/* * RISC-V translation routines for the RVV Standard Extension. * * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include "tcg/tcg-op-gvec.h" #include "tcg/tcg-gvec-desc.h" #include "internals.h" static bool trans_vsetvl(DisasContext *ctx, arg_vsetvl *a) { TCGv s1, s2, dst; if (!has_ext(ctx, RVV)) { return false; } s2 = tcg_temp_new(); dst = tcg_temp_new(); /* Using x0 as the rs1 register specifier, encodes an infinite AVL */ if (a->rs1 == 0) { /* As the mask is at least one bit, RV_VLEN_MAX is >= VLMAX */ s1 = tcg_const_tl(RV_VLEN_MAX); } else { s1 = tcg_temp_new(); gen_get_gpr(s1, a->rs1); } gen_get_gpr(s2, a->rs2); gen_helper_vsetvl(dst, cpu_env, s1, s2); gen_set_gpr(a->rd, dst); tcg_gen_movi_tl(cpu_pc, ctx->pc_succ_insn); lookup_and_goto_ptr(ctx); ctx->base.is_jmp = DISAS_NORETURN; tcg_temp_free(s1); tcg_temp_free(s2); tcg_temp_free(dst); return true; } static bool trans_vsetvli(DisasContext *ctx, arg_vsetvli *a) { TCGv s1, s2, dst; if (!has_ext(ctx, RVV)) { return false; } s2 = tcg_const_tl(a->zimm); dst = tcg_temp_new(); /* Using x0 as the rs1 register specifier, encodes an infinite AVL */ if (a->rs1 == 0) { /* As the mask is at least one bit, RV_VLEN_MAX is >= VLMAX */ s1 = tcg_const_tl(RV_VLEN_MAX); } else { s1 = tcg_temp_new(); gen_get_gpr(s1, a->rs1); } gen_helper_vsetvl(dst, cpu_env, s1, s2); gen_set_gpr(a->rd, dst); gen_goto_tb(ctx, 0, ctx->pc_succ_insn); ctx->base.is_jmp = DISAS_NORETURN; tcg_temp_free(s1); tcg_temp_free(s2); tcg_temp_free(dst); return true; } /* vector register offset from env */ static uint32_t vreg_ofs(DisasContext *s, int reg) { return offsetof(CPURISCVState, vreg) + reg * s->vlen / 8; } /* check functions */ /* * In cpu_get_tb_cpu_state(), set VILL if RVV was not present. * So RVV is also be checked in this function. */ static bool vext_check_isa_ill(DisasContext *s) { return !s->vill; } /* * There are two rules check here. * * 1. Vector register numbers are multiples of LMUL. (Section 3.2) * * 2. For all widening instructions, the destination LMUL value must also be * a supported LMUL value. (Section 11.2) */ static bool vext_check_reg(DisasContext *s, uint32_t reg, bool widen) { /* * The destination vector register group results are arranged as if both * SEW and LMUL were at twice their current settings. (Section 11.2). */ int legal = widen ? 2 << s->lmul : 1 << s->lmul; return !((s->lmul == 0x3 && widen) || (reg % legal)); } /* * There are two rules check here. * * 1. The destination vector register group for a masked vector instruction can * only overlap the source mask register (v0) when LMUL=1. (Section 5.3) * * 2. In widen instructions and some other insturctions, like vslideup.vx, * there is no need to check whether LMUL=1. */ static bool vext_check_overlap_mask(DisasContext *s, uint32_t vd, bool vm, bool force) { return (vm != 0 || vd != 0) || (!force && (s->lmul == 0)); } /* The LMUL setting must be such that LMUL * NFIELDS <= 8. (Section 7.8) */ static bool vext_check_nf(DisasContext *s, uint32_t nf) { return (1 << s->lmul) * nf <= 8; } /* * The destination vector register group cannot overlap a source vector register * group of a different element width. (Section 11.2) */ static inline bool vext_check_overlap_group(int rd, int dlen, int rs, int slen) { return ((rd >= rs + slen) || (rs >= rd + dlen)); } /* common translation macro */ #define GEN_VEXT_TRANS(NAME, SEQ, ARGTYPE, OP, CHECK) \ static bool trans_##NAME(DisasContext *s, arg_##ARGTYPE *a)\ { \ if (CHECK(s, a)) { \ return OP(s, a, SEQ); \ } \ return false; \ } /* *** unit stride load and store */ typedef void gen_helper_ldst_us(TCGv_ptr, TCGv_ptr, TCGv, TCGv_env, TCGv_i32); static bool ldst_us_trans(uint32_t vd, uint32_t rs1, uint32_t data, gen_helper_ldst_us *fn, DisasContext *s) { TCGv_ptr dest, mask; TCGv base; TCGv_i32 desc; TCGLabel *over = gen_new_label(); tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); dest = tcg_temp_new_ptr(); mask = tcg_temp_new_ptr(); base = tcg_temp_new(); /* * As simd_desc supports at most 256 bytes, and in this implementation, * the max vector group length is 2048 bytes. So split it into two parts. * * The first part is vlen in bytes, encoded in maxsz of simd_desc. * The second part is lmul, encoded in data of simd_desc. */ desc = tcg_const_i32(simd_desc(0, s->vlen / 8, data)); gen_get_gpr(base, rs1); tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); fn(dest, mask, base, cpu_env, desc); tcg_temp_free_ptr(dest); tcg_temp_free_ptr(mask); tcg_temp_free(base); tcg_temp_free_i32(desc); gen_set_label(over); return true; } static bool ld_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t seq) { uint32_t data = 0; gen_helper_ldst_us *fn; static gen_helper_ldst_us * const fns[2][7][4] = { /* masked unit stride load */ { { gen_helper_vlb_v_b_mask, gen_helper_vlb_v_h_mask, gen_helper_vlb_v_w_mask, gen_helper_vlb_v_d_mask }, { NULL, gen_helper_vlh_v_h_mask, gen_helper_vlh_v_w_mask, gen_helper_vlh_v_d_mask }, { NULL, NULL, gen_helper_vlw_v_w_mask, gen_helper_vlw_v_d_mask }, { gen_helper_vle_v_b_mask, gen_helper_vle_v_h_mask, gen_helper_vle_v_w_mask, gen_helper_vle_v_d_mask }, { gen_helper_vlbu_v_b_mask, gen_helper_vlbu_v_h_mask, gen_helper_vlbu_v_w_mask, gen_helper_vlbu_v_d_mask }, { NULL, gen_helper_vlhu_v_h_mask, gen_helper_vlhu_v_w_mask, gen_helper_vlhu_v_d_mask }, { NULL, NULL, gen_helper_vlwu_v_w_mask, gen_helper_vlwu_v_d_mask } }, /* unmasked unit stride load */ { { gen_helper_vlb_v_b, gen_helper_vlb_v_h, gen_helper_vlb_v_w, gen_helper_vlb_v_d }, { NULL, gen_helper_vlh_v_h, gen_helper_vlh_v_w, gen_helper_vlh_v_d }, { NULL, NULL, gen_helper_vlw_v_w, gen_helper_vlw_v_d }, { gen_helper_vle_v_b, gen_helper_vle_v_h, gen_helper_vle_v_w, gen_helper_vle_v_d }, { gen_helper_vlbu_v_b, gen_helper_vlbu_v_h, gen_helper_vlbu_v_w, gen_helper_vlbu_v_d }, { NULL, gen_helper_vlhu_v_h, gen_helper_vlhu_v_w, gen_helper_vlhu_v_d }, { NULL, NULL, gen_helper_vlwu_v_w, gen_helper_vlwu_v_d } } }; fn = fns[a->vm][seq][s->sew]; if (fn == NULL) { return false; } data = FIELD_DP32(data, VDATA, MLEN, s->mlen); data = FIELD_DP32(data, VDATA, VM, a->vm); data = FIELD_DP32(data, VDATA, LMUL, s->lmul); data = FIELD_DP32(data, VDATA, NF, a->nf); return