/* * OpenRISC translation * * Copyright (c) 2011-2012 Jia Liu * Feng Gao * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/exec-all.h" #include "disas/disas.h" #include "tcg-op.h" #include "qemu-common.h" #include "qemu/log.h" #include "qemu/bitops.h" #include "qemu/qemu-print.h" #include "exec/cpu_ldst.h" #include "exec/translator.h" #include "exec/helper-proto.h" #include "exec/helper-gen.h" #include "exec/gen-icount.h" #include "trace-tcg.h" #include "exec/log.h" /* is_jmp field values */ #define DISAS_EXIT DISAS_TARGET_0 /* force exit to main loop */ #define DISAS_JUMP DISAS_TARGET_1 /* exit via jmp_pc/jmp_pc_imm */ typedef struct DisasContext { DisasContextBase base; uint32_t mem_idx; uint32_t tb_flags; uint32_t delayed_branch; /* If not -1, jmp_pc contains this value and so is a direct jump. */ target_ulong jmp_pc_imm; } DisasContext; static inline bool is_user(DisasContext *dc) { #ifdef CONFIG_USER_ONLY return true; #else return !(dc->tb_flags & TB_FLAGS_SM); #endif } /* Include the auto-generated decoder. */ #include "decode.inc.c" static TCGv cpu_sr; static TCGv cpu_R[32]; static TCGv cpu_R0; static TCGv cpu_pc; static TCGv jmp_pc; /* l.jr/l.jalr temp pc */ static TCGv cpu_ppc; static TCGv cpu_sr_f; /* bf/bnf, F flag taken */ static TCGv cpu_sr_cy; /* carry (unsigned overflow) */ static TCGv cpu_sr_ov; /* signed overflow */ static TCGv cpu_lock_addr; static TCGv cpu_lock_value; static TCGv_i32 fpcsr; static TCGv_i64 cpu_mac; /* MACHI:MACLO */ static TCGv_i32 cpu_dflag; void openrisc_translate_init(void) { static const char * const regnames[] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", }; int i; cpu_sr = tcg_global_mem_new(cpu_env, offsetof(CPUOpenRISCState, sr), "sr"); cpu_dflag = tcg_global_mem_new_i32(cpu_env, offsetof(CPUOpenRISCState, dflag), "dflag"); cpu_pc = tcg_global_mem_new(cpu_env, offsetof(CPUOpenRISCState, pc), "pc"); cpu_ppc = tcg_global_mem_new(cpu_env, offsetof(CPUOpenRISCState, ppc), "ppc"); jmp_pc = tcg_global_mem_new(cpu_env, offsetof(CPUOpenRISCState, jmp_pc), "jmp_pc"); cpu_sr_f = tcg_global_mem_new(cpu_env, offsetof(CPUOpenRISCState, sr_f), "sr_f"); cpu_sr_cy = tcg_global_mem_new(cpu_env, offsetof(CPUOpenRISCState, sr_cy), "sr_cy"); cpu_sr_ov = tcg_global_mem_new(cpu_env, offsetof(CPUOpenRISCState, sr_ov), "sr_ov"); cpu_lock_addr = tcg_global_mem_new(cpu_env, offsetof(CPUOpenRISCState, lock_addr), "lock_addr"); cpu_lock_value = tcg_global_mem_new(cpu_env, offsetof(CPUOpenRISCState, lock_value), "lock_value"); fpcsr = tcg_global_mem_new_i32(cpu_env, offsetof(CPUOpenRISCState, fpcsr), "fpcsr"); cpu_mac = tcg_global_mem_new_i64(cpu_env, offsetof(CPUOpenRISCState, mac), "mac"); for (i = 0; i < 32; i++) { cpu_R[i] = tcg_global_mem_new(cpu_env, offsetof(CPUOpenRISCState, shadow_gpr[0][i]), regnames[i]); } cpu_R0 = cpu_R[0]; } static void gen_exception(DisasContext *dc, unsigned int excp) { TCGv_i32 tmp = tcg_const_i32(excp); gen_helper_exception(cpu_env, tmp); tcg_temp_free_i32(tmp); } static void gen_illegal_exception(DisasContext *dc) { tcg_gen_movi_tl(cpu_pc, dc->base.pc_next); gen_exception(dc, EXCP_ILLEGAL); dc->base.is_jmp = DISAS_NORETURN; } /* not used yet, open it when we need or64. */ /*#ifdef TARGET_OPENRISC64 static void check_ob64s(DisasContext *dc) { if (!(dc->flags & CPUCFGR_OB64S)) { gen_illegal_exception(dc); } } static void check_of64s(DisasContext *dc) { if (!(dc->flags & CPUCFGR_OF64S)) { gen_illegal_exception(dc); } } static void check_ov64s(DisasContext *dc) { if (!