i] = cs->kvm_run->s.regs.crs[i]; } } else { r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); if (r < 0) { return r; } for (i = 0; i < 16; i++) { env->aregs[i] = sregs.acrs[i]; env->cregs[i] = sregs.crs[i]; } } /* Floating point and vector registers */ if (can_sync_regs(cs, KVM_SYNC_VRS)) { for (i = 0; i < 32; i++) { env->vregs[i][0].ll = cs->kvm_run->s.regs.vrs[i][0]; env->vregs[i][1].ll = cs->kvm_run->s.regs.vrs[i][1]; } env->fpc = cs->kvm_run->s.regs.fpc; } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { for (i = 0; i < 16; i++) { get_freg(env, i)->ll = cs->kvm_run->s.regs.fprs[i]; } env->fpc = cs->kvm_run->s.regs.fpc; } else { r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu); if (r < 0) { return r; } for (i = 0; i < 16; i++) { get_freg(env, i)->ll = fpu.fprs[i]; } env->fpc = fpu.fpc; } /* The prefix */ if (can_sync_regs(cs, KVM_SYNC_PREFIX)) { env->psa = cs->kvm_run->s.regs.prefix; } if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { env->cputm = cs->kvm_run->s.regs.cputm; env->ckc = cs->kvm_run->s.regs.ckc; env->todpr = cs->kvm_run->s.regs.todpr; env->gbea = cs->kvm_run->s.regs.gbea; env->pp = cs->kvm_run->s.regs.pp; } else { /* * These ONE_REGS are not protected by a capability. As they are only * necessary for migration we just trace a possible error, but don't * return with an error return code. */ kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp); } if (can_sync_regs(cs, KVM_SYNC_RICCB)) { memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64); } /* pfault parameters */ if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { env->pfault_token = cs->kvm_run->s.regs.pft; env->pfault_select = cs->kvm_run->s.regs.pfs; env->pfault_compare = cs->kvm_run->s.regs.pfc; } else if (cap_async_pf) { r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); if (r < 0) { return r; } r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); if (r < 0) { return r; } r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); if (r < 0) { return r; } } return 0; } int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low) { int r; struct kvm_device_attr attr = { .group = KVM_S390_VM_TOD, .attr = KVM_S390_VM_TOD_LOW, .addr = (uint64_t)tod_low, }; r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); if (r) { return r; } attr.attr = KVM_S390_VM_TOD_HIGH; attr.addr = (uint64_t)tod_high; return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); } int kvm_s390_set_clock(uint8_t *tod_high, uint64_t *tod_low) { int r; struct kvm_device_attr attr = { .group = KVM_S390_VM_TOD, .attr = KVM_S390_VM_TOD_LOW, .addr = (uint64_t)tod_low, }; r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); if (r) { return r; } attr.attr = KVM_S390_VM_TOD_HIGH; attr.addr = (uint64_t)tod_high; return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); } /** * kvm_s390_mem_op: * @addr: the logical start address in guest memory * @ar: the access register number * @hostbuf: buffer in host memory. NULL = do only checks w/o copying * @len: length that should be transferred * @is_write: true = write, false = read * Returns: 0 on success, non-zero if an exception or error occurred * * Use KVM ioctl to read/write from/to guest memory. An access exception * is injected into the vCPU in case of translation errors. */ int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf, int len, bool is_write) { struct kvm_s390_mem_op mem_op = { .gaddr = addr, .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION, .size = len, .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE : KVM_S390_MEMOP_LOGICAL_READ, .buf = (uint64_t)hostbuf, .ar = ar, }; int ret; if (!cap_mem_op) { return -ENOSYS; } if (!hostbuf) { mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY; } ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op); if (ret < 0) { error_printf("KVM_S390_MEM_OP failed: %s\n", strerror(-ret)); } return ret; } /* * Legacy layout for s390: * Older S390 KVM requires the topmost vma of the RAM to be * smaller than an system defined value, which is at least 256GB. * Larger systems have larger values. We put the guest between * the end of data segment (system break) and this value. We * use 32GB as a base to have enough room for the system break * to grow. We also have to use MAP parameters that avoid * read-only mapping of guest pages. */ static void *legacy_s390_alloc(size_t size, uint64_t *align) { void *mem; mem = mmap((void *) 0x800000000ULL, size, PROT_EXEC|PROT_READ|PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0); return mem == MAP_FAILED ? NULL : mem; } static uint8_t const *sw_bp_inst; static uint8_t sw_bp_ilen; static void determine_sw_breakpoint_instr(void) { /* DIAG 501 is used for sw breakpoints with old kernels */ static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01}; /* Instruction 0x0000 is used for sw breakpoints with recent kernels */ static const uint8_t instr_0x0000[] = {0x00, 0x00}; if (sw_bp_inst) { return; } if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) { sw_bp_inst = diag_501; sw_bp_ilen = sizeof(diag_501); DPRINTF("KVM: will use 4-byte sw breakpoints.\n"); } else { sw_bp_inst = instr_0x0000; sw_bp_ilen = sizeof(instr_0x0000); DPRINTF("KVM: will use 2-byte sw breakpoints.\n"); } } int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) { determine_sw_breakpoint_instr(); if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, sw_bp_ilen, 0) || cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) { return -EINVAL; } return 0; } int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) { uint8_t t[MAX_ILEN]; if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) { return -EINVAL; } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) { return -EINVAL; } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, sw_bp_ilen, 1)) { return -EINVAL; } return 0; } static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr, int len, int type) { int n; for (n = 0; n < nb_hw_breakpoints; n++) { if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type && (hw_breakpoints[n].len == len || len == -1)) { return &hw_breakpoints[n]; } } return NULL; } static int insert_hw_breakpoint(target_ulong addr, int len, int type) { int size; if (find_hw_breakpoint(addr, len, type)) { return -EEXIST; } size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint); if (!hw_breakpoints) { nb_hw_breakpoints = 0; hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size); } else { hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size); } if (!hw_breakpoints) { nb_hw_breakpoints = 0; return -ENOMEM; } hw_breakpoints[nb_hw_breakpoints].addr = addr; hw_breakpoints[nb_hw_breakpoints].len = len; hw_breakpoints[nb_hw_breakpoints].type = type; nb_hw_breakpoints++; return 0; } int kvm_arch_insert_hw_breakpoint(target_ulong addr, target_ulong len, int type) { switch (type) { case GDB_BREAKPOINT_HW: type = KVM_HW_BP; break; case GDB_WATCHPOINT_WRITE: if (len < 1) { return -EINVAL; } type = KVM_HW_WP_WRITE; break; default: return -ENOSYS; } return insert_hw_breakpoint(addr, len, type); } int kvm_arch_remove_hw_breakpoint(target_ulong addr, target_ulong len, int type) { int size; struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type); if (bp == NULL) { return -ENOENT; } nb_hw_breakpoints--; if (nb_hw_breakpoints > 0) { /* * In order to trim the array, move the last element to the position to * be removed - if necessary. */ if (bp != &hw_breakpoints[nb_hw_breakpoints]) { *bp = hw_breakpoints[nb_hw_breakpoints]; } size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint); hw_breakpoints = (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size); } else { g_free(hw_breakpoints); hw_breakpoints = NULL; } return 0; } void kvm_arch_remove_all_hw_breakpoints(void) { nb_hw_breakpoints = 0; g_free(hw_breakpoints); hw_breakpoints = NULL; } void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) { int i; if (nb_hw_breakpoints > 0) { dbg->arch.nr_hw_bp = nb_hw_breakpoints; dbg->arch.hw_bp = hw_breakpoints; for (i = 0; i < nb_hw_breakpoints; ++i) { hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu, hw_breakpoints[i].addr); } dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; } else { dbg->arch.nr_hw_bp = 0; dbg->arch.hw_bp = NULL; } } void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) { } MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) { return MEMTXATTRS_UNSPECIFIED; } int kvm_arch_process_async_events(CPUState *cs) { return cs->halted; } static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq, struct kvm_s390_interrupt *interrupt) { int r = 0; interrupt->type = irq->type; switch (irq->type) { case KVM_S390_INT_VIRTIO: interrupt->parm = irq->u.ext.ext_params; /* fall through */ case KVM_S390_INT_PFAULT_INIT: case KVM_S390_INT_PFAULT_DONE: interrupt->parm64 = irq->u.ext.ext_params2; break; case KVM_S390_PROGRAM_INT: interrupt->parm = irq->u.pgm.code; break; case KVM_S390_SIGP_SET_PREFIX: interrupt->parm = irq->u.prefix.address; break; case KVM_S390_INT_SERVICE: interrupt->parm = irq->u.ext.ext_params; break; case KVM_S390_MCHK: interrupt->parm = irq->u.mchk.cr14; interrupt->parm64 = irq->u.mchk.mcic; break; case KVM_S390_INT_EXTERNAL_CALL: interrupt->parm = irq->u.extcall.code; break; case KVM_S390_INT_EMERGENCY: interrupt->parm = irq->u.emerg.code; break; case KVM_S390_SIGP_STOP: case KVM_S390_RESTART: break; /* These types have no parameters */ case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: interrupt->parm = irq->u.io.subchannel_id << 16; interrupt->parm |= irq->u.io.subchannel_nr; interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32; interrupt->parm64 |= irq->u.io.io_int_word; break; default: r = -EINVAL; break; } return r; } static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq) { struct kvm_s390_interrupt kvmint = {}; int r; r = s390_kvm_irq_to_interrupt(irq, &kvmint); if (r < 0) { fprintf(stderr, "%s called with bogus interrupt\n", __func__); exit(1); } r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint); if (r < 0) { fprintf(stderr, "KVM failed to inject interrupt\n"); exit(1); } } void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq) { CPUState *cs = CPU(cpu); int r; if (cap_s390_irq) { r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq); if (!r) { return; } error_report("KVM failed to inject interrupt %llx", irq->type); exit(1); } inject_vcpu_irq_legacy(cs, irq); } static void __kvm_s390_floating_interrupt(struct kvm_s390_irq *irq) { struct kvm_s390_interrupt kvmint = {}; int r; r = s390_kvm_irq_to_interrupt(irq, &kvmint); if (r < 0) { fprintf(stderr, "%s called with bogus interrupt\n", __func__); exit(1); } r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint); if (r < 0) { fprintf(stderr, "KVM failed to inject interrupt\n"); exit(1); } } void kvm_s390_floating_interrupt(struct kvm_s390_irq *irq) { static bool use_flic = true; int r; if (use_flic) { r = kvm_s390_inject_flic(irq); if (r == -ENOSYS) { use_flic = false; } if (!r) { return; } } __kvm_s390_floating_interrupt(irq); } void kvm_s390_service_interrupt(uint32_t parm) { struct kvm_s390_irq irq = { .type = KVM_S390_INT_SERVICE, .u.ext.ext_params = parm, }; kvm_s390_floating_interrupt(&irq); } static void enter_pgmcheck(S390CPU *cpu, uint16_t code) { struct kvm_s390_irq irq = { .type = KVM_S390_PROGRAM_INT, .u.pgm.code = code, }; kvm_s390_vcpu_interrupt(cpu, &irq); } void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code) { struct kvm_s390_irq irq = { .type = KVM_S390_PROGRAM_INT, .u.pgm.code = code, .u.pgm.trans_exc_code = te_code, .u.pgm.exc_access_id = te_code & 3, }; kvm_s390_vcpu_interrupt(cpu, &irq); } static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run, uint16_t ipbh0) { CPUS390XState *env = &cpu->env; uint64_t sccb; uint32_t code; int r = 0; cpu_synchronize_state(CPU(cpu)); sccb = env->regs[ipbh0 & 0xf]; code = env->regs[(ipbh0 & 0xf0) >> 4]; r = sclp_service_call(env, sccb, code); if (r < 0) { enter_pgmcheck(cpu, -r); } else { setcc(cpu, r); } return 0; } static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) { CPUS390XState *env = &cpu->env; int rc = 0; uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16; cpu_synchronize_state(CPU(cpu)); switch (ipa1) { case PRIV_B2_XSCH: ioinst_handle_xsch(cpu, env->regs[1]); break; case PRIV_B2_CSCH: ioinst_handle_csch(cpu, env->regs[1]); break; case PRIV_B2_HSCH: ioinst_handle_hsch(cpu, env->regs[1]); break; case PRIV_B2_MSCH: ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb); break; case PRIV_B2_SSCH: ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb); break; case PRIV_B2_STCRW: ioinst_handle_stcrw(cpu, run->s390_sieic.ipb); break; case