ldst_us_trans(a->rd, a->rs1, data, fn, s); } static bool ld_us_check(DisasContext *s, arg_r2nfvm* a) { return (vext_check_isa_ill(s) && vext_check_overlap_mask(s, a->rd, a->vm, false) && vext_check_reg(s, a->rd, false) && vext_check_nf(s, a->nf)); } GEN_VEXT_TRANS(vlb_v, 0, r2nfvm, ld_us_op, ld_us_check) GEN_VEXT_TRANS(vlh_v, 1, r2nfvm, ld_us_op, ld_us_check) GEN_VEXT_TRANS(vlw_v, 2, r2nfvm, ld_us_op, ld_us_check) GEN_VEXT_TRANS(vle_v, 3, r2nfvm, ld_us_op, ld_us_check) GEN_VEXT_TRANS(vlbu_v, 4, r2nfvm, ld_us_op, ld_us_check) GEN_VEXT_TRANS(vlhu_v, 5, r2nfvm, ld_us_op, ld_us_check) GEN_VEXT_TRANS(vlwu_v, 6, r2nfvm, ld_us_op, ld_us_check) static bool st_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t seq) { uint32_t data = 0; gen_helper_ldst_us *fn; static gen_helper_ldst_us * const fns[2][4][4] = { /* masked unit stride load and store */ { { gen_helper_vsb_v_b_mask, gen_helper_vsb_v_h_mask, gen_helper_vsb_v_w_mask, gen_helper_vsb_v_d_mask }, { NULL, gen_helper_vsh_v_h_mask, gen_helper_vsh_v_w_mask, gen_helper_vsh_v_d_mask }, { NULL, NULL, gen_helper_vsw_v_w_mask, gen_helper_vsw_v_d_mask }, { gen_helper_vse_v_b_mask, gen_helper_vse_v_h_mask, gen_helper_vse_v_w_mask, gen_helper_vse_v_d_mask } }, /* unmasked unit stride store */ { { gen_helper_vsb_v_b, gen_helper_vsb_v_h, gen_helper_vsb_v_w, gen_helper_vsb_v_d }, { NULL, gen_helper_vsh_v_h, gen_helper_vsh_v_w, gen_helper_vsh_v_d }, { NULL, NULL, gen_helper_vsw_v_w, gen_helper_vsw_v_d }, { gen_helper_vse_v_b, gen_helper_vse_v_h, gen_helper_vse_v_w, gen_helper_vse_v_d } } }; fn = fns[a->vm][seq][s->sew]; if (fn == NULL) { return false; } data = FIELD_DP32(data, VDATA, MLEN, s->mlen); data = FIELD_DP32(data, VDATA, VM, a->vm); data = FIELD_DP32(data, VDATA, LMUL, s->lmul); data = FIELD_DP32(data, VDATA, NF, a->nf); return ldst_us_trans(a->rd, a->rs1, data, fn, s); } static bool st_us_check(DisasContext *s, arg_r2nfvm* a) { return (vext_check_isa_ill(s) && vext_check_reg(s, a->rd, false) && vext_check_nf(s, a->nf)); } GEN_VEXT_TRANS(vsb_v, 0, r2nfvm, st_us_op, st_us_check) GEN_VEXT_TRANS(vsh_v, 1, r2nfvm, st_us_op, st_us_check) GEN_VEXT_TRANS(vsw_v, 2, r2nfvm, st_us_op, st_us_check) GEN_VEXT_TRANS(vse_v, 3, r2nfvm, st_us_op, st_us_check) /* *** stride load and store */ typedef void gen_helper_ldst_stride(TCGv_ptr, TCGv_ptr, TCGv, TCGv, TCGv_env, TCGv_i32); static bool ldst_stride_trans(uint32_t vd, uint32_t rs1, uint32_t rs2, uint32_t data, gen_helper_ldst_stride *fn, DisasContext *s) { TCGv_ptr dest, mask; TCGv base, stride; TCGv_i32 desc; TCGLabel *over = gen_new_label(); tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); dest = tcg_temp_new_ptr(); mask = tcg_temp_new_ptr(); base = tcg_temp_new(); stride = tcg_temp_new(); desc = tcg_const_i32(simd_desc(0, s->vlen / 8, data)); gen_get_gpr(base, rs1); gen_get_gpr(stride, rs2); tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); fn(dest, mask, base, stride, cpu_env, desc); tcg_temp_free_ptr(dest); tcg_temp_free_ptr(mask); tcg_temp_free(base); tcg_temp_free(stride); tcg_temp_free_i32(desc); gen_set_label(over); return true; } static bool ld_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t seq) { uint32_t data = 0; gen_helper_ldst_stride *fn; static gen_helper_ldst_stride * const fns[7][4] = { { gen_helper_vlsb_v_b, gen_helper_vlsb_v_h, gen_helper_vlsb_v_w, gen_helper_vlsb_v_d }, { NULL, gen_helper_vlsh_v_h, gen_helper_vlsh_v_w, gen_helper_vlsh_v_d }, { NULL, NULL, gen_helper_vlsw_v_w, gen_helper_vlsw_v_d }, { gen_helper_vlse_v_b, gen_helper_vlse_v_h, gen_helper_vlse_v_w, gen_helper_vlse_v_d }, { gen_helper_vlsbu_v_b, gen_helper_vlsbu_v_h, gen_helper_vlsbu_v_w, gen_helper_vlsbu_v_d }, { NULL, gen_helper_vlshu_v_h, gen_helper_vlshu_v_w, gen_helper_vlshu_v_d }, { NULL, NULL, gen_helper_vlswu_v_w, gen_helper_vlswu_v_d }, }; fn = fns[seq][s->sew]; if (fn == NULL) { return false; } data = FIELD_DP32(data, VDATA, MLEN, s->mlen); data = FIELD_DP32(data, VDATA, VM, a->vm); data = FIELD_DP32(data, VDATA, LMUL, s->lmul); data = FIELD_DP32(data, VDATA, NF, a->nf); return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s); } static bool ld_stride_check(DisasContext *s, arg_rnfvm* a) { return (vext_check_isa_ill(s) && vext_check_overlap_mask(s, a->rd, a->vm, false) && vext_check_reg(s, a->rd, false) && vext_check_nf(s, a->nf)); } GEN_VEXT_TRANS(vlsb_v, 0, rnfvm, ld_stride_op, ld_stride_check) GEN_VEXT_TRANS(vlsh_v, 1, rnfvm, ld_stride_op, ld_stride_check) GEN_VEXT_TRANS(vlsw_v, 2, rnfvm, ld_stride_op, ld_stride_check) GEN_VEXT_TRANS(vlse_v, 3, rnfvm, ld_stride_op, ld_stride_check) GEN_VEXT_TRANS(vlsbu_v, 4, rnfvm, ld_stride_op, ld_stride_check) GEN_VEXT_TRANS(vlshu_v, 5, rnfvm, ld_stride_op, ld_stride_check) GEN_VEXT_TRANS(vlswu_v, 6, rnfvm, ld_stride_op, ld_stride_check) static bool st_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t seq) { uint32_t data = 0; gen_helper_ldst_stride *fn; static gen_helper_ldst_stride * const fns[4][4] = { /* masked stride store */ { gen_helper_vssb_v_b, gen_helper_vssb_v_h, gen_helper_vssb_v_w, gen_helper_vssb_v_d }, { NULL, gen_helper_vssh_v_h, gen_helper_vssh_v_w, gen_helper_vssh_v_d }, { NULL, NULL, gen_helper_vssw_v_w, gen_helper_vssw_v_d }, { gen_helper_vsse_v_b, gen_helper_vsse_v_h, gen_helper_vsse_v_w, gen_helper_vsse_v_d } }; data = FIELD_DP32(data, VDATA, MLEN, s->mlen); data = FIELD_DP32(data, VDATA, VM, a->vm); data = FIELD_DP32(data, VDATA, LMUL, s->lmul); data = FIELD_DP32(data, VDATA, NF, a->nf); fn = fns[seq][s->sew]; if (fn == NULL) { return false; } return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s); } static bool st_stride_check(DisasContext *s, arg_rnfvm* a) { return (vext_check_isa_ill(s) && vext_check_reg(s, a->rd, false) && vext_check_nf(s, a->nf)); } GEN_VEXT_TRANS(vssb_v, 0, rnfvm, st_stride_op, st_stride_check) GEN_VEXT_TRANS(vssh_v, 1, rnfvm, st_stride_op, st_stride_check) GEN_VEXT_TRANS(vssw_v, 2, rnfvm, st_stride_op, st_stride_check) GEN_VEXT_TRANS(vsse_v, 3, rnfvm, st_stride_op, st_stride_check) /* *** index load and store */ typedef void gen_helper_ldst_index(TCGv_ptr, TCGv_ptr, TCGv, TCGv_ptr, TCGv_env, TCGv_i32); static bool ldst_index_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, uint32_t