/* * MIPS SIMD Architecture Module Instruction emulation helpers for QEMU. * * Copyright (c) 2014 Imagination Technologies * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/>. */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/exec-all.h" #include "exec/helper-proto.h" /* Data format min and max values */ #define DF_BITS(df) (1 << ((df) + 3)) #define DF_MAX_INT(df) (int64_t)((1LL << (DF_BITS(df) - 1)) - 1) #define M_MAX_INT(m) (int64_t)((1LL << ((m) - 1)) - 1) #define DF_MIN_INT(df) (int64_t)(-(1LL << (DF_BITS(df) - 1))) #define M_MIN_INT(m) (int64_t)(-(1LL << ((m) - 1))) #define DF_MAX_UINT(df) (uint64_t)(-1ULL >> (64 - DF_BITS(df))) #define M_MAX_UINT(m) (uint64_t)(-1ULL >> (64 - (m))) #define UNSIGNED(x, df) ((x) & DF_MAX_UINT(df)) #define SIGNED(x, df) \ ((((int64_t)x) << (64 - DF_BITS(df))) >> (64 - DF_BITS(df))) /* Element-by-element access macros */ #define DF_ELEMENTS(df) (MSA_WRLEN / DF_BITS(df)) static inline void msa_move_v(wr_t *pwd, wr_t *pws) { uint32_t i; for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { pwd->d[i] = pws->d[i]; } } #define MSA_FN_IMM8(FUNC, DEST, OPERATION) \ void helper_msa_ ## FUNC(CPUMIPSState *env, uint32_t wd, uint32_t ws, \ uint32_t i8) \ { \ wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \ wr_t *pws = &(env->active_fpu.fpr[ws].wr); \ uint32_t i; \ for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { \ DEST = OPERATION; \ } \ } MSA_FN_IMM8(andi_b, pwd->b[i], pws->b[i] & i8) MSA_FN_IMM8(ori_b, pwd->b[i], pws->b[i] | i8) MSA_FN_IMM8(nori_b, pwd->b[i], ~(pws->b[i] | i8)) MSA_FN_IMM8(xori_b, pwd->b[i], pws->b[i] ^ i8) #define BIT_MOVE_IF_NOT_ZERO(dest, arg1, arg2, df) \ UNSIGNED(((dest & (~arg2)) | (arg1 & arg2)), df) MSA_FN_IMM8(bmnzi_b, pwd->b[i], BIT_MOVE_IF_NOT_ZERO(pwd->b[i], pws->b[i], i8, DF_BYTE)) #define BIT_MOVE_IF_ZERO(dest, arg1, arg2, df) \ UNSIGNED((dest & arg2) | (arg1 & (~arg2)), df) MSA_FN_IMM8(bmzi_b, pwd->b[i], BIT_MOVE_IF_ZERO(pwd->b[i], pws->b[i], i8, DF_BYTE)) #define BIT_SELECT(dest, arg1, arg2, df) \ UNSIGNED((arg1 & (~dest)) | (arg2 & dest), df) MSA_FN_IMM8(bseli_b, pwd->b[i], BIT_SELECT(pwd->b[i], pws->b[i], i8, DF_BYTE)) #undef MSA_FN_IMM8 #define SHF_POS(i, imm) (((i) & 0xfc) + (((imm) >> (2 * ((i) & 0x03))) & 0x03)) void helper_msa_shf_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t imm) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t wx, *pwx = &wx; uint32_t i; switch (df) { case DF_BYTE: for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { pwx->b[i] = pws->b[SHF_POS(i, imm)]; } break; case DF_HALF: for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { pwx->h[i] = pws->h[SHF_POS(i, imm)]; } break; case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { pwx->w[i] = pws->w[SHF_POS(i, imm)]; } break; default: assert(0); } msa_move_v(pwd, pwx); } #define MSA_FN_VECTOR(FUNC, DEST, OPERATION) \ void helper_msa_ ## FUNC(CPUMIPSState *env, uint32_t wd, uint32_t ws, \ uint32_t wt) \ { \ wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \ wr_t *pws = &(env->active_fpu.fpr[ws].wr); \ wr_t *pwt = &(env->active_fpu.fpr[wt].wr); \ uint32_t i; \ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { \ DEST = OPERATION; \ } \ } MSA_FN_VECTOR(and_v, pwd->d[i], pws->d[i] & pwt->d[i]) MSA_FN_VECTOR(or_v, pwd->d[i], pws->d[i] | pwt->d[i]) MSA_FN_VECTOR(nor_v, pwd->d[i], ~(pws->d[i] | pwt->d[i])) MSA_FN_VECTOR(xor_v, pwd->d[i], pws->d[i] ^ pwt->d[i]) MSA_FN_VECTOR(bmnz_v, pwd->d[i], BIT_MOVE_IF_NOT_ZERO(pwd->d[i], pws->d[i], pwt->d[i], DF_DOUBLE)) MSA_FN_VECTOR(bmz_v, pwd->d[i], BIT_MOVE_IF_ZERO(pwd->d[i], pws->d[i], pwt->d[i], DF_DOUBLE)) MSA_FN_VECTOR(bsel_v, pwd->d[i], BIT_SELECT(pwd->d[i], pws->d[i], pwt->d[i], DF_DOUBLE)) #undef BIT_MOVE_IF_NOT_ZERO #undef BIT_MOVE_IF_ZERO #undef BIT_SELECT #undef MSA_FN_VECTOR static inline int64_t msa_addv_df(uint32_t df, int64_t arg1, int64_t arg2) { return arg1 + arg2; } static inline int64_t msa_subv_df(uint32_t df, int64_t arg1, int64_t arg2) { return arg1 - arg2; } static inline int64_t msa_ceq_df(uint32_t df, int64_t arg1, int64_t arg2) { return arg1 == arg2 ? -1 : 0; } static inline int64_t msa_cle_s_df(uint32_t df, int64_t arg1, int64_t arg2) { return arg1 <= arg2 ? -1 : 0; } static inline int64_t msa_cle_u_df(uint32_t df, int64_t arg1, int64_t arg2) { uint64_t u_arg1 = UNSIGNED(arg1, df); uint64_t u_arg2 = UNSIGNED(arg2, df); return u_arg1 <= u_arg2 ? -1 : 0; } static inline int64_t msa_clt_s_df(uint32_t df, int64_t arg1, int64_t arg2) { return arg1 < arg2 ? -1 : 0; } static inline int64_t msa_clt_u_df(uint32_t df, int64_t arg1, int64_t arg2) { uint64_t u_arg1 = UNSIGNED(arg1, df); uint64_t u_arg2 = UNSIGNED(arg2, df); return u_arg1 < u_arg2 ? -1 : 0; } static inline int64_t msa_max_s_df(uint32_t df, int64_t arg1, int64_t arg2) { return arg1 > arg2 ? arg1 : arg2; } static inline int64_t msa_max_u_df(uint32_t df, int64_t arg1, int64_t arg2) { uint64_t u_arg1 = UNSIGNED(arg1, df); uint64_t u_arg2 = UNSIGNED(arg2, df); return u_arg1 > u_arg2 ? arg1 : arg2; } static inline int64_t msa_min_s_df(uint32_t df, int64_t arg1, int64_t arg2) { return arg1 < arg2 ? arg1 : arg2; } static inline int64_t msa_min_u_df(uint32_t df, int64_t arg1, int64_t arg2) { uint64_t u_arg1 = UNSIGNED(arg1, df); uint64_t u_arg2 = UNSIGNED(arg2, df); return u_arg1 < u_arg2 ? arg1 : arg2; } #define MSA_BINOP_IMM_DF(helper, func) \ void helper_msa_ ## helper ## _df(CPUMIPSState *env, uint32_t df, \ uint32_t wd, uint32_t ws, int32_t u5) \ { \ wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \ wr_t *pws = &(env->active_fpu.fpr[ws].wr); \ uint32_t i; \ \ switch (df) { \ case DF_BYTE: \ for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { \ pwd->b[i] = msa_ ## func ## _df(df, pws->b[i], u5); \ } \ break; \ case DF_HALF: \ for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { \ pwd->h[i] = msa_ ## func ## _df(df, pws->h[i], u5); \ } \ break; \ case DF_WORD: \ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { \ pwd->w[i] = msa_ ## func ## _df(df, pws->w[i], u5); \ } \ break; \ case DF_DOUBLE: \ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { \ pwd->d[i] = msa_ ## func ## _df(df, pws->d[i], u5); \ } \ break; \ default: \ assert(0); \ } \ } MSA_BINOP_IMM_DF(addvi, addv) MSA_BINOP_IMM_DF(subvi, subv) MSA_BINOP_IMM_DF(ceqi, ceq) MSA_BINOP_IMM_DF(clei_s, cle_s) MSA_BINOP_IMM_DF(clei_u, cle_u) MSA_BINOP_IMM_DF(clti_s, clt_s) MSA_BINOP_IMM_DF(clti_u, clt_u) MSA_BINOP_IMM_DF(maxi_s, max_s) MSA_BINOP_IMM_DF(maxi_u, max_u) MSA_BINOP_IMM_DF(mini_s, min_s) MSA_BINOP_IMM_DF(mini_u, min_u) #undef MSA_BINOP_IMM_DF void helper_msa_ldi_df(CPUMIPSState *env, uint32_t df, uint32_t wd, int32_t