PRIV_B2_STSCH: ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb); break; case PRIV_B2_TSCH: /* We should only get tsch via KVM_EXIT_S390_TSCH. */ fprintf(stderr, "Spurious tsch intercept\n"); break; case PRIV_B2_CHSC: ioinst_handle_chsc(cpu, run->s390_sieic.ipb); break; case PRIV_B2_TPI: /* This should have been handled by kvm already. */ fprintf(stderr, "Spurious tpi intercept\n"); break; case PRIV_B2_SCHM: ioinst_handle_schm(cpu, env->regs[1], env->regs[2], run->s390_sieic.ipb); break; case PRIV_B2_RSCH: ioinst_handle_rsch(cpu, env->regs[1]); break; case PRIV_B2_RCHP: ioinst_handle_rchp(cpu, env->regs[1]); break; case PRIV_B2_STCPS: /* We do not provide this instruction, it is suppressed. */ break; case PRIV_B2_SAL: ioinst_handle_sal(cpu, env->regs[1]); break; case PRIV_B2_SIGA: /* Not provided, set CC = 3 for subchannel not operational */ setcc(cpu, 3); break; case PRIV_B2_SCLP_CALL: rc = kvm_sclp_service_call(cpu, run, ipbh0); break; default: rc = -1; DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1); break; } return rc; } static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run, uint8_t *ar) { CPUS390XState *env = &cpu->env; uint32_t x2 = (run->s390_sieic.ipa & 0x000f); uint32_t base2 = run->s390_sieic.ipb >> 28; uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + ((run->s390_sieic.ipb & 0xff00) << 4); if (disp2 & 0x80000) { disp2 += 0xfff00000; } if (ar) { *ar = base2; } return (base2 ? env->regs[base2] : 0) + (x2 ? env->regs[x2] : 0) + (long)(int)disp2; } static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run, uint8_t *ar) { CPUS390XState *env = &cpu->env; uint32_t base2 = run->s390_sieic.ipb >> 28; uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + ((run->s390_sieic.ipb & 0xff00) << 4); if (disp2 & 0x80000) { disp2 += 0xfff00000; } if (ar) { *ar = base2; } return (base2 ? env->regs[base2] : 0) + (long)(int)disp2; } static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run) { uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; return clp_service_call(cpu, r2); } static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run) { uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; return pcilg_service_call(cpu, r1, r2); } static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run) { uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; return pcistg_service_call(cpu, r1, r2); } static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run) { uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; uint64_t fiba; uint8_t ar; cpu_synchronize_state(CPU(cpu)); fiba = get_base_disp_rxy(cpu, run, &ar); return stpcifc_service_call(cpu, r1, fiba, ar); } static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run) { /* NOOP */ return 0; } static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run) { uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; return rpcit_service_call(cpu, r1, r2); } static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run) { uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; uint8_t r3 = run->s390_sieic.ipa & 0x000f; uint64_t gaddr; uint8_t ar; cpu_synchronize_state(CPU(cpu)); gaddr = get_base_disp_rsy(cpu, run, &ar); return pcistb_service_call(cpu, r1, r3, gaddr, ar); } static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run) { uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; uint64_t fiba; uint8_t ar; cpu_synchronize_state(CPU(cpu)); fiba = get_base_disp_rxy(cpu, run, &ar); return mpcifc_service_call(cpu, r1, fiba, ar); } static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) { int r = 0; switch (ipa1) { case PRIV_B9_CLP: r = kvm_clp_service_call(cpu, run); break; case PRIV_B9_PCISTG: r = kvm_pcistg_service_call(cpu, run); break; case PRIV_B9_PCILG: r = kvm_pcilg_service_call(cpu, run); break; case PRIV_B9_RPCIT: r = kvm_rpcit_service_call(cpu, run); break; case PRIV_B9_EQBS: /* just inject exception */ r = -1; break; default: r = -1; DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1); break; } return r; } static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) { int r = 0; switch (ipbl) { case PRIV_EB_PCISTB: r = kvm_pcistb_service_call(cpu, run); break; case PRIV_EB_SIC: r = kvm_sic_service_call(cpu, run); break; case PRIV_EB_SQBS: /* just inject exception */ r = -1; break; default: r = -1; DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl); break; } return r; } static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) { int r = 0; switch (ipbl) { case PRIV_E3_MPCIFC: r = kvm_mpcifc_service_call(cpu, run); break; case PRIV_E3_STPCIFC: r = kvm_stpcifc_service_call(cpu, run); break; default: r = -1; DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl); break; } return r; } static int handle_hypercall(S390CPU *cpu, struct kvm_run *run) { CPUS390XState *env = &cpu->env; int ret; cpu_synchronize_state(CPU(cpu)); ret = s390_virtio_hypercall(env); if (ret == -EINVAL) { enter_pgmcheck(cpu, PGM_SPECIFICATION); return 0; } return ret; } static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run) { uint64_t r1, r3; int rc; cpu_synchronize_state(CPU(cpu)); r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; r3 = run->s390_sieic.ipa & 0x000f; rc = handle_diag_288(&cpu->env, r1, r3); if (rc) { enter_pgmcheck(cpu, PGM_SPECIFICATION); } } static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run) { uint64_t r1, r3; cpu_synchronize_state(CPU(cpu)); r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; r3 = run->s390_sieic.ipa & 0x000f; handle_diag_308(&cpu->env, r1, r3); } static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run) { CPUS390XState *env = &cpu->env; unsigned long pc; cpu_synchronize_state(CPU(cpu)); pc = env->psw.addr - sw_bp_ilen; if (kvm_find_sw_breakpoint(CPU(cpu), pc)) { env->psw.addr = pc; return EXCP_DEBUG; } return -ENOENT; } #define DIAG_KVM_CODE_MASK 0x000000000000ffff static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb) { int r = 0; uint16_t func_code; /* * For any diagnose call we support, bits 48-63 of the resulting * address specify the function code; the remainder is ignored. */ func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK; switch (func_code) { case DIAG_TIMEREVENT: kvm_handle_diag_288(cpu, run); break; case DIAG_IPL: kvm_handle_diag_308(cpu, run); break; case DIAG_KVM_HYPERCALL: r = handle_hypercall(cpu, run); break; case DIAG_KVM_BREAKPOINT: r = handle_sw_breakpoint(cpu, run); break; default: DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code); enter_pgmcheck(cpu, PGM_SPECIFICATION); break; } return r; } typedef struct SigpInfo { uint64_t param; int cc; uint64_t *status_reg; } SigpInfo; static void set_sigp_status(SigpInfo *si, uint64_t status) { *si->status_reg &= 0xffffffff00000000ULL; *si->status_reg |= status; si->cc = SIGP_CC_STATUS_STORED; } static void sigp_start(CPUState *cs, run_on_cpu_data arg) { S390CPU *cpu = S390_CPU(cs); SigpInfo *si = arg.host_ptr; if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) { si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; return; } s390_cpu_set_state(CPU_STATE_OPERATING, cpu); si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; } static void sigp_stop(CPUState *cs, run_on_cpu_data arg) { S390CPU *cpu = S390_CPU(cs); SigpInfo *si = arg.host_ptr; struct kvm_s390_irq irq = { .type = KVM_S390_SIGP_STOP, }; if (s390_cpu_get_state(cpu) != CPU_STATE_OPERATING) { si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; return; } /* disabled wait - sleeping in user space */ if (cs->halted) { s390_cpu_set_state(CPU_STATE_STOPPED, cpu); } else { /* execute the stop function */ cpu->env.sigp_order = SIGP_STOP; kvm_s390_vcpu_interrupt(cpu, &irq); } si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; } #define ADTL_SAVE_AREA_SIZE 1024 static int kvm_s390_store_adtl_status(S390CPU *cpu, hwaddr addr) { void *mem; hwaddr len = ADTL_SAVE_AREA_SIZE; mem = cpu_physical_memory_map(addr, &len, 1); if (!mem) { return -EFAULT; } if (len != ADTL_SAVE_AREA_SIZE) { cpu_physical_memory_unmap(mem, len, 1, 0); return -EFAULT; } memcpy(mem, &cpu->env.vregs, 512); cpu_physical_memory_unmap(mem, len, 1, len); return 0; } #define KVM_S390_STORE_STATUS_DEF_ADDR offsetof(LowCore, floating_pt_save_area) #define SAVE_AREA_SIZE 512 static int kvm_s390_store_status(S390CPU *cpu, hwaddr addr, bool store_arch) { static const uint8_t ar_id = 1; uint64_t ckc = cpu->env.ckc >> 8; void *mem; int i; hwaddr len = SAVE_AREA_SIZE; mem = cpu_physical_memory_map(addr, &len, 1); if (!mem) { return -EFAULT; } if (len != SAVE_AREA_SIZE) { cpu_physical_memory_unmap(mem, len, 1, 0); return -EFAULT; } if (store_arch) { cpu_physical_memory_write(offsetof(LowCore, ar_access_id), &ar_id, 1); } for (i = 0; i < 16; ++i) { *((uint64_t *)mem + i) = get_freg(&cpu->env, i)->ll; } memcpy(mem + 128, &cpu->env.regs, 128); memcpy(mem + 256, &cpu->env.psw, 16); memcpy(mem + 280, &cpu->env.psa, 4); memcpy(mem + 284, &cpu->env.fpc, 4); memcpy(mem + 292, &cpu->env.todpr, 4); memcpy(mem + 296, &cpu->env.cputm, 8); memcpy(mem + 304, &ckc, 8); memcpy(mem + 320, &cpu->env.aregs, 64); memcpy(mem + 384, &cpu->env.cregs, 128); cpu_physical_memory_unmap(mem, len, 1, len); return 0; } static void sigp_stop_and_store_status(CPUState *cs, run_on_cpu_data arg) { S390CPU *cpu = S390_CPU(cs); SigpInfo *si = arg.host_ptr; struct kvm_s390_irq irq = { .type = KVM_S390_SIGP_STOP, }; /* disabled wait - sleeping in user space */ if (s390_cpu_get_state(cpu) == CPU_STATE_OPERATING && cs->halted) { s390_cpu_set_state(CPU_STATE_STOPPED, cpu); } switch (s390_cpu_get_state(cpu)) { case CPU_STATE_OPERATING: cpu->env.sigp_order = SIGP_STOP_STORE_STATUS; kvm_s390_vcpu_interrupt(cpu, &irq); /* store will be performed when handling the stop intercept */ break; case CPU_STATE_STOPPED: /* already stopped, just store the status */ cpu_synchronize_state(cs); kvm_s390_store_status(cpu, KVM_S390_STORE_STATUS_DEF_ADDR, true); break; } si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; } static void sigp_store_status_at_address(CPUState *cs, run_on_cpu_data arg) { S390CPU *cpu = S390_CPU(cs); SigpInfo *si = arg.host_ptr; uint32_t address = si->param & 0x7ffffe00u; /* cpu has to be stopped */ if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) { set_sigp_status(si, SIGP_STAT_INCORRECT_STATE); return; } cpu_synchronize_state(cs); if (kvm_s390_store_status(cpu, address, false)) { set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER); return; } si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; } static void sigp_store_adtl_status(CPUState *cs, run_on_cpu_data arg) { S390CPU *cpu = S390_CPU(cs); SigpInfo *si = arg.host_ptr; if (!s390_has_feat(S390_FEAT_VECTOR)) { set_sigp_status(si, SIGP_STAT_INVALID_ORDER); return; } /* cpu has to be stopped */ if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) { set_sigp_status(si, SIGP_STAT_INCORRECT_STATE); return; } /* parameter must be aligned to 1024-byte boundary */ if (si->param & 0x3ff) { set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER); return; } cpu_synchronize_state(cs); if (kvm_s390_store_adtl_status(cpu, si->param)) { set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER); return; } si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; } static void sigp_restart(CPUState *cs, run_on_cpu_data arg) { S390CPU *cpu = S390_CPU(cs); SigpInfo *si = arg.host_ptr; struct kvm_s390_irq irq = { .type = KVM_S390_RESTART, }; switch (s390_cpu_get_state(cpu)) { case CPU_STATE_STOPPED: /* the restart irq has to be delivered prior to any other pending irq */ cpu_synchronize_state(cs); do_restart_interrupt(&cpu->env); s390_cpu_set_state(CPU_STATE_OPERATING, cpu); break; case CPU_STATE_OPERATING: kvm_s390_vcpu_interrupt(cpu, &irq); break; } si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; } int kvm_s390_cpu_restart(S390CPU *cpu) { SigpInfo si = {}; run_on_cpu(CPU(cpu), sigp_restart, RUN_ON_CPU_HOST_PTR(&si)); DPRINTF("DONE: KVM cpu restart: %p\n", &cpu->env); return 0; } static void sigp_initial_cpu_reset(CPUState *cs, run_on_cpu_data arg) { S390CPU *cpu = S390_CPU(cs); S390CPUClass *scc = S390_CPU_GET_CLASS(cpu); SigpInfo *si = arg.host_ptr; cpu_synchronize_state(cs); scc->initial_cpu_reset(cs); cpu_synchronize_post_reset(cs); si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; } static void sigp_cpu_reset(CPUState *cs, run_on_cpu_data arg) { S390CPU *cpu = S390_CPU(cs); S390CPUClass *scc = S390_CPU_GET_CLASS(cpu); SigpInfo *si = arg.host_ptr; cpu_synchronize_state(cs); scc->cpu_reset(cs); cpu_synchronize_post_reset(cs); si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; } static void sigp_set_prefix(CPUState *cs, run_on_cpu_data