data, gen_helper_ldst_index *fn, DisasContext *s) { TCGv_ptr dest, mask, index; TCGv base; TCGv_i32 desc; TCGLabel *over = gen_new_label(); tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); dest = tcg_temp_new_ptr(); mask = tcg_temp_new_ptr(); index = tcg_temp_new_ptr(); base = tcg_temp_new(); desc = tcg_const_i32(simd_desc(0, s->vlen / 8, data)); gen_get_gpr(base, rs1); tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); tcg_gen_addi_ptr(index, cpu_env, vreg_ofs(s, vs2)); tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); fn(dest, mask, base, index, cpu_env, desc); tcg_temp_free_ptr(dest); tcg_temp_free_ptr(mask); tcg_temp_free_ptr(index); tcg_temp_free(base); tcg_temp_free_i32(desc); gen_set_label(over); return true; } static bool ld_index_op(DisasContext *s, arg_rnfvm *a, uint8_t seq) { uint32_t data = 0; gen_helper_ldst_index *fn; static gen_helper_ldst_index * const fns[7][4] = { { gen_helper_vlxb_v_b, gen_helper_vlxb_v_h, gen_helper_vlxb_v_w, gen_helper_vlxb_v_d }, { NULL, gen_helper_vlxh_v_h, gen_helper_vlxh_v_w, gen_helper_vlxh_v_d }, { NULL, NULL, gen_helper_vlxw_v_w, gen_helper_vlxw_v_d }, { gen_helper_vlxe_v_b, gen_helper_vlxe_v_h, gen_helper_vlxe_v_w, gen_helper_vlxe_v_d }, { gen_helper_vlxbu_v_b, gen_helper_vlxbu_v_h, gen_helper_vlxbu_v_w, gen_helper_vlxbu_v_d }, { NULL, gen_helper_vlxhu_v_h, gen_helper_vlxhu_v_w, gen_helper_vlxhu_v_d }, { NULL, NULL, gen_helper_vlxwu_v_w, gen_helper_vlxwu_v_d }, }; fn = fns[seq][s->sew]; if (fn == NULL) { return false; } data = FIELD_DP32(data, VDATA, MLEN, s->mlen); data = FIELD_DP32(data, VDATA, VM, a->vm); data = FIELD_DP32(data, VDATA, LMUL, s->lmul); data = FIELD_DP32(data, VDATA, NF, a->nf); return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s); } static bool ld_index_check(DisasContext *s, arg_rnfvm* a) { return (vext_check_isa_ill(s) && vext_check_overlap_mask(s, a->rd, a->vm, false) && vext_check_reg(s, a->rd, false) && vext_check_reg(s, a->rs2, false) && vext_check_nf(s, a->nf)); } GEN_VEXT_TRANS(vlxb_v, 0, rnfvm, ld_index_op, ld_index_check) GEN_VEXT_TRANS(vlxh_v, 1, rnfvm, ld_index_op, ld_index_check) GEN_VEXT_TRANS(vlxw_v, 2, rnfvm, ld_index_op, ld_index_check) GEN_VEXT_TRANS(vlxe_v, 3, rnfvm, ld_index_op, ld_index_check) GEN_VEXT_TRANS(vlxbu_v, 4, rnfvm, ld_index_op, ld_index_check) GEN_VEXT_TRANS(vlxhu_v, 5, rnfvm, ld_index_op, ld_index_check) GEN_VEXT_TRANS(vlxwu_v, 6, rnfvm, ld_index_op, ld_index_check) static bool st_index_op(DisasContext *s, arg_rnfvm *a, uint8_t seq) { uint32_t data = 0; gen_helper_ldst_index *fn; static gen_helper_ldst_index * const fns[4][4] = { { gen_helper_vsxb_v_b, gen_helper_vsxb_v_h, gen_helper_vsxb_v_w, gen_helper_vsxb_v_d }, { NULL, gen_helper_vsxh_v_h, gen_helper_vsxh_v_w, gen_helper_vsxh_v_d }, { NULL, NULL, gen_helper_vsxw_v_w, gen_helper_vsxw_v_d }, { gen_helper_vsxe_v_b, gen_helper_vsxe_v_h, gen_helper_vsxe_v_w, gen_helper_vsxe_v_d } }; fn = fns[seq][s->sew]; if (fn == NULL) { return false; } data = FIELD_DP32(data, VDATA, MLEN, s->mlen); data = FIELD_DP32(data, VDATA, VM, a->vm); data = FIELD_DP32(data, VDATA, LMUL, s->lmul); data = FIELD_DP32(data, VDATA, NF, a->nf); return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s); } static bool st_index_check(DisasContext *s, arg_rnfvm* a) { return (vext_check_isa_ill(s) && vext_check_reg(s, a->rd, false) && vext_check_reg(s, a->rs2, false) && vext_check_nf(s, a->nf)); } GEN_VEXT_TRANS(vsxb_v, 0, rnfvm, st_index_op, st_index_check) GEN_VEXT_TRANS(vsxh_v, 1, rnfvm, st_index_op, st_index_check) GEN_VEXT_TRANS(vsxw_v, 2, rnfvm, st_index_op, st_index_check) GEN_VEXT_TRANS(vsxe_v, 3, rnfvm, st_index_op, st_index_check) /* *** unit stride fault-only-first load */ static bool ldff_trans(uint32_t vd, uint32_t rs1, uint32_t data, gen_helper_ldst_us *fn, DisasContext *s) { TCGv_ptr dest, mask; TCGv base; TCGv_i32 desc; TCGLabel *over = gen_new_label(); tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); dest = tcg_temp_new_ptr(); mask = tcg_temp_new_ptr(); base = tcg_temp_new(); desc = tcg_const_i32(simd_desc(0, s->vlen / 8, data)); gen_get_gpr(base, rs1); tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); fn(dest, mask, base, cpu_env, desc); tcg_temp_free_ptr(dest); tcg_temp_free_ptr(mask); tcg_temp_free(base); tcg_temp_free_i32(desc); gen_set_label(over); return true; } static bool ldff_op(DisasContext *s, arg_r2nfvm *a, uint8_t seq) { uint32_t data = 0; gen_helper_ldst_us *fn; static gen_helper_ldst_us * const fns[7][4] = { { gen_helper_vlbff_v_b, gen_helper_vlbff_v_h, gen_helper_vlbff_v_w, gen_helper_vlbff_v_d }, { NULL, gen_helper_vlhff_v_h, gen_helper_vlhff_v_w, gen_helper_vlhff_v_d }, { NULL, NULL, gen_helper_vlwff_v_w, gen_helper_vlwff_v_d }, { gen_helper_vleff_v_b, gen_helper_vleff_v_h, gen_helper_vleff_v_w, gen_helper_vleff_v_d }, { gen_helper_vlbuff_v_b, gen_helper_vlbuff_v_h, gen_helper_vlbuff_v_w, gen_helper_vlbuff_v_d }, { NULL, gen_helper_vlhuff_v_h, gen_helper_vlhuff_v_w, gen_helper_vlhuff_v_d }, { NULL, NULL, gen_helper_vlwuff_v_w, gen_helper_vlwuff_v_d } }; fn = fns[seq][s->sew]; if (fn == NULL) { return false; } data = FIELD_DP32(data, VDATA, MLEN, s->mlen); data = FIELD_DP32(data, VDATA, VM, a->vm); data = FIELD_DP32(data, VDATA, LMUL, s->lmul); data = FIELD_DP32(data, VDATA, NF, a->nf); return ldff_trans(a->rd, a->rs1, data, fn, s); } GEN_VEXT_TRANS(vlbff_v, 0, r2nfvm, ldff_op, ld_us_check) GEN_VEXT_TRANS(vlhff_v, 1, r2nfvm, ldff_op, ld_us_check) GEN_VEXT_TRANS(vlwff_v, 2, r2nfvm, ldff_op, ld_us_check) GEN_VEXT_TRANS(vleff_v, 3, r2nfvm, ldff_op, ld_us_check) GEN_VEXT_TRANS(vlbuff_v, 4, r2nfvm, ldff_op, ld_us_check) GEN_VEXT_TRANS(vlhuff_v, 5, r2nfvm, ldff_op, ld_us_check) GEN_VEXT_TRANS(vlwuff_v, 6, r2nfvm, ldff_op, ld_us_check) /* *** vector atomic operation */ typedef void gen_helper_amo(TCGv_ptr, TCGv_ptr, TCGv, TCGv_ptr, TCGv_env, TCGv_i32); static bool amo_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, uint32_t data, gen_helper_amo *fn, DisasContext *s) { TCGv_ptr dest, mask, index; TCGv base; TCGv_i32 desc; TCGLabel *over = gen_new_label(); tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); dest = tcg_temp_new_ptr(); mask = tcg_temp_new_ptr(); index = tcg_temp_new_ptr(); base = tcg_temp_new(); desc = tcg_const_i32(simd_desc(0, s->vlen / 8, data)); gen_get_gpr(base, rs1); tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); tcg_gen_addi_ptr(index, cpu_env, vreg_ofs(s, vs2)); tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); fn(dest, mask, base, index, cpu_env, desc); tcg_temp_free_ptr(dest); tcg_temp_free_ptr(mask); tcg_temp_free_ptr(index); tcg_temp_free(base); tcg_temp_free_i32(desc); gen_set_label(over); return true; } static bool amo_op(DisasContext *s, arg_rwdvm *a, uint8_t seq) { uint32_t data = 0; gen_helper_amo *fn; static gen_helper_amo *const fnsw[9] = { /* no atomic operation */ gen_helper_vamoswapw_v_w, gen_helper_vamoaddw_v_w, gen_helper_vamoxorw_v_w, gen_helper_vamoandw_v_w, gen_helper_vamoorw_v_w, gen_helper_vamominw_v_w, gen_helper_vamomaxw_v_w, gen_helper_vamominuw_v_w, gen_helper_vamomaxuw_v_w }; #ifdef TARGET_RISCV64 static gen_helper_amo *const fnsd[18] = { gen_helper_vamoswapw_v_d, gen_helper_vamoaddw_v_d, gen_helper_vamoxorw_v_d, gen_helper_vamoandw_v_d, gen_helper_vamoorw_v_d, gen_helper_vamominw_v_d, gen_helper_vamomaxw_v_d, gen_helper_vamominuw_v_d, gen_helper_vamomaxuw_v_d, gen_helper_vamoswapd_v_d, gen_helper_vamoaddd_v_d, gen_helper_vamoxord_v_d, gen_helper_vamoandd_v_d, gen_helper_vamoord_v_d, gen_helper_vamomind_v_d, gen_helper_vamomaxd_v_d, gen_helper_vamominud_v_d, gen_helper_vamomaxud_v_d }; #endif if (tb_cflags(s->base.tb) & CF_PARALLEL) { gen_helper_exit_atomic(cpu_env); s->base.is_jmp = DISAS_NORETURN; return true; } else { if (s->sew == 3) { #ifdef TARGET_RISCV64 fn = fnsd[seq]; #else /* Check done in amo_check(). */ g_assert_not_reached(); #endif } else { fn = fnsw[seq]; } } data = FIELD_DP32(data, VDATA, MLEN, s->mlen); data = FIELD_DP32(data, VDATA, VM, a->vm); data = FIELD_DP32(data, VDATA, LMUL, s->lmul); data = FIELD_DP32(data, VDATA, WD, a->wd); return amo_trans(a->rd, a->rs1, a->rs2, data, fn, s); } /* * There are two rules check here. * * 1. SEW must be at least as wide as the AMO memory element size. * * 2. If SEW is greater than XLEN, an illegal instruction exception is raised. */ static bool amo_check(DisasContext *s, arg_rwdvm* a) { return (!s->vill && has_ext(s, RVA) && (!a->wd || vext_check_overlap_mask(s, a->rd, a->vm, false)) && vext_check_reg(s, a->rd, false) && vext_check_reg(s, a->rs2, false) && ((1 << s->sew) <= sizeof(target_ulong)) && ((1 << s->sew) >= 4)); } GEN_VEXT_TRANS(vamoswapw_v, 0, rwdvm, amo_op, amo_check) GEN_VEXT_TRANS(vamoaddw_v, 1, rwdvm, amo_op, amo_check) GEN_VEXT_TRANS(vamoxorw_v, 2, rwdvm, amo_op, amo_check) GEN_VEXT_TRANS(vamoandw_v, 3, rwdvm, amo_op, amo_check) GEN_VEXT_TRANS(vamoorw_v, 4, rwdvm, amo_op, amo_check) GEN_VEXT_TRANS(vamominw_v, 5, rwdvm, amo_op, amo_check) GEN_VEXT_TRANS(vamomaxw_v, 6, rwdvm, amo_op, amo_check) GEN_VEXT_TRANS(vamominuw_v, 7, rwdvm, amo_op, amo_check) GEN_VEXT_TRANS(vamomaxuw_v, 8, rwdvm, amo_op, amo_check) #ifdef TARGET_RISCV64 GEN_VEXT_TRANS(vamoswapd_v, 9, rwdvm, amo_op, amo_check) GEN_VEXT_TRANS(vamoaddd_v, 10, rwdvm, amo_op, amo_check) GEN_VEXT_TRANS(vamoxord_v, 11, rwdvm, amo_op, amo_check) GEN_VEXT_TRANS(vamoandd_v, 12, rwdvm, amo_op, amo_check) GEN_VEXT_TRANS(vamoord_v, 13, rwdvm, amo_op, amo_check) GEN_VEXT_TRANS(vamomind_v, 14, rwdvm, amo_op, amo_check) GEN_VEXT_TRANS(vamomaxd_v, 15, rwdvm, amo_op, amo_check) GEN_VEXT_TRANS(vamominud_v, 16, rwdvm, amo_op, amo_check) GEN_VEXT_TRANS(vamomaxud_v, 17, rwdvm, amo_op, amo_check) #endif /* *** Vector Integer Arithmetic Instructions */ #define MAXSZ(s) (s->vlen >> (3 - s->lmul)) static bool opivv_check(DisasContext *s, arg_rmrr *a) { return (vext_check_isa_ill(s) && vext_check_overlap_mask(s, a->rd, a->vm, false) && vext_check_reg(s, a->rd, false) && vext_check_reg(s, a->rs2, false) && vext_check_reg(s, a->rs1, false)); } typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t, uint32_t); static inline bool do_opivv_gvec(DisasContext *s, arg_rmrr *a, GVecGen3Fn *gvec_fn, gen_helper_gvec_4_ptr *fn) { TCGLabel *over = gen_new_label(); if (!opivv_check(s, a)) { return false; } tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); if (a->vm && s->vl_eq_vlmax) { gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), vreg_ofs(s, a->rs1), MAXSZ(s), MAXSZ(s)); } else { uint32_t data = 0; data = FIELD_DP32(data, VDATA, MLEN, s->mlen); data = FIELD_DP32(data, VDATA, VM, a->vm); data = FIELD_DP32(data, VDATA, LMUL, s->lmul); tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), cpu_env, 0, s->vlen / 8, data, fn); } gen_set_label(over); return true; } /* OPIVV with GVEC IR */ #define GEN_OPIVV_GVEC_TRANS(NAME, SUF) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ static gen_helper_gvec_4_ptr * const fns[4] = { \ gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ }; \ return do_opivv_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ } GEN_OPIVV_GVEC_TRANS(vadd_vv, add) GEN_OPIVV_GVEC_TRANS(vsub_vv, sub) typedef void gen_helper_opivx(TCGv_ptr, TCGv_ptr, TCGv, TCGv_ptr, TCGv_env, TCGv_i32); static bool opivx_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, uint32_t vm, gen_helper_opivx *fn, DisasContext *s) { TCGv_ptr dest, src2, mask; TCGv src1; TCGv_i32 desc; uint32_t data = 0; TCGLabel *over = gen_new_label(); tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); dest = tcg_temp_new_ptr(); mask = tcg_temp_new_ptr(); src2 = tcg_temp_new_ptr(); src1 = tcg_temp_new(); gen_get_gpr(src1, rs1); data = FIELD_DP32(data, VDATA, MLEN, s->mlen); data = FIELD_DP32(data, VDATA, VM, vm); data = FIELD_DP32(data, VDATA, LMUL, s->lmul); desc = tcg_const_i32(simd_desc(0, s->vlen / 8, data)); tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); fn(dest, mask, src1, src2, cpu_env, desc); tcg_temp_free_ptr(dest); tcg_temp_free_ptr(mask); tcg_temp_free_ptr(src2); tcg_temp_free(src1); tcg_temp_free_i32(desc); gen_set_label(over); return true; } static bool opivx_check(DisasContext *s, arg_rmrr *a) { return (vext_check_isa_ill(s) && vext_check_overlap_mask(s, a->rd, a->vm, false) && vext_check_reg(s, a->rd, false) && vext_check_reg(s, a->rs2, false)); } typedef void GVecGen2sFn(unsigned, uint32_t, uint32_t, TCGv_i64, uint32_t, uint32_t); static