s10) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); uint32_t i; switch (df) { case DF_BYTE: for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { pwd->b[i] = (int8_t)s10; } break; case DF_HALF: for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { pwd->h[i] = (int16_t)s10; } break; case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { pwd->w[i] = (int32_t)s10; } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { pwd->d[i] = (int64_t)s10; } break; default: assert(0); } } /* Data format bit position and unsigned values */ #define BIT_POSITION(x, df) ((uint64_t)(x) % DF_BITS(df)) static inline int64_t msa_sll_df(uint32_t df, int64_t arg1, int64_t arg2) { int32_t b_arg2 = BIT_POSITION(arg2, df); return arg1 << b_arg2; } static inline int64_t msa_sra_df(uint32_t df, int64_t arg1, int64_t arg2) { int32_t b_arg2 = BIT_POSITION(arg2, df); return arg1 >> b_arg2; } static inline int64_t msa_srl_df(uint32_t df, int64_t arg1, int64_t arg2) { uint64_t u_arg1 = UNSIGNED(arg1, df); int32_t b_arg2 = BIT_POSITION(arg2, df); return u_arg1 >> b_arg2; } static inline int64_t msa_bclr_df(uint32_t df, int64_t arg1, int64_t arg2) { int32_t b_arg2 = BIT_POSITION(arg2, df); return UNSIGNED(arg1 & (~(1LL << b_arg2)), df); } static inline int64_t msa_bset_df(uint32_t df, int64_t arg1, int64_t arg2) { int32_t b_arg2 = BIT_POSITION(arg2, df); return UNSIGNED(arg1 | (1LL << b_arg2), df); } static inline int64_t msa_bneg_df(uint32_t df, int64_t arg1, int64_t arg2) { int32_t b_arg2 = BIT_POSITION(arg2, df); return UNSIGNED(arg1 ^ (1LL << b_arg2), df); } static inline int64_t msa_binsl_df(uint32_t df, int64_t dest, int64_t arg1, int64_t arg2) { uint64_t u_arg1 = UNSIGNED(arg1, df); uint64_t u_dest = UNSIGNED(dest, df); int32_t sh_d = BIT_POSITION(arg2, df) + 1; int32_t sh_a = DF_BITS(df) - sh_d; if (sh_d == DF_BITS(df)) { return u_arg1; } else { return UNSIGNED(UNSIGNED(u_dest << sh_d, df) >> sh_d, df) | UNSIGNED(UNSIGNED(u_arg1 >> sh_a, df) << sh_a, df); } } static inline int64_t msa_binsr_df(uint32_t df, int64_t dest, int64_t arg1, int64_t arg2) { uint64_t u_arg1 = UNSIGNED(arg1, df); uint64_t u_dest = UNSIGNED(dest, df); int32_t sh_d = BIT_POSITION(arg2, df) + 1; int32_t sh_a = DF_BITS(df) - sh_d; if (sh_d == DF_BITS(df)) { return u_arg1; } else { return UNSIGNED(UNSIGNED(u_dest >> sh_d, df) << sh_d, df) | UNSIGNED(UNSIGNED(u_arg1 << sh_a, df) >> sh_a, df); } } static inline int64_t msa_sat_s_df(uint32_t df, int64_t arg, uint32_t m) { return arg < M_MIN_INT(m+1) ? M_MIN_INT(m+1) : arg > M_MAX_INT(m+1) ? M_MAX_INT(m+1) : arg; } static inline int64_t msa_sat_u_df(uint32_t df, int64_t arg, uint32_t m) { uint64_t u_arg = UNSIGNED(arg, df); return u_arg < M_MAX_UINT(m+1) ? u_arg : M_MAX_UINT(m+1); } static inline int64_t msa_srar_df(uint32_t df, int64_t arg1, int64_t arg2) { int32_t b_arg2 = BIT_POSITION(arg2, df); if (b_arg2 == 0) { return arg1; } else { int64_t r_bit = (arg1 >> (b_arg2 - 1)) & 1; return (arg1 >> b_arg2) + r_bit; } } static inline int64_t msa_srlr_df(uint32_t df, int64_t arg1, int64_t arg2) { uint64_t u_arg1 = UNSIGNED(arg1, df); int32_t b_arg2 = BIT_POSITION(arg2, df); if (b_arg2 == 0) { return u_arg1; } else { uint64_t r_bit = (u_arg1 >> (b_arg2 - 1)) & 1; return (u_arg1 >> b_arg2) + r_bit; } } #define MSA_BINOP_IMMU_DF(helper, func) \ void helper_msa_ ## helper ## _df(CPUMIPSState *env, uint32_t