arg) { S390CPU *cpu = S390_CPU(cs); SigpInfo *si = arg.host_ptr; uint32_t addr = si->param & 0x7fffe000u; cpu_synchronize_state(cs); if (!address_space_access_valid(&address_space_memory, addr, sizeof(struct LowCore), false)) { set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER); return; } /* cpu has to be stopped */ if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) { set_sigp_status(si, SIGP_STAT_INCORRECT_STATE); return; } cpu->env.psa = addr; cpu_synchronize_post_init(cs); si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; } static int handle_sigp_single_dst(S390CPU *dst_cpu, uint8_t order, uint64_t param, uint64_t *status_reg) { SigpInfo si = { .param = param, .status_reg = status_reg, }; /* cpu available? */ if (dst_cpu == NULL) { return SIGP_CC_NOT_OPERATIONAL; } /* only resets can break pending orders */ if (dst_cpu->env.sigp_order != 0 && order != SIGP_CPU_RESET && order != SIGP_INITIAL_CPU_RESET) { return SIGP_CC_BUSY; } switch (order) { case SIGP_START: run_on_cpu(CPU(dst_cpu), sigp_start, RUN_ON_CPU_HOST_PTR(&si)); break; case SIGP_STOP: run_on_cpu(CPU(dst_cpu), sigp_stop, RUN_ON_CPU_HOST_PTR(&si)); break; case SIGP_RESTART: run_on_cpu(CPU(dst_cpu), sigp_restart, RUN_ON_CPU_HOST_PTR(&si)); break; case SIGP_STOP_STORE_STATUS: run_on_cpu(CPU(dst_cpu), sigp_stop_and_store_status, RUN_ON_CPU_HOST_PTR(&si)); break; case SIGP_STORE_STATUS_ADDR: run_on_cpu(CPU(dst_cpu), sigp_store_status_at_address, RUN_ON_CPU_HOST_PTR(&si)); break; case SIGP_STORE_ADTL_STATUS: run_on_cpu(CPU(dst_cpu), sigp_store_adtl_status, RUN_ON_CPU_HOST_PTR(&si)); break; case SIGP_SET_PREFIX: run_on_cpu(CPU(dst_cpu), sigp_set_prefix, RUN_ON_CPU_HOST_PTR(&si)); break; case SIGP_INITIAL_CPU_RESET: run_on_cpu(CPU(dst_cpu), sigp_initial_cpu_reset, RUN_ON_CPU_HOST_PTR(&si)); break; case SIGP_CPU_RESET: run_on_cpu(CPU(dst_cpu), sigp_cpu_reset, RUN_ON_CPU_HOST_PTR(&si)); break; default: DPRINTF("KVM: unknown SIGP: 0x%x\n", order); set_sigp_status(&si, SIGP_STAT_INVALID_ORDER); } return si.cc; } static int sigp_set_architecture(S390CPU *cpu, uint32_t param, uint64_t *status_reg) { CPUState *cur_cs; S390CPU *cur_cpu; /* due to the BQL, we are the only active cpu */ CPU_FOREACH(cur_cs) { cur_cpu = S390_CPU(cur_cs); if (cur_cpu->env.sigp_order != 0) { return SIGP_CC_BUSY; } cpu_synchronize_state(cur_cs); /* all but the current one have to be stopped */ if (cur_cpu != cpu && s390_cpu_get_state(cur_cpu) != CPU_STATE_STOPPED) { *status_reg &= 0xffffffff00000000ULL; *status_reg |= SIGP_STAT_INCORRECT_STATE; return SIGP_CC_STATUS_STORED; } } switch (param & 0xff) { case SIGP_MODE_ESA_S390: /* not supported */ return SIGP_CC_NOT_OPERATIONAL; case SIGP_MODE_Z_ARCH_TRANS_ALL_PSW: case SIGP_MODE_Z_ARCH_TRANS_CUR_PSW: CPU_FOREACH(cur_cs) { cur_cpu = S390_CPU(cur_cs); cur_cpu->env.pfault_token = -1UL; } break; default: *status_reg &= 0xffffffff00000000ULL; *status_reg |= SIGP_STAT_INVALID_PARAMETER; return SIGP_CC_STATUS_STORED; } return SIGP_CC_ORDER_CODE_ACCEPTED; } #define SIGP_ORDER_MASK 0x000000ff static int handle_sigp(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) { CPUS390XState *env = &cpu->env; const uint8_t r1 = ipa1 >> 4; const uint8_t r3 = ipa1 & 0x0f; int ret; uint8_t order; uint64_t *status_reg; uint64_t param; S390CPU *dst_cpu = NULL; cpu_synchronize_state(CPU(cpu)); /* get order code */ order = decode_basedisp_rs(env, run->s390_sieic.ipb, NULL) & SIGP_ORDER_MASK; status_reg = &env->regs[r1]; param = (r1 % 2) ? env->regs[r1] : env->regs[r1 + 1]; if (qemu_mutex_trylock(&qemu_sigp_mutex)) { ret = SIGP_CC_BUSY; goto out; } switch (order) { case SIGP_SET_ARCH: ret = sigp_set_architecture(cpu, param, status_reg); break; default: /* all other sigp orders target a single vcpu */ dst_cpu = s390_cpu_addr2state(env->regs[r3]); ret = handle_sigp_single_dst(dst_cpu, order, param, status_reg); } qemu_mutex_unlock(&qemu_sigp_mutex); out: trace_kvm_sigp_finished(order, CPU(cpu)->cpu_index, dst_cpu ? CPU(dst_cpu)->cpu_index : -1, ret); if (ret >= 0) { setcc(cpu, ret); return 0; } return ret; } static int handle_instruction(S390CPU *cpu, struct kvm_run *run) { unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00); uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff; int r = -1; DPRINTF("handle_instruction 0x%x 0x%x\n", run->s390_sieic.ipa, run->s390_sieic.ipb); switch (ipa0) { case IPA0_B2: r = handle_b2(cpu, run, ipa1); break; case IPA0_B9: r = handle_b9(cpu, run, ipa1); break; case IPA0_EB: r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff); break; case IPA0_E3: r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff); break; case IPA0_DIAG: r = handle_diag(cpu, run, run->s390_sieic.ipb); break; case IPA0_SIGP: r = handle_sigp(cpu, run, ipa1); break; } if (r < 0) { r = 0; enter_pgmcheck(cpu, 0x0001); } return r; } static bool is_special_wait_psw(CPUState *cs) { /* signal quiesce */ return cs->kvm_run->psw_addr == 0xfffUL; } static void unmanageable_intercept(S390CPU *cpu, const char *str, int pswoffset) { CPUState *cs = CPU(cpu); error_report("Unmanageable %s! CPU%i new PSW: 0x%016lx:%016lx", str, cs->cpu_index, ldq_phys(cs->as, cpu->env.psa + pswoffset), ldq_phys(cs->as, cpu->env.psa + pswoffset + 8)); s390_cpu_halt(cpu); qemu_system_guest_panicked(NULL); } static int handle_intercept(S390CPU *cpu) { CPUState *cs = CPU(cpu); struct kvm_run *run = cs->kvm_run; int icpt_code = run->s390_sieic.icptcode; int r = 0; DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code, (long)cs->kvm_run->psw_addr); switch (icpt_code) { case ICPT_INSTRUCTION: r = handle_instruction(cpu, run); break; case ICPT_PROGRAM: unmanageable_intercept(cpu, "program interrupt", offsetof(LowCore, program_new_psw)); r = EXCP_HALTED; break; case ICPT_EXT_INT: unmanageable_intercept(cpu, "external interrupt", offsetof(LowCore, external_new_psw)); r = EXCP_HALTED; break; case ICPT_WAITPSW: /* disabled wait, since enabled wait is handled in kernel */ cpu_synchronize_state(cs); if (s390_cpu_halt(cpu) == 0) { if (is_special_wait_psw(cs)) { qemu_system_shutdown_request(); } else { qemu_system_guest_panicked(NULL); } } r = EXCP_HALTED; break; case ICPT_CPU_STOP: if (s390_cpu_set_state(CPU_STATE_STOPPED, cpu) == 0) { qemu_system_shutdown_request(); } if (cpu->env.sigp_order == SIGP_STOP_STORE_STATUS) { kvm_s390_store_status(cpu, KVM_S390_STORE_STATUS_DEF_ADDR, true); } cpu->env.sigp_order = 0; r = EXCP_HALTED; break; case ICPT_OPEREXC: /* currently only instr 0x0000 after enabled via capability */ r = handle_sw_breakpoint(cpu, run); if (r == -ENOENT) { enter_pgmcheck(cpu, PGM_OPERATION); r = 0; } break; case ICPT_SOFT_INTERCEPT: fprintf(stderr, "KVM unimplemented icpt SOFT\n"); exit(1); break; case ICPT_IO: fprintf(stderr, "KVM unimplemented icpt IO\n"); exit(1); break; default: fprintf(stderr, "Unknown intercept code: %d\n", icpt_code); exit(1); break; } return r; } static int handle_tsch(S390CPU *cpu) { CPUState *cs = CPU(cpu); struct kvm_run *run = cs->kvm_run; int ret; cpu_synchronize_state(cs); ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb); if (ret < 0) { /* * Failure. * If an I/O interrupt had been dequeued, we have to reinject it. */ if (run->s390_tsch.dequeued) { kvm_s390_io_interrupt(run->s390_tsch.subchannel_id, run->s390_tsch.subchannel_nr, run->s390_tsch.io_int_parm, run->s390_tsch.io_int_word); } ret = 0; } return ret; } static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar) { struct sysib_322 sysib; int del; if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) { return; } /* Shift the stack of Extended Names to prepare for our own data */ memmove(&sysib.ext_names[1], &sysib.ext_names[0], sizeof(sysib.ext_names[0]) * (sysib.count - 1)); /* First virt level, that doesn't provide Ext Names delimits stack. It is * assumed it's not capable of managing Extended Names for lower levels. */ for (del = 1; del < sysib.count; del++) { if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) { break; } } if (del < sysib.count) { memset(sysib.ext_names[del], 0, sizeof(sysib.ext_names[0]) * (sysib.count - del)); } /* Insert short machine name in EBCDIC, padded with blanks */ if (qemu_name) { memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name)); ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name), strlen(qemu_name))); } sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */ memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0])); /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's * considered by s390 as not capable of providing any Extended Name. * Therefore if no name was specified on qemu invocation, we go with the * same "KVMguest" default, which KVM has filled into short name field. */ if (qemu_name) { strncpy((char *)sysib.ext_names[0], qemu_name, sizeof(sysib.ext_names[0])); } else { strcpy((char *)sysib.ext_names[0], "KVMguest"); } /* Insert UUID */ memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid)); s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib)); } static int handle_stsi(S390CPU *cpu) { CPUState *cs = CPU(cpu); struct kvm_run *run = cs->kvm_run; switch (run->s390_stsi.fc) { case 3: if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) { return 0; } /* Only sysib 3.2.2 needs post-handling for now. */ insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar); return 0; default: return 0; } } static int kvm_arch_handle_debug_exit(S390CPU *cpu) { CPUState *cs = CPU(cpu); struct kvm_run *run = cs->kvm_run; int ret = 0; struct kvm_debug_exit_arch *arch_info = &run->debug.arch; switch (arch_info->type) { case KVM_HW_WP_WRITE: if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { cs->watchpoint_hit = &hw_watchpoint; hw_watchpoint.vaddr = arch_info->addr; hw_watchpoint.flags = BP_MEM_WRITE; ret = EXCP_DEBUG; } break; case KVM_HW_BP: if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { ret = EXCP_DEBUG; } break; case KVM_SINGLESTEP: if (cs->singlestep_enabled) { ret = EXCP_DEBUG; } break; default: ret = -ENOSYS; } return ret; } int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) { S390CPU *cpu = S390_CPU(cs); int ret = 0; qemu_mutex_lock_iothread(); switch (run->exit_reason) { case KVM_EXIT_S390_SIEIC: ret = handle_intercept(cpu); break; case KVM_EXIT_S390_RESET: s390_reipl_request(); break; case KVM_EXIT_S390_TSCH: ret = handle_tsch(cpu); break; case KVM_EXIT_S390_STSI: ret = handle_stsi(cpu); break; case KVM_EXIT_DEBUG: ret = kvm_arch_handle_debug_exit(cpu); break; default: fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason); break; } qemu_mutex_unlock_iothread(); if (ret == 0) { ret = EXCP_INTERRUPT; } return ret; } bool kvm_arch_stop_on_emulation_error(CPUState *cpu) { return true; } int kvm_arch_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) { return 1; } int kvm_arch_on_sigbus(int code, void *addr) { return 1; } void kvm_s390_io_interrupt(uint16_t subchannel_id, uint16_t subchannel_nr, uint32_t io_int_parm, uint32_t io_int_word) { struct kvm_s390_irq irq = { .u.io.subchannel_id = subchannel_id, .u.io.subchannel_nr = subchannel_nr, .u.io.io_int_parm = io_int_parm, .u.io.io_int_word = io_int_word, }; if (io_int_word & IO_INT_WORD_AI) { irq.type = KVM_S390_INT_IO(1, 0, 0, 0); } else { irq.type = KVM_S390_INT_IO(0, (subchannel_id & 0xff00) >> 8, (subchannel_id & 0x0006), subchannel_nr); } kvm_s390_floating_interrupt(&irq); } static uint64_t build_channel_report_mcic(void) { uint64_t mcic; /* subclass: indicate channel report pending */ mcic = MCIC_SC_CP | /* subclass modifiers: none */ /* storage errors: none */ /* validity bits: no damage */ MCIC_VB_WP | MCIC_VB_MS | MCIC_VB_PM | MCIC_VB_IA | MCIC_VB_FP | MCIC_VB_GR | MCIC_VB_CR | MCIC_VB_ST | MCIC_VB_AR | MCIC_VB_PR | MCIC_VB_FC | MCIC_VB_CT | MCIC_VB_CC; if (s390_has_feat(S390_FEAT_VECTOR)) { mcic |= MCIC_VB_VR; } return mcic; } void kvm_s390_crw_mchk(void) { struct kvm_s390_irq irq = { .type = KVM_S390_MCHK, .u.mchk.cr14 = 1 << 28, .u.mchk.mcic = build_channel_report_mcic(), }; kvm_s390_floating_interrupt(&irq); } void kvm_s390_enable_css_support(S390CPU *cpu) { int r; /* Activate host kernel channel subsystem support. */ r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0); assert(r == 0); } void kvm_arch_init_irq_routing(KVMState *s) { /* * Note that while irqchip capabilities generally imply that cpustates * are handled in-kernel, it is not true for s390 (yet); therefore, we * have to override the common code kvm_halt_in_kernel_allowed setting. */ if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { kvm_gsi_routing_allowed = true; kvm_halt_in_kernel_allowed = false; } } int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch, int vq, bool assign) { struct kvm_ioeventfd kick = { .