inline bool do_opivx_gvec(DisasContext *s, arg_rmrr *a, GVecGen2sFn *gvec_fn, gen_helper_opivx *fn) { if (!opivx_check(s, a)) { return false; } if (a->vm && s->vl_eq_vlmax) { TCGv_i64 src1 = tcg_temp_new_i64(); TCGv tmp = tcg_temp_new(); gen_get_gpr(tmp, a->rs1); tcg_gen_ext_tl_i64(src1, tmp); gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), src1, MAXSZ(s), MAXSZ(s)); tcg_temp_free_i64(src1); tcg_temp_free(tmp); return true; } return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); } /* OPIVX with GVEC IR */ #define GEN_OPIVX_GVEC_TRANS(NAME, SUF) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ static gen_helper_opivx * const fns[4] = { \ gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ }; \ return do_opivx_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ } GEN_OPIVX_GVEC_TRANS(vadd_vx, adds) GEN_OPIVX_GVEC_TRANS(vsub_vx, subs) static void gen_vec_rsub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { tcg_gen_vec_sub8_i64(d, b, a); } static void gen_vec_rsub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { tcg_gen_vec_sub8_i64(d, b, a); } static void gen_rsub_i32(TCGv_i32 ret, TCGv_i32 arg1, TCGv_i32 arg2) { tcg_gen_sub_i32(ret, arg2, arg1); } static void gen_rsub_i64(TCGv_i64 ret, TCGv_i64 arg1, TCGv_i64 arg2) { tcg_gen_sub_i64(ret, arg2, arg1); } static void gen_rsub_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b) { tcg_gen_sub_vec(vece, r, b, a); } static void tcg_gen_gvec_rsubs(unsigned vece, uint32_t dofs, uint32_t aofs, TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) { static const GVecGen2s rsub_op[4] = { { .fni8 = gen_vec_rsub8_i64, .fniv = gen_rsub_vec, .fno = gen_helper_vec_rsubs8, .vece = MO_8 }, { .fni8 = gen_vec_rsub16_i64, .fniv = gen_rsub_vec, .fno = gen_helper_vec_rsubs16, .vece = MO_16 }, { .fni4 = gen_rsub_i32, .fniv = gen_rsub_vec, .fno = gen_helper_vec_rsubs32, .vece = MO_32 }, { .fni8 = gen_rsub_i64, .fniv = gen_rsub_vec, .fno = gen_helper_vec_rsubs64, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .vece = MO_64 }, }; tcg_debug_assert(vece <= MO_64); tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &rsub_op[vece]); } GEN_OPIVX_GVEC_TRANS(vrsub_vx, rsubs) static bool opivi_trans(uint32_t vd, uint32_t imm, uint32_t vs2, uint32_t vm, gen_helper_opivx *fn, DisasContext *s, int zx) { TCGv_ptr dest, src2, mask; TCGv src1; TCGv_i32 desc; uint32_t data = 0; TCGLabel *over = gen_new_label(); tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); dest = tcg_temp_new_ptr(); mask = tcg_temp_new_ptr(); src2 = tcg_temp_new_ptr(); if (zx) { src1 = tcg_const_tl(imm); } else { src1 = tcg_const_tl(sextract64(imm, 0, 5)); } data = FIELD_DP32(data, VDATA, MLEN, s->mlen); data = FIELD_DP32(data, VDATA, VM, vm); data = FIELD_DP32(data, VDATA, LMUL, s->lmul); desc = tcg_const_i32(simd_desc(0, s->vlen / 8, data)); tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); fn(dest, mask, src1, src2, cpu_env, desc); tcg_temp_free_ptr(dest); tcg_temp_free_ptr(mask); tcg_temp_free_ptr(src2); tcg_temp_free(src1); tcg_temp_free_i32(desc); gen_set_label(over); return true; } typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t, uint32_t, uint32_t); static inline bool do_opivi_gvec(DisasContext *s, arg_rmrr *a, GVecGen2iFn *gvec_fn, gen_helper_opivx *fn, int zx) { if (!opivx_check(s, a)) { return false; } if (a->vm && s->vl_eq_vlmax) { if (zx) { gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), extract64(a->rs1, 0, 5), MAXSZ(s), MAXSZ(s)); } else { gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), sextract64(a->rs1, 0, 5), MAXSZ(s), MAXSZ(s)); } } else { return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s, zx); } return true; } /* OPIVI with GVEC IR */ #define GEN_OPIVI_GVEC_TRANS(NAME, ZX, OPIVX, SUF) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ static gen_helper_opivx * const fns[4] = { \ gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ }; \ return do_opivi_gvec(s, a, tcg_gen_gvec_##SUF, \ fns[s->sew], ZX); \ } GEN_OPIVI_GVEC_TRANS(vadd_vi, 0, vadd_vx, addi) static void tcg_gen_gvec_rsubi(unsigned vece, uint32_t dofs, uint32_t aofs, int64_t c, uint32_t oprsz, uint32_t maxsz) { TCGv_i64 tmp = tcg_const_i64(c); tcg_gen_gvec_rsubs(vece, dofs, aofs, tmp, oprsz, maxsz); tcg_temp_free_i64(tmp); } GEN_OPIVI_GVEC_TRANS(vrsub_vi, 0, vrsub_vx, rsubi) /* Vector Widening Integer Add/Subtract */ /* OPIVV with WIDEN */ static bool opivv_widen_check(DisasContext *s, arg_rmrr *a) { return (vext_check_isa_ill(s) && vext_check_overlap_mask(s, a->rd, a->vm, true) && vext_check_reg(s, a->rd, true) && vext_check_reg(s, a->rs2, false) && vext_check_reg(s, a->rs1, false) && vext_check_overlap_group(a->rd, 2 << s->lmul, a->rs2, 1 << s->lmul) && vext_check_overlap_group(a->rd, 2 << s->lmul, a->rs1, 1 << s->lmul) && (s->lmul < 0x3) && (s->sew < 0x3)); } static bool do_opivv_widen(DisasContext *s, arg_rmrr *a, gen_helper_gvec_4_ptr *fn, bool (*checkfn)(DisasContext *, arg_rmrr *)) { if (checkfn(s, a)) { uint32_t data = 0; TCGLabel *over = gen_new_label(); tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); data = FIELD_DP32(data, VDATA, MLEN, s->mlen); data = FIELD_DP32(data, VDATA, VM, a->vm); data = FIELD_DP32(data, VDATA, LMUL, s->lmul); tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), cpu_env, 0, s->vlen / 8, data, fn); gen_set_label(over); return true; } return false; } #define GEN_OPIVV_WIDEN_TRANS(NAME, CHECK) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ static gen_helper_gvec_4_ptr * const fns[3] = { \ gen_helper_##NAME##_b, \ gen_helper_##NAME##_h, \ gen_helper_##NAME##_w \ }; \ return do_opivv_widen(s, a, fns[s->sew], CHECK); \ } GEN_OPIVV_WIDEN_TRANS(vwaddu_vv, opivv_widen_check) GEN_OPIVV_WIDEN_TRANS(vwadd_vv, opivv_widen_check) GEN_OPIVV_WIDEN_TRANS(vwsubu_vv, opivv_widen_check) GEN_OPIVV_WIDEN_TRANS(vwsub_vv, opivv_widen_check) /* OPIVX with WIDEN */ static bool opivx_widen_check(DisasContext *s, arg_rmrr *a) { return (vext_check_isa_ill(s) && vext_check_overlap_mask(s, a->rd, a->vm, true) && vext_check_reg(s, a->rd, true) && vext_check_reg(s, a->rs2, false) && vext_check_overlap_group(a->rd, 2 << s->lmul, a->rs2, 1 << s->lmul) && (s->lmul < 0x3) && (s->sew < 0x3)); } static bool do_opivx_widen(DisasContext *s, arg_rmrr *a, gen_helper_opivx *fn) { if (opivx_widen_check(s, a)) { return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); } return true; } #define GEN_OPIVX_WIDEN_TRANS(NAME) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ static gen_helper_opivx * const fns[3] = { \ gen_helper_##NAME##_b, \ gen_helper_##NAME##_h, \ gen_helper_##NAME##_w \ }; \ return do_opivx_widen(s, a, fns[s->sew]); \ } GEN_OPIVX_WIDEN_TRANS(vwaddu_vx) GEN_OPIVX_WIDEN_TRANS(vwadd_vx) GEN_OPIVX_WIDEN_TRANS(vwsubu_vx) GEN_OPIVX_WIDEN_TRANS(vwsub_vx) /* WIDEN OPIVV with WIDEN */ static bool opiwv_widen_check(DisasContext *s, arg_rmrr *a) { return (vext_check_isa_ill(s) && vext_check_overlap_mask(s, a->rd, a->vm, true) && vext_check_reg(s, a->rd, true) && vext_check_reg(s, a->rs2, true) && vext_check_reg(s, a->rs1, false) && vext_check_overlap_group(a->rd, 2 << s->lmul, a->rs1, 1 << s->lmul) && (s->lmul < 0x3) && (s->sew < 0x3)); } static bool do_opiwv_widen(DisasContext *s, arg_rmrr *a, gen_helper_gvec_4_ptr *fn) { if (opiwv_widen_check(s, a)) { uint32_t data = 0; TCGLabel *over = gen_new_label(); tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); data = FIELD_DP32(data, VDATA, MLEN, s->mlen); data = FIELD_DP32(data, VDATA, VM, a->vm); data = FIELD_DP32(data, VDATA, LMUL, s->lmul); tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), cpu_env, 0, s->vlen / 8, data, fn); gen_set_label(over); return true; } return false; } #define GEN_OPIWV_WIDEN_TRANS(NAME) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ static gen_helper_gvec_4_ptr * const fns[3] = { \ gen_helper_##NAME##_b, \ gen_helper_##NAME##_h, \ gen_helper_##NAME##_w \ }; \ return do_opiwv_widen(s, a, fns[s->sew]); \ } GEN_OPIWV_WIDEN_TRANS(vwaddu_wv) GEN_OPIWV_WIDEN_TRANS(vwadd_wv) GEN_OPIWV_WIDEN_TRANS(vwsubu_wv) GEN_OPIWV_WIDEN_TRANS(vwsub_wv) /* WIDEN OPIVX with WIDEN */ static bool opiwx_widen_check(DisasContext *s, arg_rmrr *a) { return (vext_check_isa_ill(s) && vext_check_overlap_mask(s, a->rd, a->vm, true) && vext_check_reg(s, a->rd, true) && vext_check_reg(s, a->rs2, true) && (s->lmul < 0x3) && (s->sew < 0x3)); } static bool do_opiwx_widen(DisasContext *s, arg_rmrr *a, gen_helper_opivx *fn) { if (opiwx_widen_check(s, a)) { return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); } return false; } #define GEN_OPIWX_WIDEN_TRANS(NAME) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ static gen_helper_opivx * const fns[3] = { \ gen_helper_##NAME##_b, \ gen_helper_##NAME##_h, \ gen_helper_##NAME##_w \ }; \ return do_opiwx_widen(s, a, fns[s->sew]); \ } GEN_OPIWX_WIDEN_TRANS(vwaddu_wx) GEN_OPIWX_WIDEN_TRANS(vwadd_wx) GEN_OPIWX_WIDEN_TRANS(vwsubu_wx) GEN_OPIWX_WIDEN_TRANS(vwsub_wx) /* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */ /* OPIVV without GVEC IR */ #define GEN_OPIVV_TRANS(NAME, CHECK) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ if (CHECK(s, a)) { \ uint32_t data = 0; \ static gen_helper_gvec_4_ptr * const fns[4] = { \ gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ }; \ TCGLabel *over = gen_new_label(); \ tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ \ data = FIELD_DP32(data, VDATA, MLEN, s->mlen); \ data = FIELD_DP32(data, VDATA, VM, a->vm); \ data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ vreg_ofs(s, a->rs1), \ vreg_ofs(s, a->rs2), cpu_env, 0, \ s->vlen / 8, data, fns[s->sew]); \ gen_set_label(over); \ return true; \ } \ return false; \ } /* * For vadc and vsbc, an illegal instruction exception is raised if the * destination vector register is v0 and LMUL > 1. (Section 12.3) */ static bool opivv_vadc_check(DisasContext *s, arg_rmrr *a) { return (vext_check_isa_ill(s) && vext_check_reg(s, a->rd, false) && vext_check_reg(s, a->rs2, false) && vext_check_reg(s, a->rs1, false) && ((a->rd != 0) || (s->lmul == 0))); } GEN_OPIVV_TRANS(vadc_vvm, opivv_vadc_check) GEN_OPIVV_TRANS(vsbc_vvm, opivv_vadc_check) /* * For vmadc and vmsbc, an illegal instruction exception is raised if the * destination vector register overlaps a source vector register group. */ static bool opivv_vmadc_check(DisasContext *s, arg_rmrr *a) { return (vext_check_isa_ill(s) && vext_check_reg(s, a->rs2, false) && vext_check_reg(s, a->rs1, false) && vext_check_overlap_group(a->rd, 1, a->rs1, 1 << s->lmul) && vext_check_overlap_group(a->rd, 1, a->rs2, 1 << s->lmul)); } GEN_OPIVV_TRANS(vmadc_vvm, opivv_vmadc_check) GEN_OPIVV_TRANS(vmsbc_vvm, opivv_vmadc_check) static bool opivx_vadc_check(DisasContext *s, arg_rmrr *a) { return (vext_check_isa_ill(s) && vext_check_reg(s, a->rd, false) && vext_check_reg(s, a->rs2, false) && ((a->rd != 0) || (s->lmul == 0))); } /* OPIVX without GVEC IR */ #define GEN_OPIVX_TRANS(NAME, CHECK) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ if (CHECK(s, a)) { \ static gen_helper_opivx * const fns[4] = { \ gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ }; \ \ return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ } \ return false; \ } GEN_OPIVX_TRANS(vadc_vxm, opivx_vadc_check) GEN_OPIVX_TRANS(vsbc_vxm, opivx_vadc_check) static bool opivx_vmadc_check(DisasContext *s, arg_rmrr *a) { return (vext_check_isa_ill(s) && vext_check_reg(s, a->rs2, false) && vext_check_overlap_group(a->rd, 1, a->rs2, 1 << s->lmul)); } GEN_OPIVX_TRANS(vmadc_vxm, opivx_vmadc_check) GEN_OPIVX_TRANS(vmsbc_vxm, opivx_vmadc_check) /* OPIVI without GVEC IR */ #define GEN_OPIVI_TRANS(NAME, ZX, OPIVX, CHECK) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ if (CHECK(s, a)) { \ static gen_helper_opivx * const fns[4] = { \ gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ }; \ return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ fns[s->sew], s, ZX); \ } \ return false; \ } GEN_OPIVI_TRANS(vadc_vim, 0, vadc_vxm, opivx_vadc_check) GEN_OPIVI_TRANS(vmadc_vim, 0, vmadc_vxm, opivx_vmadc_check) /* Vector Bitwise Logical Instructions */ GEN_OPIVV_GVEC_TRANS(vand_vv, and) GEN_OPIVV_GVEC_TRANS(vor_vv, or) GEN_OPIVV_GVEC_TRANS(vxor_vv, xor) GEN_OPIVX_GVEC_TRANS(vand_vx, ands) GEN_OPIVX_GVEC_TRANS(vor_vx, ors) GEN_OPIVX_GVEC_TRANS(vxor_vx, xors) GEN_OPIVI_GVEC_TRANS(vand_vi, 