(dc->flags & CPUCFGR_OV64S)) { gen_illegal_exception(dc); } } #endif*/ /* We're about to write to REG. On the off-chance that the user is writing to R0, re-instate the architectural register. */ #define check_r0_write(reg) \ do { \ if (unlikely(reg == 0)) { \ cpu_R[0] = cpu_R0; \ } \ } while (0) static void gen_ove_cy(DisasContext *dc) { if (dc->tb_flags & SR_OVE) { gen_helper_ove_cy(cpu_env); } } static void gen_ove_ov(DisasContext *dc) { if (dc->tb_flags & SR_OVE) { gen_helper_ove_ov(cpu_env); } } static void gen_ove_cyov(DisasContext *dc) { if (dc->tb_flags & SR_OVE) { gen_helper_ove_cyov(cpu_env); } } static void gen_add(DisasContext *dc, TCGv dest, TCGv srca, TCGv srcb) { TCGv t0 = tcg_const_tl(0); TCGv res = tcg_temp_new(); tcg_gen_add2_tl(res, cpu_sr_cy, srca, t0, srcb, t0); tcg_gen_xor_tl(cpu_sr_ov, srca, srcb); tcg_gen_xor_tl(t0, res, srcb); tcg_gen_andc_tl(cpu_sr_ov, t0, cpu_sr_ov); tcg_temp_free(t0); tcg_gen_mov_tl(dest, res); tcg_temp_free(res); gen_ove_cyov(dc); } static void gen_addc(DisasContext *dc, TCGv dest, TCGv srca, TCGv srcb) { TCGv t0 = tcg_const_tl(0); TCGv res = tcg_temp_new(); tcg_gen_add2_tl(res, cpu_sr_cy, srca, t0, cpu_sr_cy, t0); tcg_gen_add2_tl(res, cpu_sr_cy, res, cpu_sr_cy, srcb, t0); tcg_gen_xor_tl(cpu_sr_ov, srca, srcb); tcg_gen_xor_tl(t0, res, srcb); tcg_gen_andc_tl(cpu_sr_ov, t0, cpu_sr_ov); tcg_temp_free(t0); tcg_gen_mov_tl(dest, res); tcg_temp_free(res); gen_ove_cyov(dc); } static void gen_sub(DisasContext *dc, TCGv dest, TCGv srca, TCGv srcb) { TCGv res = tcg_temp_new(); tcg_gen_sub_tl(res, srca, srcb); tcg_gen_xor_tl(cpu_sr_cy, srca, srcb); tcg_gen_xor_tl(cpu_sr_ov, res, srcb); tcg_gen_and_tl(cpu_sr_ov, cpu_sr_ov, cpu_sr_cy); tcg_gen_setcond_tl(TCG_COND_LTU, cpu_sr_cy, srca, srcb); tcg_gen_mov_tl(dest, res); tcg_temp_free(res); gen_ove_cyov(dc); } static void gen_mul(DisasContext *dc, TCGv dest, TCGv srca, TCGv srcb) { TCGv t0 = tcg_temp_new(); tcg_gen_muls2_tl(dest, cpu_sr_ov, srca, srcb); tcg_gen_sari_tl(t0, dest, TARGET_LONG_BITS - 1); tcg_gen_setcond_tl(TCG_COND_NE, cpu_sr_ov, cpu_sr_ov, t0); tcg_temp_free(t0); tcg_gen_neg_tl(cpu_sr_ov, cpu_sr_ov); gen_ove_ov(dc); } static void gen_mulu(DisasContext *dc, TCGv dest, TCGv srca, TCGv srcb) { tcg_gen_muls2_tl(dest, cpu_sr_cy, srca, srcb); tcg_gen_setcondi_tl(TCG_COND_NE, cpu_sr_cy, cpu_sr_cy, 0); gen_ove_cy(dc); } static void gen_div(DisasContext *dc, TCGv dest, TCGv srca, TCGv srcb) { TCGv t0 = tcg_temp_new(); tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_sr_ov, srcb, 0); /* The result of divide-by-zero is undefined. Supress the host-side exception by dividing by 1. */ tcg_gen_or_tl(t0, srcb, cpu_sr_ov); tcg_gen_div_tl(dest, srca, t0); tcg_temp_free(t0); tcg_gen_neg_tl(cpu_sr_ov, cpu_sr_ov); gen_ove_ov(dc); } static void gen_divu(DisasContext *dc, TCGv dest, TCGv srca, TCGv srcb) { TCGv t0 = tcg_temp_new(); tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_sr_cy, srcb, 0); /* The result of divide-by-zero is undefined. Supress the host-side exception by dividing by 1. */ tcg_gen_or_tl(t0, srcb, cpu_sr_cy); tcg_gen_divu_tl(dest, srca, t0); tcg_temp_free(t0); gen_ove_cy(dc); } static void gen_muld(DisasContext *dc, TCGv srca, TCGv srcb) { TCGv_i64 t1 = tcg_temp_new_i64(); TCGv_i64 t2 = tcg_temp_new_i64(); tcg_gen_ext_tl_i64(t1, srca); tcg_gen_ext_tl_i64(t2, srcb); if (TARGET_LONG_BITS == 32) { tcg_gen_mul_i64(cpu_mac, t1, t2); tcg_gen_movi_tl(cpu_sr_ov, 0); } else { TCGv_i64 high = tcg_temp_new_i64(); tcg_gen_muls2_i64(cpu_mac, high, t1, t2); tcg_gen_sari_i64(t1, cpu_mac, 63); tcg_gen_setcond_i64(TCG_COND_NE, t1, t1, high); tcg_temp_free_i64(high); tcg_gen_trunc_i64_tl(cpu_sr_ov, t1); tcg_gen_neg_tl(cpu_sr_ov, cpu_sr_ov); gen_ove_ov(dc); } tcg_temp_free_i64(t1); tcg_temp_free_i64(t2); } static void gen_muldu(DisasContext *dc, TCGv srca, TCGv srcb) { TCGv_i64 t1 = tcg_temp_new_i64(); TCGv_i64 t2 = tcg_temp_new_i64(); tcg_gen_extu_tl_i64(t1, srca); tcg_gen_extu_tl_i64(t2, srcb); if (TARGET_LONG_BITS == 32) { tcg_gen_mul_i64(cpu_mac, t1, t2); tcg_gen_movi_tl(cpu_sr_cy, 0); } else { TCGv_i64 high = tcg_temp_new_i64(); tcg_gen_mulu2_i64(cpu_mac, high, t1, t2); tcg_gen_setcondi_i64(TCG_COND_NE, high, high, 0); tcg_gen_trunc_i64_tl(cpu_sr_cy, high); tcg_temp_free_i64(high); gen_ove_cy(dc); } tcg_temp_free_i64(t1); tcg_temp_free_i64(t2); } static void gen_mac(DisasContext *dc, TCGv srca, TCGv srcb) { TCGv_i64 t1 = tcg_temp_new_i64(); TCGv_i64 t2 = tcg_temp_new_i64(); tcg_gen_ext_tl_i64(t1, srca); tcg_gen_ext_tl_i64(t2, srcb); tcg_gen_mul_i64(t1, t1, t2); /* Note that overflow is only computed during addition stage. */ tcg_gen_xor_i64(t2, cpu_mac, t1); tcg_gen_add_i64(cpu_mac, cpu_mac, t1); tcg_gen_xor_i64(t1, t1, cpu_mac); tcg_gen_andc_i64(t1, t1, t2); tcg_temp_free_i64(t2); #if TARGET_LONG_BITS == 32 tcg_gen_extrh_i64_i32(cpu_sr_ov, t1); #else tcg_gen_mov_i64(cpu_sr_ov, t1); #endif tcg_temp_free_i64(t1); gen_ove_ov(dc); } static void gen_macu(DisasContext *dc, TCGv srca, TCGv srcb) { TCGv_i64 t1 = tcg_temp_new_i64(); TCGv_i64 t2 = tcg_temp_new_i64(); tcg_gen_extu_tl_i64(t1, srca); tcg_gen_extu_tl_i64(t2, srcb); tcg_gen_mul_i64(t1, t1, t2); tcg_temp_free_i64(t2); /* Note that overflow is only computed during addition stage. */ tcg_gen_add_i64(cpu_mac, cpu_mac, t1); tcg_gen_setcond_i64(TCG_COND_LTU, t1, cpu_mac, t1); tcg_gen_trunc_i64_tl(cpu_sr_cy, t1); tcg_temp_free_i64(t1); gen_ove_cy(dc); } static void gen_msb(DisasContext *dc, TCGv srca, TCGv srcb) { TCGv_i64 t1 = tcg_temp_new_i64(); TCGv_i64 t2 = tcg_temp_new_i64(); tcg_gen_ext_tl_i64(t1, srca); tcg_gen_ext_tl_i64(t2, srcb); tcg_gen_mul_i64(t1, t1, t2); /* Note that overflow is only computed during subtraction stage. */ tcg_gen_xor_i64(t2, cpu_mac, t1); tcg_gen_sub_i64(cpu_mac, cpu_mac, t1); tcg_gen_xor_i64(t1, t1, cpu_mac); tcg_gen_and_i64(t1, t1, t2); tcg_temp_free_i64(t2); #if TARGET_LONG_BITS == 32 tcg_gen_extrh_i64_i32(cpu_sr_ov, t1); #else tcg_gen_mov_i64(cpu_sr_ov, t1); #endif tcg_temp_free_i64(t1); gen_ove_ov(dc); } static void gen_msbu(DisasContext *dc, TCGv srca, TCGv srcb) { TCGv_i64 t1 = tcg_temp_new_i64(); TCGv_i64 t2 = tcg_temp_new_i64(); tcg_gen_extu_tl_i64(t1, srca); tcg_gen_extu_tl_i64(t2, srcb); tcg_gen_mul_i64(t1, t1, t2); /* Note that overflow is only computed during subtraction stage. */ tcg_gen_setcond_i64(TCG_COND_LTU, t2, cpu_mac, t1); tcg_gen_sub_i64(cpu_mac, cpu_mac, t1); tcg_gen_trunc_i64_tl(cpu_sr_cy, t2); tcg_temp_free_i64(t2); tcg_temp_free_i64(t1); gen_ove_cy(dc); } static bool trans_l_add(DisasContext *dc, arg_dab *a) { check_r0_write(a->d); gen_add(dc, cpu_R[a->d], cpu_R[a->a], cpu_R[a->b]); return true; } static bool trans_l_addc(DisasContext *dc, arg_dab *a) { check_r0_write(a->d); gen_addc(dc, cpu_R[a->d], cpu_R[a->a], cpu_R[a->b]); return true; } static bool trans_l_sub(DisasContext *dc, arg_dab *a) { check_r0_write(a->d); gen_sub(dc, cpu_R[a->d], cpu_R[a->a], cpu_R[a->b]); return true; } static bool trans_l_and(DisasContext *dc, arg_dab *a) { check_r0_write(a->d); tcg_gen_and_tl(cpu_R[a->d], cpu_R[a->a], cpu_R[a->b]); return true; } static bool trans_l_or(DisasContext *dc, arg_dab *a) { check_r0_write(a->d); tcg_gen_or_tl(cpu_R[a->d], cpu_R[a->a], cpu_R[a->b]); return true; } static bool trans_l_xor(DisasContext *dc, arg_dab *a) { check_r0_write(a->d); tcg_gen_xor_tl(cpu_R[a->d], cpu_R[a->a], cpu_R[a->b]); return true; } static bool trans_l_sll(DisasContext *dc, arg_dab *a) { check_r0_write(a->d); tcg_gen_shl_tl(cpu_R[a->d], cpu_R[a->a], cpu_R[a->b]); return true; } static bool trans_l_srl(DisasContext *dc, arg_dab *a) { check_r0_write(a->d); tcg_gen_shr_tl(cpu_R[a->d], cpu_R[a->a], cpu_R[a->b]); return true; } static bool trans_l_sra(DisasContext *dc, arg_dab *a) { check_r0_write(a->d); tcg_gen_sar_tl(cpu_R[a->d], cpu_R[a->a], cpu_R[a->b]); return true; } static bool trans_l_ror(DisasContext *dc, arg_dab *a) { check_r0_write(a->d); tcg_gen_rotr_tl(cpu_R[a->d], cpu_R[a->a], cpu_R[a->b]); return true; } static bool trans_l_exths(DisasContext *dc, arg_da *a) { check_r0_write(a->d); tcg_gen_ext16s_tl(cpu_R[a->d], cpu_R[a->a]); return true; } static bool trans_l_extbs(DisasContext *dc, arg_da *a) { check_r0_write(a->d); tcg_gen_ext8s_tl(cpu_R[a->d], cpu_R[a->a]); return true; } static bool trans_l_exthz(DisasContext *dc, arg_da *a) { check_r0_write(a->d); tcg_gen_ext16u_tl(cpu_R[a->d], cpu_R[a->a]); return true; } static bool trans_l_extbz(DisasContext *dc, arg_da *a) { check_r0_write(a->d); tcg_gen_ext8u_tl(cpu_R[a->d], cpu_R[a->a]); return true; } static bool trans_l_cmov(DisasContext *dc, arg_dab *a) { TCGv zero; check_r0_write(a->d); zero = tcg_const_tl(0); tcg_gen_movcond_tl(TCG_COND_NE, cpu_R[a->d], cpu_sr_f, zero, cpu_R[a->a], cpu_R[a->b]); tcg_temp_free(zero); return true; } static bool trans_l_ff1(DisasContext *dc, arg_da *a) { check_r0_write(a->d); tcg_gen_ctzi_tl(cpu_R[a->d], cpu_R[a->a], -1); tcg_gen_addi_tl(cpu_R[a->d], cpu_R[a->d], 1); return true; } static bool trans_l_fl1(DisasContext *dc, arg_da *a) { check_r0_write(a->d); tcg_gen_clzi_tl(cpu_R[a->d], cpu_R[a->a], TARGET_LONG_BITS); tcg_gen_subfi_tl(cpu_R[a->d], TARGET_LONG_BITS, cpu_R[a->d]); return true; } static bool trans_l_mul(DisasContext *dc, arg_dab *a) { check_r0_write(a->d); gen_mul(dc, cpu_R[a->d], cpu_R[a->a], cpu_R[a->b]); return true; } static bool trans_l_mulu(DisasContext *dc, arg_dab *a) { check_r0_write(a->d); gen_mulu(dc, cpu_R[a->d], cpu_R[a->a], cpu_R[a->b]); return true; } static bool trans_l_div(DisasContext *dc, arg_dab *a) { check_r0_write(a->d); gen_div(dc, cpu_R[a->d], cpu_R[a->a], cpu_R[a->b]); return true; } static bool trans_l_divu(DisasContext *dc, arg_dab *a) { check_r0_write(a->d); gen_divu(dc, cpu_R[a->d], cpu_R[a->a], cpu_R[a->b]); return true; } static bool trans_l_muld(DisasContext *dc, arg_ab *a) { gen_muld(dc, cpu_R[a->a], cpu_R[a->b]); return true; } static bool trans_l_muldu(DisasContext *dc, arg_ab *a) { gen_muldu(dc, cpu_R[a->a], cpu_R[a->b]); return true; } static bool trans_l_j(DisasContext *dc, arg_l_j *a) { target_ulong tmp_pc = dc->base.pc_next + a->n * 4; tcg_gen_movi_tl(jmp_pc, tmp_pc); dc->jmp_pc_imm = tmp_pc; dc->delayed_branch = 2; return true; } static bool trans_l_jal(DisasContext *dc, arg_l_jal *a) { target_ulong tmp_pc = dc->base.pc_next + a->n * 4; target_ulong ret_pc = dc->base.pc_next + 8; tcg_gen_movi_tl(cpu_R[9], ret_pc); /* Optimize jal being used to load the PC for PIC. */ if (tmp_pc != ret_pc) { tcg_gen_movi_tl(jmp_pc, tmp_pc); dc->jmp_pc_imm = tmp_pc; dc->delayed_branch = 2; } return true; } static void do_bf(DisasContext *dc, arg_l_bf *a, TCGCond cond) { target_ulong tmp_pc = dc->base.pc_next + a->n * 4; TCGv t_next = tcg_const_tl(dc->base.pc_next + 8); TCGv t_true = tcg_const_tl(tmp_pc); TCGv t_zero = tcg_const_tl(0); tcg_gen_movcond_tl(cond, jmp_pc, cpu_sr_f, t_zero, t_true, t_next); tcg_temp_free(t_next); tcg_temp_free(t_true); tcg_temp_free(t_zero); dc->delayed_branch = 2; } static bool trans_l_bf(DisasContext *dc, arg_l_bf *a) { do_bf(dc, a, TCG_COND_NE); return true; } static bool trans_l_bnf(DisasContext *dc, arg_l_bf *a) { do_bf(dc, a, TCG_COND_EQ); return true; } static bool trans_l_jr(DisasContext *dc, arg_l_jr *a) { tcg_gen_mov_tl(jmp_pc, cpu_R[a->b]); dc->delayed_branch = 2; return true; } static bool trans_l_jalr(DisasContext *dc, arg_l_jalr *a) { tcg_gen_mov_tl(jmp_pc, cpu_R[a->b]); tcg_gen_movi_tl(cpu_R[9], dc->base.pc_next + 8); dc->delayed_branch = 2; return true; } static bool trans_l_lwa(DisasContext *dc, arg_load *a) { TCGv ea; check_r0_write(a->d); ea = tcg_temp_new(); tcg_gen_addi_tl(ea, cpu_R[a->a], a->i); tcg_gen_qemu_ld_tl(cpu_R[a->d], ea, dc->mem_idx, MO_TEUL); tcg_gen_mov_tl(cpu_lock_addr, ea); tcg_gen_mov_tl(cpu_lock_value, cpu_R[a->d]); tcg_temp_free(ea); return true; } static void do_load(DisasContext *dc, arg_load *a, TCGMemOp mop) { TCGv ea; check_r0_write(a->d); ea = tcg_temp_new(); tcg_gen_addi_tl(ea, cpu_R[a->a], a->i); tcg_gen_qemu_ld_tl(cpu_R[a->d], ea, dc->mem_idx, mop); tcg_temp_free(ea); } static bool trans_l_lwz(DisasContext *dc, arg_load *a) { do_load(dc, a, MO_TEUL); return true; } static bool trans_l_lws(DisasContext *dc, arg_load *a) { do_load(dc, a, MO_TESL); return true; } static bool trans_l_lbz(DisasContext *dc, arg_load *a) { do_load(dc, a, MO_UB); return true; } static bool trans_l_lbs(DisasContext *dc, arg_load *a) { do_load(dc, a, MO_SB); return true; } static bool trans_l_lhz(DisasContext *dc, arg_load *a) { do_load(dc, a, MO_TEUW); return true; } static bool trans_l_lhs(DisasContext *dc, arg_load *a) { do_load(dc, a, MO_TESW); return true; } static bool trans_l_swa(DisasContext *dc, arg_store *a) { TCGv ea, val; TCGLabel *lab_fail, *lab_done; ea = tcg_temp_new(); tcg_gen_addi_tl(ea, cpu_R[a->a], a->i); /* For