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY | KVM_IOEVENTFD_FLAG_DATAMATCH, .fd = event_notifier_get_fd(notifier), .datamatch = vq, .addr = sch, .len = 8, }; if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) { return -ENOSYS; } if (!assign) { kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; } return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); } int kvm_s390_get_memslot_count(KVMState *s) { return kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); } int kvm_s390_get_ri(void) { return cap_ri; } int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state) { struct kvm_mp_state mp_state = {}; int ret; /* the kvm part might not have been initialized yet */ if (CPU(cpu)->kvm_state == NULL) { return 0; } switch (cpu_state) { case CPU_STATE_STOPPED: mp_state.mp_state = KVM_MP_STATE_STOPPED; break; case CPU_STATE_CHECK_STOP: mp_state.mp_state = KVM_MP_STATE_CHECK_STOP; break; case CPU_STATE_OPERATING: mp_state.mp_state = KVM_MP_STATE_OPERATING; break; case CPU_STATE_LOAD: mp_state.mp_state = KVM_MP_STATE_LOAD; break; default: error_report("Requested CPU state is not a valid S390 CPU state: %u", cpu_state); exit(1); } ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); if (ret) { trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state, strerror(-ret)); } return ret; } void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu) { struct kvm_s390_irq_state irq_state; CPUState *cs = CPU(cpu); int32_t bytes; if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { return; } irq_state.buf = (uint64_t) cpu->irqstate; irq_state.len = VCPU_IRQ_BUF_SIZE; bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state); if (bytes < 0) { cpu->irqstate_saved_size = 0; error_report("Migration of interrupt state failed"); return; } cpu->irqstate_saved_size = bytes; } int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu) { CPUState *cs = CPU(cpu); struct kvm_s390_irq_state irq_state; int r; if (cpu->irqstate_saved_size == 0) { return 0; } if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { return -ENOSYS; } irq_state.buf = (uint64_t) cpu->irqstate; irq_state.len = cpu->irqstate_saved_size; r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state); if (r) { error_report("Setting interrupt state failed %d", r); } return r; } int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, uint64_t address, uint32_t data, PCIDevice *dev) { S390PCIBusDevice *pbdev; uint32_t idx = data >> ZPCI_MSI_VEC_BITS; uint32_t vec = data & ZPCI_MSI_VEC_MASK; pbdev = s390_pci_find_dev_by_idx(s390_get_phb(), idx); if (!pbdev) { DPRINTF("add_msi_route no dev\n"); return -ENODEV; } pbdev->routes.adapter.ind_offset = vec; route->type = KVM_IRQ_ROUTING_S390_ADAPTER; route->flags = 0; route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr; route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr; route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset; route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset; route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id; return 0; } int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, int vector, PCIDevice *dev) { return 0; } int kvm_arch_release_virq_post(int virq) { return 0; } int kvm_arch_msi_data_to_gsi(uint32_t data) { abort(); } static inline int test_bit_inv(long nr, const unsigned long *addr) { return test_bit(BE_BIT_NR(nr), addr); } static inline void set_bit_inv(long nr, unsigned long *addr) { set_bit(BE_BIT_NR(nr), addr); } static int query_cpu_subfunc(S390FeatBitmap features) { struct kvm_s390_vm_cpu_subfunc prop; struct kvm_device_attr attr = { .group = KVM_S390_VM_CPU_MODEL, .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC, .addr = (uint64_t) &prop, }; int rc; rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); if (rc) { return rc; } /* * We're going to add all subfunctions now, if the corresponding feature * is available that unlocks the query functions. */ s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); } if (test_bit(S390_FEAT_MSA, features)) { s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km); s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); } if (test_bit(S390_FEAT_MSA_EXT_3, features)) { s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); } if (test_bit(S390_FEAT_MSA_EXT_4, features)) { s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); } if (test_bit(S390_FEAT_MSA_EXT_5, features)) { s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); } return 0; } static int configure_cpu_subfunc(const S390FeatBitmap features) { struct kvm_s390_vm_cpu_subfunc prop = {}; struct kvm_device_attr attr = { .group = KVM_S390_VM_CPU_MODEL, .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC, .addr = (uint64_t) &prop, }; if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) { /* hardware support might be missing, IBC will handle most of this */ return 0; } s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); prop.ptff[0] |= 0x80; /* query is always available */ } if (test_bit(S390_FEAT_MSA, features)) { s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); prop.kmac[0] |= 0x80; /* query is always available */ s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); prop.kmc[0] |= 0x80; /* query is always available */ s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km); prop.km[0] |= 0x80; /* query is always available */ s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); prop.kimd[0] |= 0x80; /* query is always available */ s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); prop.klmd[0] |= 0x80; /* query is always available */ } if (test_bit(S390_FEAT_MSA_EXT_3, features)) { s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); prop.pckmo[0] |= 0x80; /* query is always available */ } if (test_bit(S390_FEAT_MSA_EXT_4, features)) { s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); prop.kmctr[0] |= 0x80; /* query is always available */ s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); prop.kmf[0] |= 0x80; /* query is always available */ s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); prop.kmo[0] |= 0x80; /* query is always available */ s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); prop.pcc[0] |= 0x80; /* query is always available */ } if (test_bit(S390_FEAT_MSA_EXT_5, features)) { s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); prop.ppno[0] |= 0x80; /* query is always available */ } return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); } static int kvm_to_feat[][2] = { { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP }, { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 }, { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO }, { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF }, { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE }, { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS }, { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB }, { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI }, { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS }, { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY }, { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA }, { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI}, { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF}, }; static int query_cpu_feat(S390FeatBitmap features) { struct kvm_s390_vm_cpu_feat prop; struct kvm_device_attr attr = { .group = KVM_S390_VM_CPU_MODEL, .attr = KVM_S390_VM_CPU_MACHINE_FEAT, .addr = (uint64_t) &prop, }; int rc; int i; rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); if (rc) { return rc; } for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { if (test_bit_inv(kvm_to_feat[i][0], (unsigned long *)prop.feat)) { set_bit(kvm_to_feat[i][1], features); } } return 0; } static int configure_cpu_feat(const S390FeatBitmap features) { struct kvm_s390_vm_cpu_feat prop = {}; struct kvm_device_attr attr = { .group = KVM_S390_VM_CPU_MODEL, .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT, .addr = (uint64_t) &prop, }; int i; for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { if (test_bit(kvm_to_feat[i][1], features)) { set_bit_inv(kvm_to_feat[i][0], (unsigned long *)prop.feat); } } return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); } bool kvm_s390_cpu_models_supported(void) { if (!cpu_model_allowed()) { /* compatibility machines interfere with the cpu model */ return false; } return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, KVM_S390_VM_CPU_MACHINE) && kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, KVM_S390_VM_CPU_PROCESSOR) && kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, KVM_S390_VM_CPU_MACHINE_FEAT) && kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, KVM_S390_VM_CPU_PROCESSOR_FEAT) && kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, KVM_S390_VM_CPU_MACHINE_SUBFUNC); } void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp) { struct kvm_s390_vm_cpu_machine prop = {}; struct kvm_device_attr attr = { .group = KVM_S390_VM_CPU_MODEL, .attr = KVM_S390_VM_CPU_MACHINE, .addr = (uint64_t) &prop, }; uint16_t unblocked_ibc = 0, cpu_type = 0; int rc; memset(model, 0, sizeof(*model)); if (!kvm_s390_cpu_models_supported()) { error_setg(errp, "KVM doesn't support CPU models"); return; } /* query the basic cpu model properties */ rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); if (rc) { error_setg(errp, "KVM: Error querying host CPU model: %d", rc); return; } cpu_type = cpuid_type(prop.cpuid); if (has_ibc(prop.ibc)) { model->lowest_ibc = lowest_ibc(prop.ibc); unblocked_ibc = unblocked_ibc(prop.ibc); } model->cpu_id = cpuid_id(prop.cpuid); model->cpu_ver = 0xff; /* get supported cpu features indicated via STFL(E) */ s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL, (uint8_t *) prop.fac_mask); /* dat-enhancement facility 2 has no bit but was introduced with stfle */ if (test_bit(S390_FEAT_STFLE, model->features)) { set_bit(S390_FEAT_DAT_ENH_2, model->features); } /* get supported cpu features indicated e.g. via SCLP */ rc = query_cpu_feat(model->features); if (rc) { error_setg(errp, "KVM: Error querying CPU features: %d", rc); return; } /* get supported cpu subfunctions indicated via query / test bit */ rc = query_cpu_subfunc(model->features); if (rc) { error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc); return; } /* with cpu model support, CMM is only indicated if really available */ if (kvm_s390_cmma_available()) { set_bit(S390_FEAT_CMM, model->features); } if (s390_known_cpu_type(cpu_type)) { /* we want the exact model, even if some features are missing */ model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc), ibc_ec_ga(unblocked_ibc), NULL); } else { /* model unknown, e.g. too new - search using features */ model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc), ibc_ec_ga(unblocked_ibc), model->features); } if (!model->def) { error_setg(errp, "KVM: host CPU model could not be identified"); return; } /* strip of features that are not part of the maximum model */ bitmap_and(model->features, model->features, model->def->full_feat, S390_FEAT_MAX); } void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp) { struct kvm_s390_vm_cpu_processor prop = { .fac_list = { 0 }, }; struct kvm_device_attr attr = { .group = KVM_S390_VM_CPU_MODEL, .attr = KVM_S390_VM_CPU_PROCESSOR, .addr = (uint64_t) &prop, }; int rc; if (!model) { /* compatibility handling if cpu models are disabled */ if (kvm_s390_cmma_available() && !mem_path) { kvm_s390_enable_cmma(); } return; } if (!kvm_s390_cpu_models_supported()) { error_setg(errp, "KVM doesn't support CPU models"); return; } prop.cpuid = s390_cpuid_from_cpu_model(model); prop.ibc = s390_ibc_from_cpu_model(model); /* configure cpu features indicated via STFL(e) */ s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL, (uint8_t *) prop.fac_list); rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); if (rc) { error_setg(errp, "KVM: Error configuring the CPU model: %d", rc); return; } /* configure cpu features indicated e.g. via SCLP */ rc = configure_cpu_feat(model->features); if (rc) { error_setg(errp, "KVM: Error configuring CPU features: %d", rc); return; } /* configure cpu subfunctions indicated via query / test bit */ rc = configure_cpu_subfunc(model->features); if (rc) { error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc); return; } /* enable CMM via CMMA - disable on hugetlbfs */ if (test_bit(S390_FEAT_CMM, model->features)) { if (mem_path) { error_report("Warning: CMM will not be enabled because it is not " "compatible to hugetlbfs."); } else { kvm_s390_enable_cmma(); } } }