0, vand_vx, andi) GEN_OPIVI_GVEC_TRANS(vor_vi, 0, vor_vx, ori) GEN_OPIVI_GVEC_TRANS(vxor_vi, 0, vxor_vx, xori) /* Vector Single-Width Bit Shift Instructions */ GEN_OPIVV_GVEC_TRANS(vsll_vv, shlv) GEN_OPIVV_GVEC_TRANS(vsrl_vv, shrv) GEN_OPIVV_GVEC_TRANS(vsra_vv, sarv) typedef void GVecGen2sFn32(unsigned, uint32_t, uint32_t, TCGv_i32, uint32_t, uint32_t); static inline bool do_opivx_gvec_shift(DisasContext *s, arg_rmrr *a, GVecGen2sFn32 *gvec_fn, gen_helper_opivx *fn) { if (!opivx_check(s, a)) { return false; } if (a->vm && s->vl_eq_vlmax) { TCGv_i32 src1 = tcg_temp_new_i32(); TCGv tmp = tcg_temp_new(); gen_get_gpr(tmp, a->rs1); tcg_gen_trunc_tl_i32(src1, tmp); tcg_gen_extract_i32(src1, src1, 0, s->sew + 3); gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), src1, MAXSZ(s), MAXSZ(s)); tcg_temp_free_i32(src1); tcg_temp_free(tmp); return true; } return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); } #define GEN_OPIVX_GVEC_SHIFT_TRANS(NAME, SUF) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ static gen_helper_opivx * const fns[4] = { \ gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ }; \ \ return do_opivx_gvec_shift(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ } GEN_OPIVX_GVEC_SHIFT_TRANS(vsll_vx, shls) GEN_OPIVX_GVEC_SHIFT_TRANS(vsrl_vx, shrs) GEN_OPIVX_GVEC_SHIFT_TRANS(vsra_vx, sars) GEN_OPIVI_GVEC_TRANS(vsll_vi, 1, vsll_vx, shli) GEN_OPIVI_GVEC_TRANS(vsrl_vi, 1, vsrl_vx, shri) GEN_OPIVI_GVEC_TRANS(vsra_vi, 1, vsra_vx, sari) /* Vector Narrowing Integer Right Shift Instructions */ static bool opivv_narrow_check(DisasContext *s, arg_rmrr *a) { return (vext_check_isa_ill(s) && vext_check_overlap_mask(s, a->rd, a->vm, false) && vext_check_reg(s, a->rd, false) && vext_check_reg(s, a->rs2, true) && vext_check_reg(s, a->rs1, false) && vext_check_overlap_group(a->rd, 1 << s->lmul, a->rs2, 2 << s->lmul) && (s->lmul < 0x3) && (s->sew < 0x3)); } /* OPIVV with NARROW */ #define GEN_OPIVV_NARROW_TRANS(NAME) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ if (opivv_narrow_check(s, a)) { \ uint32_t data = 0; \ static gen_helper_gvec_4_ptr * const fns[3] = { \ gen_helper_##NAME##_b, \ gen_helper_##NAME##_h, \ gen_helper_##NAME##_w, \ }; \ TCGLabel *over = gen_new_label(); \ tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ \ data = FIELD_DP32(data, VDATA, MLEN, s->mlen); \ data = FIELD_DP32(data, VDATA, VM, a->vm); \ data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ vreg_ofs(s, a->rs1), \ vreg_ofs(s, a->rs2), cpu_env, 0, \ s->vlen / 8, data, fns[s->sew]); \ gen_set_label(over); \ return true; \ } \ return false; \ } GEN_OPIVV_NARROW_TRANS(vnsra_vv) GEN_OPIVV_NARROW_TRANS(vnsrl_vv) static bool opivx_narrow_check(DisasContext *s, arg_rmrr *a) { return (vext_check_isa_ill(s) && vext_check_overlap_mask(s, a->rd, a->vm, false) && vext_check_reg(s, a->rd, false) && vext_check_reg(s, a->rs2, true) && vext_check_overlap_group(a->rd, 1 << s->lmul, a->rs2, 2 << s->lmul) && (s->lmul < 0x3) && (s->sew < 0x3)); } /* OPIVX with NARROW */ #define GEN_OPIVX_NARROW_TRANS(NAME) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ if (opivx_narrow_check(s, a)) { \ static gen_helper_opivx * const fns[3] = { \ gen_helper_##NAME##_b, \ gen_helper_##NAME##_h, \ gen_helper_##NAME##_w, \ }; \ return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ } \ return false; \ } GEN_OPIVX_NARROW_TRANS(vnsra_vx) GEN_OPIVX_NARROW_TRANS(vnsrl_vx) /* OPIVI with NARROW */ #define GEN_OPIVI_NARROW_TRANS(NAME, ZX, OPIVX) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ if (opivx_narrow_check(s, a)) { \ static gen_helper_opivx * const fns[3] = { \ gen_helper_##OPIVX##_b, \ gen_helper_##OPIVX##_h, \ gen_helper_##OPIVX##_w, \ }; \ return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ fns[s->sew], s, ZX); \ } \ return false; \ } GEN_OPIVI_NARROW_TRANS(vnsra_vi, 1, vnsra_vx) GEN_OPIVI_NARROW_TRANS(vnsrl_vi, 1, vnsrl_vx) /* Vector Integer Comparison Instructions */ /* * For all comparison instructions, an illegal instruction exception is raised * if the destination vector register overlaps a source vector register group * and LMUL > 1. */ static bool opivv_cmp_check(DisasContext *s, arg_rmrr *a) { return (vext_check_isa_ill(s) && vext_check_reg(s, a->rs2, false) && vext_check_reg(s, a->rs1, false) && ((vext_check_overlap_group(a->rd, 1, a->rs1, 1 << s->lmul) && vext_check_overlap_group(a->rd, 1, a->rs2, 1 << s->lmul)) || (s->lmul == 0))); } GEN_OPIVV_TRANS(vmseq_vv, opivv_cmp_check) GEN_OPIVV_TRANS(vmsne_vv, opivv_cmp_check) GEN_OPIVV_TRANS(vmsltu_vv, opivv_cmp_check) GEN_OPIVV_TRANS(vmslt_vv, opivv_cmp_check) GEN_OPIVV_TRANS(vmsleu_vv, opivv_cmp_check) GEN_OPIVV_TRANS(vmsle_vv, opivv_cmp_check) static bool opivx_cmp_check(DisasContext *s, arg_rmrr *a) { return (vext_check_isa_ill(s) && vext_check_reg(s, a->rs2, false) && (vext_check_overlap_group(a->rd, 1, a->rs2, 1 << s->lmul) || (s->lmul == 0))); } GEN_OPIVX_TRANS(vmseq_vx, opivx_cmp_check) GEN_OPIVX_TRANS(vmsne_vx, opivx_cmp_check) GEN_OPIVX_TRANS(vmsltu_vx, opivx_cmp_check) GEN_OPIVX_TRANS(vmslt_vx, opivx_cmp_check) GEN_OPIVX_TRANS(vmsleu_vx, opivx_cmp_check) GEN_OPIVX_TRANS(vmsle_vx, opivx_cmp_check) GEN_OPIVX_TRANS(vmsgtu_vx, opivx_cmp_check) GEN_OPIVX_TRANS(vmsgt_vx, opivx_cmp_check) GEN_OPIVI_TRANS(vmseq_vi, 0, vmseq_vx, opivx_cmp_check) GEN_OPIVI_TRANS(vmsne_vi, 0, vmsne_vx, opivx_cmp_check) GEN_OPIVI_TRANS(vmsleu_vi, 1, vmsleu_vx, opivx_cmp_check) GEN_OPIVI_TRANS(vmsle_vi, 0, vmsle_vx, opivx_cmp_check) GEN_OPIVI_TRANS(vmsgtu_vi, 1, vmsgtu_vx, opivx_cmp_check) GEN_OPIVI_TRANS(vmsgt_vi, 0, vmsgt_vx, opivx_cmp_check) /* Vector Integer Min/Max Instructions */ GEN_OPIVV_GVEC_TRANS(vminu_vv, umin) GEN_OPIVV_GVEC_TRANS(vmin_vv, smin) GEN_OPIVV_GVEC_TRANS(vmaxu_vv, umax) GEN_OPIVV_GVEC_TRANS(vmax_vv, smax) GEN_OPIVX_TRANS(vminu_vx, opivx_check) GEN_OPIVX_TRANS(vmin_vx, opivx_check) GEN_OPIVX_TRANS(vmaxu_vx, opivx_check) GEN_OPIVX_TRANS(vmax_vx, opivx_check) /* Vector Single-Width Integer Multiply Instructions */ GEN_OPIVV_GVEC_TRANS(vmul_vv, mul) GEN_OPIVV_TRANS(vmulh_vv, opivv_check) GEN_OPIVV_TRANS(vmulhu_vv, opivv_check) GEN_OPIVV_TRANS(vmulhsu_vv, opivv_check) GEN_OPIVX_GVEC_TRANS(vmul_vx, muls) GEN_OPIVX_TRANS(vmulh_vx, opivx_check) GEN_OPIVX_TRANS(vmulhu_vx, opivx_check) GEN_OPIVX_TRANS(vmulhsu_vx, opivx_check) /* Vector