TB_FLAGS_R0_0, the branch below invalidates the temporary assigned to cpu_R[0]. Since l.swa is quite often immediately followed by a branch, don't bother reallocating; finish the TB using the "real" R0. This also takes care of RB input across the branch. */ cpu_R[0] = cpu_R0; lab_fail = gen_new_label(); lab_done = gen_new_label(); tcg_gen_brcond_tl(TCG_COND_NE, ea, cpu_lock_addr, lab_fail); tcg_temp_free(ea); val = tcg_temp_new(); tcg_gen_atomic_cmpxchg_tl(val, cpu_lock_addr, cpu_lock_value, cpu_R[a->b], dc->mem_idx, MO_TEUL); tcg_gen_setcond_tl(TCG_COND_EQ, cpu_sr_f, val, cpu_lock_value); tcg_temp_free(val); tcg_gen_br(lab_done); gen_set_label(lab_fail); tcg_gen_movi_tl(cpu_sr_f, 0); gen_set_label(lab_done); tcg_gen_movi_tl(cpu_lock_addr, -1); return true; } static void do_store(DisasContext *dc, arg_store *a, TCGMemOp mop) { TCGv t0 = tcg_temp_new(); tcg_gen_addi_tl(t0, cpu_R[a->a], a->i); tcg_gen_qemu_st_tl(cpu_R[a->b], t0, dc->mem_idx, mop); tcg_temp_free(t0); } static bool trans_l_sw(DisasContext *dc, arg_store *a) { do_store(dc, a, MO_TEUL); return true; } static bool trans_l_sb(DisasContext *dc, arg_store *a) { do_store(dc, a, MO_UB); return true; } static bool trans_l_sh(DisasContext *dc, arg_store *a) { do_store(dc, a, MO_TEUW); return true; } static bool trans_l_nop(DisasContext *dc, arg_l_nop *a) { return true; } static bool trans_l_addi(DisasContext *dc, arg_rri *a) { TCGv t0; check_r0_write(a->d); t0 = tcg_const_tl(a->i); gen_add(dc, cpu_R[a->d], cpu_R[a->a], t0); tcg_temp_free(t0); return true; } static bool trans_l_addic(DisasContext *dc, arg_rri *a) { TCGv t0; check_r0_write(a->d); t0 = tcg_const_tl(a->i); gen_addc(dc, cpu_R[a->d], cpu_R[a->a], t0); tcg_temp_free(t0); return true; } static bool trans_l_muli(DisasContext *dc, arg_rri *a) { TCGv t0; check_r0_write(a->d); t0 = tcg_const_tl(a->i); gen_mul(dc, cpu_R[a->d], cpu_R[a->a], t0); tcg_temp_free(t0); return true; } static bool trans_l_maci(DisasContext *dc, arg_l_maci *a) { TCGv t0; t0 = tcg_const_tl(a->i); gen_mac(dc, cpu_R[a->a], t0); tcg_temp_free(t0); return true; } static bool trans_l_andi(DisasContext *dc, arg_rrk *a) { check_r0_write(a->d); tcg_gen_andi_tl(cpu_R[a->d], cpu_R[a->a], a->k); return true; } static bool trans_l_ori(DisasContext *dc, arg_rrk *a) { check_r0_write(a->d); tcg_gen_ori_tl(cpu_R[a->d], cpu_R[a->a], a->k); return true; } static bool trans_l_xori(DisasContext *dc, arg_rri *a) { check_r0_write(a->d); tcg_gen_xori_tl(cpu_R[a->d], cpu_R[a->a], a->i); return true; } static bool trans_l_mfspr(DisasContext *dc, arg_l_mfspr *a) { check_r0_write(a->d); if (is_user(dc)) { gen_illegal_exception(dc); } else { TCGv spr = tcg_temp_new(); tcg_gen_ori_tl(spr, cpu_R[a->a], a->k); gen_helper_mfspr(cpu_R[a->d], cpu_env, cpu_R[a->d], spr); tcg_temp_free(spr); } return true; } static bool trans_l_mtspr(DisasContext *dc, arg_l_mtspr *a) { if (is_user(dc)) { gen_illegal_exception(dc); } else { TCGv spr; /* For SR, we will need to exit the TB to recognize the new * exception state. For NPC, in theory this counts as a branch * (although the SPR only exists for use by an ICE). Save all * of the cpu state first, allowing it to be overwritten. */ if (dc->delayed_branch) { tcg_gen_mov_tl(cpu_pc, jmp_pc); tcg_gen_discard_tl(jmp_pc); } else { tcg_gen_movi_tl(cpu_pc, dc->base.pc_next + 4); } dc->base.is_jmp = DISAS_EXIT; spr = tcg_temp_new(); tcg_gen_ori_tl(spr, cpu_R[a->a], a->k); gen_helper_mtspr(cpu_env, spr, cpu_R[a->b]); tcg_temp_free(spr); } return true; } static bool trans_l_mac(DisasContext *dc, arg_ab *a) { gen_mac(dc, cpu_R[a->a], cpu_R[a->b]); return true; } static bool trans_l_msb(DisasContext *dc, arg_ab *a) { gen_msb(dc, cpu_R[a->a], cpu_R[a->b]); return true; } static bool trans_l_macu(DisasContext *dc, arg_ab *a) { gen_macu(dc, cpu_R[a->a], cpu_R[a->b]); return true; } static bool trans_l_msbu(DisasContext *dc, arg_ab *a) { gen_msbu(dc, cpu_R[a->a], cpu_R[a->b]); return true; } static bool trans_l_slli(DisasContext *dc, arg_dal *a) { check_r0_write(a->d); tcg_gen_shli_tl(cpu_R[a->d], cpu_R[a->a], a->l & (TARGET_LONG_BITS - 1)); return true; } static bool trans_l_srli(DisasContext *dc, arg_dal *a) { check_r0_write(a->d); tcg_gen_shri_tl(cpu_R[a->d], cpu_R[a->a], a->l & (TARGET_LONG_BITS - 1)); return true; } static bool trans_l_srai(DisasContext *dc, arg_dal *a) { check_r0_write(a->d); tcg_gen_sari_tl(cpu_R[a->d], cpu_R[a->a], a->l & (TARGET_LONG_BITS - 1)); return true; } static bool trans_l_rori(DisasContext *dc, arg_dal *a) { check_r0_write(a->d); tcg_gen_rotri_tl(cpu_R[a->d], cpu_R[a->a], a->l & (TARGET_LONG_BITS - 1)); return true; } static bool trans_l_movhi(DisasContext *dc, arg_l_movhi *a) { check_r0_write(a->d); tcg_gen_movi_tl(cpu_R[a->d], a->k << 16); return true; } static bool trans_l_macrc(DisasContext *dc, arg_l_macrc *a) { check_r0_write(a->d); tcg_gen_trunc_i64_tl(cpu_R[a->d], cpu_mac); tcg_gen_movi_i64(cpu_mac, 0); return true; } static bool trans_l_sfeq(DisasContext *dc, arg_ab *a) { tcg_gen_setcond_tl(TCG_COND_EQ, cpu_sr_f, cpu_R[a->a], cpu_R[a->b]); return true; } static bool trans_l_sfne(DisasContext *dc, arg_ab *a) { tcg_gen_setcond_tl(TCG_COND_NE, cpu_sr_f, cpu_R[a->a], cpu_R[a->b]); return true; } static bool trans_l_sfgtu(DisasContext *dc, arg_ab *a) { tcg_gen_setcond_tl(TCG_COND_GTU, cpu_sr_f, cpu_R[a->a], cpu_R[a->b]); return true; } static bool trans_l_sfgeu(DisasContext *dc, arg_ab *a) { tcg_gen_setcond_tl(TCG_COND_GEU, cpu_sr_f, cpu_R[a->a], cpu_R[a->b]); return true; } static bool trans_l_sfltu(DisasContext *dc, arg_ab *a) { tcg_gen_setcond_tl(TCG_COND_LTU, cpu_sr_f, cpu_R[a->a], cpu_R[a->b]); return true; } static bool trans_l_sfleu(DisasContext *dc, arg_ab *a) { tcg_gen_setcond_tl(TCG_COND_LEU, cpu_sr_f, cpu_R[a->a], cpu_R[a->b]); return true; } static bool trans_l_sfgts(DisasContext *dc, arg_ab *a) { tcg_gen_setcond_tl(TCG_COND_GT, cpu_sr_f, cpu_R[a->a], cpu_R[a->b]); return true; } static bool trans_l_sfges(DisasContext *dc, arg_ab *a) { tcg_gen_setcond_tl(TCG_COND_GE, cpu_sr_f, cpu_R[a->a], cpu_R[a->b]); return true; } static bool trans_l_sflts(DisasContext *dc, arg_ab *a) { tcg_gen_setcond_tl(TCG_COND_LT, cpu_sr_f, cpu_R[a->a], cpu_R[a->b]); return true; } static bool trans_l_sfles(DisasContext *dc, arg_ab *a) { tcg_gen_setcond_tl(TCG_COND_LE, cpu_sr_f, cpu_R[a->a], cpu_R[a->b]); return true; } static bool trans_l_sfeqi(DisasContext *dc, arg_ai *a) { tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_sr_f, cpu_R[a->a], a->i); return true; } static bool trans_l_sfnei(DisasContext *dc, arg_ai *a) { tcg_gen_setcondi_tl(TCG_COND_NE, cpu_sr_f, cpu_R[a->a], a->i); return true; } static bool trans_l_sfgtui(DisasContext *dc, arg_ai *a) { tcg_gen_setcondi_tl(TCG_COND_GTU, cpu_sr_f, cpu_R[a->a], a->i); return true; } static bool trans_l_sfgeui(DisasContext *dc, arg_ai *a) { tcg_gen_setcondi_tl(TCG_COND_GEU, cpu_sr_f, cpu_R[a->a], a->i); return true; } static bool trans_l_sfltui(DisasContext *dc, arg_ai *a) { tcg_gen_setcondi_tl(TCG_COND_LTU, cpu_sr_f, cpu_R[a->a], a->i); return true; } static bool trans_l_sfleui(DisasContext *dc, arg_ai *a) { tcg_gen_setcondi_tl(TCG_COND_LEU, cpu_sr_f, cpu_R[a->a], a->i); return true; } static bool trans_l_sfgtsi(DisasContext *dc, arg_ai *a) { tcg_gen_setcondi_tl(TCG_COND_GT, cpu_sr_f, cpu_R[a->a], a->i); return true; } static bool trans_l_sfgesi(DisasContext *dc, arg_ai *a) { tcg_gen_setcondi_tl(TCG_COND_GE, cpu_sr_f, cpu_R[a->a], a->i); return true; } static bool trans_l_sfltsi(DisasContext *dc, arg_ai *a) { tcg_gen_setcondi_tl(TCG_COND_LT, cpu_sr_f, cpu_R[a->a], a->i); return true; } static bool trans_l_sflesi(DisasContext *dc, arg_ai *a) { tcg_gen_setcondi_tl(TCG_COND_LE, cpu_sr_f, cpu_R[a->a], a->i); return true; } static bool trans_l_sys(DisasContext *dc, arg_l_sys *a) { tcg_gen_movi_tl(cpu_pc, dc->base.pc_next); gen_exception(dc, EXCP_SYSCALL); dc->base.is_jmp = DISAS_NORETURN; return true; } static bool trans_l_trap(DisasContext *dc, arg_l_trap *a) { tcg_gen_movi_tl(cpu_pc, dc->base.pc_next); gen_exception(dc, EXCP_TRAP); dc->base.is_jmp = DISAS_NORETURN; return true; } static