Integer Divide Instructions */ GEN_OPIVV_TRANS(vdivu_vv, opivv_check) GEN_OPIVV_TRANS(vdiv_vv, opivv_check) GEN_OPIVV_TRANS(vremu_vv, opivv_check) GEN_OPIVV_TRANS(vrem_vv, opivv_check) GEN_OPIVX_TRANS(vdivu_vx, opivx_check) GEN_OPIVX_TRANS(vdiv_vx, opivx_check) GEN_OPIVX_TRANS(vremu_vx, opivx_check) GEN_OPIVX_TRANS(vrem_vx, opivx_check) /* Vector Widening Integer Multiply Instructions */ GEN_OPIVV_WIDEN_TRANS(vwmul_vv, opivv_widen_check) GEN_OPIVV_WIDEN_TRANS(vwmulu_vv, opivv_widen_check) GEN_OPIVV_WIDEN_TRANS(vwmulsu_vv, opivv_widen_check) GEN_OPIVX_WIDEN_TRANS(vwmul_vx) GEN_OPIVX_WIDEN_TRANS(vwmulu_vx) GEN_OPIVX_WIDEN_TRANS(vwmulsu_vx) /* Vector Single-Width Integer Multiply-Add Instructions */ GEN_OPIVV_TRANS(vmacc_vv, opivv_check) GEN_OPIVV_TRANS(vnmsac_vv, opivv_check) GEN_OPIVV_TRANS(vmadd_vv, opivv_check) GEN_OPIVV_TRANS(vnmsub_vv, opivv_check) GEN_OPIVX_TRANS(vmacc_vx, opivx_check) GEN_OPIVX_TRANS(vnmsac_vx, opivx_check) GEN_OPIVX_TRANS(vmadd_vx, opivx_check) GEN_OPIVX_TRANS(vnmsub_vx, opivx_check) /* Vector Widening Integer Multiply-Add Instructions */ GEN_OPIVV_WIDEN_TRANS(vwmaccu_vv, opivv_widen_check) GEN_OPIVV_WIDEN_TRANS(vwmacc_vv, opivv_widen_check) GEN_OPIVV_WIDEN_TRANS(vwmaccsu_vv, opivv_widen_check) GEN_OPIVX_WIDEN_TRANS(vwmaccu_vx) GEN_OPIVX_WIDEN_TRANS(vwmacc_vx) GEN_OPIVX_WIDEN_TRANS(vwmaccsu_vx) GEN_OPIVX_WIDEN_TRANS(vwmaccus_vx) /* Vector Integer Merge and Move Instructions */ static bool trans_vmv_v_v(DisasContext *s, arg_vmv_v_v *a) { if (vext_check_isa_ill(s) && vext_check_reg(s, a->rd, false) && vext_check_reg(s, a->rs1, false)) { if (s->vl_eq_vlmax) { tcg_gen_gvec_mov(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs1), MAXSZ(s), MAXSZ(s)); } else { uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); static gen_helper_gvec_2_ptr * const fns[4] = { gen_helper_vmv_v_v_b, gen_helper_vmv_v_v_h, gen_helper_vmv_v_v_w, gen_helper_vmv_v_v_d, }; TCGLabel *over = gen_new_label(); tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs1), cpu_env, 0, s->vlen / 8, data, fns[s->sew]); gen_set_label(over); } return true; } return false; } typedef void gen_helper_vmv_vx(TCGv_ptr, TCGv_i64, TCGv_env, TCGv_i32); static bool trans_vmv_v_x(DisasContext *s, arg_vmv_v_x *a) { if (vext_check_isa_ill(s) && vext_check_reg(s, a->rd, false)) { TCGv s1; TCGLabel *over = gen_new_label(); tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); s1 = tcg_temp_new(); gen_get_gpr(s1, a->rs1); if (s->vl_eq_vlmax) { tcg_gen_gvec_dup_tl(s->sew, vreg_ofs(s, a->rd), MAXSZ(s), MAXSZ(s), s1); } else { TCGv_i32 desc ; TCGv_i64 s1_i64 = tcg_temp_new_i64(); TCGv_ptr dest = tcg_temp_new_ptr(); uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); static gen_helper_vmv_vx * const fns[4] = { gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, }; tcg_gen_ext_tl_i64(s1_i64, s1); desc = tcg_const_i32(simd_desc(0, s->vlen / 8, data)); tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); fns[s->sew](dest, s1_i64, cpu_env, desc); tcg_temp_free_ptr(dest); tcg_temp_free_i32(desc); tcg_temp_free_i64(s1_i64); } tcg_temp_free(s1); gen_set_label(over); return true; } return false; } static bool trans_vmv_v_i(DisasContext *s, arg_vmv_v_i *a) { if (vext_check_isa_ill(s) && vext_check_reg(s, a->rd, false)) { int64_t simm = sextract64(a->rs1, 0, 5); if (s->vl_eq_vlmax) { tcg_gen_gvec_dup_imm(s->sew, vreg_ofs(s, a->rd), MAXSZ(s), MAXSZ(s), simm); } else { TCGv_i32 desc; TCGv_i64 s1; TCGv_ptr dest; uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); static gen_helper_vmv_vx * const fns[4] = { gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, }; TCGLabel *over = gen_new_label(); tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); s1 = tcg_const_i64(simm); dest = tcg_temp_new_ptr(); desc = tcg_const_i32(simd_desc(0, s->vlen / 8, data)); tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); fns[s->sew](dest, s1, cpu_env, desc); tcg_temp_free_ptr(dest); tcg_temp_free_i32(desc); tcg_temp_free_i64(s1); gen_set_label(over); } return true; } return false; } GEN_OPIVV_TRANS(vmerge_vvm, opivv_vadc_check) GEN_OPIVX_TRANS(vmerge_vxm, opivx_vadc_check) GEN_OPIVI_TRANS(vmerge_vim, 0, vmerge_vxm, opivx_vadc_check) /* *** Vector Fixed-Point Arithmetic Instructions */ /* Vector Single-Width Saturating Add and Subtract */ GEN_OPIVV_TRANS(vsaddu_vv, opivv_check) GEN_OPIVV_TRANS(vsadd_vv, opivv_check) GEN_OPIVV_TRANS(vssubu_vv, opivv_check) GEN_OPIVV_TRANS(vssub_vv, opivv_check) GEN_OPIVX_TRANS(vsaddu_vx, opivx_check) GEN_OPIVX_TRANS(vsadd_vx, opivx_check) GEN_OPIVX_TRANS(vssubu_vx, opivx_check) GEN_OPIVX_TRANS(vssub_vx, opivx_check) GEN_OPIVI_TRANS(vsaddu_vi, 1, vsaddu_vx, opivx_check) GEN_OPIVI_TRANS(vsadd_vi, 0, vsadd_vx, opivx_check) /* Vector Single-Width Averaging Add and Subtract */ GEN_OPIVV_TRANS(vaadd_vv, opivv_check) GEN_OPIVV_TRANS(vasub_vv, opivv_check) GEN_OPIVX_TRANS(vaadd_vx, opivx_check) GEN_OPIVX_TRANS(vasub_vx, opivx_check) GEN_OPIVI_TRANS(vaadd_vi, 0, vaadd_vx, opivx_check) /* Vector Single-Width Fractional Multiply with Rounding and Saturation */ GEN_OPIVV_TRANS(vsmul_vv, opivv_check) GEN_OPIVX_TRANS(vsmul_vx, opivx_check) /* Vector Widening Saturating Scaled Multiply-Add */ GEN_OPIVV_WIDEN_TRANS(vwsmaccu_vv, opivv_widen_check) GEN_OPIVV_WIDEN_TRANS(vwsmacc_vv, opivv_widen_check) GEN_OPIVV_WIDEN_TRANS(vwsmaccsu_vv, opivv_widen_check) GEN_OPIVX_WIDEN_TRANS(vwsmaccu_vx) GEN_OPIVX_WIDEN_TRANS(vwsmacc_vx) GEN_OPIVX_WIDEN_TRANS(vwsmaccsu_vx) GEN_OPIVX_WIDEN_TRANS(vwsmaccus_vx) /* Vector Single-Width Scaling Shift Instructions */ GEN_OPIVV_TRANS(vssrl_vv, opivv_check) GEN_OPIVV_TRANS(vssra_vv, opivv_check) GEN_OPIVX_TRANS(vssrl_vx, opivx_check) GEN_OPIVX_TRANS(vssra_vx, opivx_check) GEN_OPIVI_TRANS(vssrl_vi, 1, vssrl_vx, opivx_check) GEN_OPIVI_TRANS(vssra_vi, 0, vssra_vx, opivx_check) /* Vector Narrowing Fixed-Point Clip Instructions */ GEN_OPIVV_NARROW_TRANS(vnclipu_vv) GEN_OPIVV_NARROW_TRANS(vnclip_vv) GEN_OPIVX_NARROW_TRANS(vnclipu_vx) GEN_OPIVX_NARROW_TRANS(vnclip_vx) GEN_OPIVI_NARROW_TRANS(vnclipu_vi, 1, vnclipu_vx) GEN_OPIVI_NARROW_TRANS(vnclip_vi, 1, vnclip_vx)