bool trans_l_msync(DisasContext *dc, arg_l_msync *a) { tcg_gen_mb(TCG_MO_ALL); return true; } static bool trans_l_psync(DisasContext *dc, arg_l_psync *a) { return true; } static bool trans_l_csync(DisasContext *dc, arg_l_csync *a) { return true; } static bool trans_l_rfe(DisasContext *dc, arg_l_rfe *a) { if (is_user(dc)) { gen_illegal_exception(dc); } else { gen_helper_rfe(cpu_env); dc->base.is_jmp = DISAS_EXIT; } return true; } static void do_fp2(DisasContext *dc, arg_da *a, void (*fn)(TCGv, TCGv_env, TCGv)) { check_r0_write(a->d); fn(cpu_R[a->d], cpu_env, cpu_R[a->a]); gen_helper_update_fpcsr(cpu_env); } static void do_fp3(DisasContext *dc, arg_dab *a, void (*fn)(TCGv, TCGv_env, TCGv, TCGv)) { check_r0_write(a->d); fn(cpu_R[a->d], cpu_env, cpu_R[a->a], cpu_R[a->b]); gen_helper_update_fpcsr(cpu_env); } static void do_fpcmp(DisasContext *dc, arg_ab *a, void (*fn)(TCGv, TCGv_env, TCGv, TCGv), bool inv, bool swap) { if (swap) { fn(cpu_sr_f, cpu_env, cpu_R[a->b], cpu_R[a->a]); } else { fn(cpu_sr_f, cpu_env, cpu_R[a->a], cpu_R[a->b]); } if (inv) { tcg_gen_xori_tl(cpu_sr_f, cpu_sr_f, 1); } gen_helper_update_fpcsr(cpu_env); } static bool trans_lf_add_s(DisasContext *dc, arg_dab *a) { do_fp3(dc, a, gen_helper_float_add_s); return true; } static bool trans_lf_sub_s(DisasContext *dc, arg_dab *a) { do_fp3(dc, a, gen_helper_float_sub_s); return true; } static bool trans_lf_mul_s(DisasContext *dc, arg_dab *a) { do_fp3(dc, a, gen_helper_float_mul_s); return true; } static bool trans_lf_div_s(DisasContext *dc, arg_dab *a) { do_fp3(dc, a, gen_helper_float_div_s); return true; } static bool trans_lf_rem_s(DisasContext *dc, arg_dab *a) { do_fp3(dc, a, gen_helper_float_rem_s); return true; } static bool trans_lf_itof_s(DisasContext *dc, arg_da *a) { do_fp2(dc, a, gen_helper_itofs); return true; } static bool trans_lf_ftoi_s(DisasContext *dc, arg_da *a) { do_fp2(dc, a, gen_helper_ftois); return true; } static bool trans_lf_madd_s(DisasContext *dc, arg_dab *a) { check_r0_write(a->d); gen_helper_float_madd_s(cpu_R[a->d], cpu_env, cpu_R[a->d], cpu_R[a->a], cpu_R[a->b]); gen_helper_update_fpcsr(cpu_env); return true; } static bool trans_lf_sfeq_s(DisasContext *dc, arg_ab *a) { do_fpcmp(dc, a, gen_helper_float_eq_s, false, false); return true; } static bool trans_lf_sfne_s(DisasContext *dc, arg_ab *a) { do_fpcmp(dc, a, gen_helper_float_eq_s, true, false); return true; } static bool trans_lf_sfgt_s(DisasContext *dc, arg_ab *a) { do_fpcmp(dc, a, gen_helper_float_lt_s, false, true); return true; } static bool trans_lf_sfge_s(DisasContext *dc, arg_ab *a) { do_fpcmp(dc, a, gen_helper_float_le_s, false, true); return true; } static bool trans_lf_sflt_s(DisasContext *dc, arg_ab *a) { do_fpcmp(dc, a, gen_helper_float_lt_s, false, false); return true; } static bool trans_lf_sfle_s(DisasContext *dc, arg_ab *a) { do_fpcmp(dc, a, gen_helper_float_le_s, false, false); return true; } static void openrisc_tr_init_disas_context(DisasContextBase *dcb, CPUState *cs) { DisasContext *dc = container_of(dcb, DisasContext, base); CPUOpenRISCState *env = cs->env_ptr; int bound; dc->mem_idx = cpu_mmu_index(env, false); dc->tb_flags = dc->base.tb->flags; dc->delayed_branch = (dc->tb_flags & TB_FLAGS_DFLAG) != 0; dc->jmp_pc_imm = -1; bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; dc->base.max_insns = MIN(dc->base.max_insns, bound); } static void openrisc_tr_tb_start(DisasContextBase *db, CPUState *cs) { DisasContext *dc = container_of(db, DisasContext, base); /* Allow the TCG optimizer to see that R0 == 0, when it's true, which is the common case. */ if (dc->tb_flags & TB_FLAGS_R0_0) { cpu_R[0] = tcg_const_tl(0); } else { cpu_R[0] = cpu_R0; } } static void openrisc_tr_insn_start(DisasContextBase *dcbase, CPUState *cs) { DisasContext *dc = container_of(dcbase, DisasContext, base); tcg_gen_insn_start(dc->base.pc_next, (dc->delayed_branch ? 1 : 0) | (dc->base.num_insns > 1 ? 2 : 0)); } static bool openrisc_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cs, const CPUBreakpoint *bp) { DisasContext *dc = container_of(dcbase, DisasContext, base); tcg_gen_movi_tl(cpu_pc, dc->base.pc_next); gen_exception(dc, EXCP_DEBUG); dc->base.is_jmp = DISAS_NORETURN; /* The address covered by the breakpoint must be included in [tb->pc, tb->pc + tb->size) in order to for it to be properly cleared -- thus we increment the PC here so that the logic setting tb->size below does the right thing. */ dc->base.pc_next += 4; return true; } static void openrisc_tr_translate_insn(DisasContextBase *dcbase, CPUState *cs) { DisasContext *dc = container_of(dcbase, DisasContext, base); OpenRISCCPU *cpu = OPENRISC_CPU(cs); uint32_t insn = cpu_ldl_code(&cpu->env, dc->base.pc_next); if (!decode(dc, insn)) { gen_illegal_exception(dc); } dc->base.pc_next += 4; /* When exiting the delay slot normally, exit via jmp_pc. * For DISAS_NORETURN, we have raised an exception and already exited. * For DISAS_EXIT, we found l.rfe in a delay slot. There's nothing * in the manual saying this is illegal, but it surely it should. * At least or1ksim overrides pcnext and ignores the branch. */ if (dc->delayed_branch && --dc->delayed_branch == 0 && dc->base.is_jmp == DISAS_NEXT) { dc->base.is_jmp = DISAS_JUMP; } } static void openrisc_tr_tb_stop(DisasContextBase *dcbase, CPUState *cs) { DisasContext *dc = container_of(dcbase, DisasContext, base); target_ulong jmp_dest; /* If we have already exited the TB, nothing following has effect. */ if (dc->base.is_jmp == DISAS_NORETURN) { return; } /* Adjust the delayed branch state for the next TB. */ if ((dc->tb_flags & TB_FLAGS_DFLAG ? 1 : 0) != (dc->delayed_branch != 0)) { tcg_gen_movi_i32(cpu_dflag, dc->delayed_branch != 0); } /* For DISAS_TOO_MANY, jump to the next insn. */ jmp_dest = dc->base.pc_next; tcg_gen_movi_tl(cpu_ppc, jmp_dest - 4); switch (dc->base.is_jmp) { case DISAS_JUMP: jmp_dest = dc->jmp_pc_imm; if (jmp_dest == -1) { /* The jump destination is indirect/computed; use jmp_pc. */ tcg_gen_mov_tl(cpu_pc, jmp_pc); tcg_gen_discard_tl(jmp_pc); if (unlikely(dc->base.singlestep_enabled)) { gen_exception(dc, EXCP_DEBUG); } else { tcg_gen_lookup_and_goto_ptr(); } break; } /* The jump destination is direct; use jmp_pc_imm. However, we will have stored into jmp_pc as well; we know now that it wasn't needed. */ tcg_gen_discard_tl(jmp_pc); /* fallthru */ case DISAS_TOO_MANY: if (unlikely(dc->base.singlestep_enabled)) { tcg_gen_movi_tl(cpu_pc, jmp_dest); gen_exception(dc, EXCP_DEBUG); } else if ((dc->base.pc_first ^ jmp_dest) & TARGET_PAGE_MASK) { tcg_gen_movi_tl(cpu_pc, jmp_dest); tcg_gen_lookup_and_goto_ptr(); } else { tcg_gen_goto_tb(0); tcg_gen_movi_tl(cpu_pc, jmp_dest); tcg_gen_exit_tb(dc->base.tb, 0); } break; case DISAS_EXIT: if (unlikely(dc->base.singlestep_enabled)) { gen_exception(dc, EXCP_DEBUG); } else { tcg_gen_exit_tb(NULL, 0); } break; default: g_assert_not_reached(); } } static void openrisc_tr_disas_log(const DisasContextBase *dcbase, CPUState *cs) { DisasContext *s = container_of(dcbase, DisasContext, base); qemu_log("IN: %s\n", lookup_symbol(s->base.pc_first)); log_target_disas(cs, s->base.pc_first, s->base.tb->size); } static const TranslatorOps openrisc_tr_ops = { .init_disas_context = openrisc_tr_init_disas_context, .tb_start = openrisc_tr_tb_start, .insn_start = openrisc_tr_insn_start, .breakpoint_check = openrisc_tr_breakpoint_check, .translate_insn = openrisc_tr_translate_insn, .tb_stop = openrisc_tr_tb_stop, .disas_log = openrisc_tr_disas_log, }; void gen_intermediate_code(CPUState *cs, struct TranslationBlock *tb) { DisasContext ctx; translator_loop(&openrisc_tr_ops, &ctx.base, cs, tb); } void openrisc_cpu_dump_state(CPUState *cs, FILE *f, int flags) { OpenRISCCPU *cpu = OPENRISC_CPU(cs); CPUOpenRISCState *env = &cpu->env; int i; qemu_fprintf(f, "PC=%08x\n", env->pc); for (i = 0; i < 32; ++i) { qemu_fprintf(f, "R%02d=%08x%c", i, cpu_get_gpr(env, i), (i % 4) == 3 ? '\n' : ' '); } } void restore_state_to_opc(CPUOpenRISCState *env, TranslationBlock *tb, target_ulong *data) { env->pc = data[0]; env->dflag = data[1] & 1; if (data[1] & 2) { env->ppc = env->pc - 4; } }