df, uint32_t wd, \ uint32_t ws, uint32_t u5) \ { \ wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \ wr_t *pws = &(env->active_fpu.fpr[ws].wr); \ uint32_t i; \ \ switch (df) { \ case DF_BYTE: \ for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { \ pwd->b[i] = msa_ ## func ## _df(df, pws->b[i], u5); \ } \ break; \ case DF_HALF: \ for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { \ pwd->h[i] = msa_ ## func ## _df(df, pws->h[i], u5); \ } \ break; \ case DF_WORD: \ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { \ pwd->w[i] = msa_ ## func ## _df(df, pws->w[i], u5); \ } \ break; \ case DF_DOUBLE: \ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { \ pwd->d[i] = msa_ ## func ## _df(df, pws->d[i], u5); \ } \ break; \ default: \ assert(0); \ } \ } MSA_BINOP_IMMU_DF(slli, sll) MSA_BINOP_IMMU_DF(srai, sra) MSA_BINOP_IMMU_DF(srli, srl) MSA_BINOP_IMMU_DF(bclri, bclr) MSA_BINOP_IMMU_DF(bseti, bset) MSA_BINOP_IMMU_DF(bnegi, bneg) MSA_BINOP_IMMU_DF(sat_s, sat_s) MSA_BINOP_IMMU_DF(sat_u, sat_u) MSA_BINOP_IMMU_DF(srari, srar) MSA_BINOP_IMMU_DF(srlri, srlr) #undef MSA_BINOP_IMMU_DF #define MSA_TEROP_IMMU_DF(helper, func) \ void helper_msa_ ## helper ## _df(CPUMIPSState *env, uint32_t df, \ uint32_t wd, uint32_t ws, uint32_t u5) \ { \ wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \ wr_t *pws = &(env->active_fpu.fpr[ws].wr); \ uint32_t i; \ \ switch (df) { \ case DF_BYTE: \ for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { \ pwd->b[i] = msa_ ## func ## _df(df, pwd->b[i], pws->b[i], \ u5); \ } \ break; \ case DF_HALF: \ for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { \ pwd->h[i] = msa_ ## func ## _df(df, pwd->h[i], pws->h[i], \ u5); \ } \ break; \ case DF_WORD: \ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { \ pwd->w[i] = msa_ ## func ## _df(df, pwd->w[i], pws->w[i], \ u5); \ } \ break; \ case DF_DOUBLE: \ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { \ pwd->d[i] = msa_ ## func ## _df(df, pwd->d[i], pws->d[i], \ u5); \ } \ break; \ default: \ assert(0); \ } \ } MSA_TEROP_IMMU_DF(binsli, binsl) MSA_TEROP_IMMU_DF(binsri, binsr) #undef MSA_TEROP_IMMU_DF static inline int64_t msa_max_a_df(uint32_t df, int64_t arg1, int64_t arg2) { uint64_t abs_arg1 = arg1 >= 0 ? arg1 : -arg1; uint64_t abs_arg2 = arg2 >= 0 ? arg2 : -arg2; return abs_arg1 > abs_arg2 ? arg1 : arg2; } static inline int64_t msa_min_a_df(uint32_t df, int64_t arg1, int64_t arg2) { uint64_t abs_arg1 = arg1 >= 0 ? arg1 : -arg1; uint64_t abs_arg2 = arg2 >= 0 ? arg2 : -arg2; return abs_arg1 < abs_arg2 ? arg1 : arg2; } static inline int64_t msa_add_a_df(uint32_t df, int64_t arg1, int64_t arg2) { uint64_t abs_arg1 = arg1 >= 0 ? arg1 : -arg1; uint64_t abs_arg2 = arg2 >= 0 ? arg2 : -arg2; return abs_arg1 + abs_arg2; } static inline int64_t msa_adds_a_df(uint32_t df, int64_t arg1, int64_t arg2) { uint64_t max_int = (uint64_t)DF_MAX_INT(df); uint64_t abs_arg1 = arg1 >= 0 ? arg1 : -arg1; uint64_t abs_arg2 = arg2 >= 0 ? arg2 : -arg2; if (abs_arg1 > max_int || abs_arg2 > max_int) { return (int64_t)max_int; } else { return (abs_arg1 < max_int - abs_arg2) ? abs_arg1 + abs_arg2 : max_int; } } static inline int64_t msa_adds_s_df(uint32_t df, int64_t arg1, int64_t arg2) { int64_t max_int = DF_MAX_INT(df); int64_t min_int = DF_MIN_INT(df); if (arg1 < 0) { return (min_int - arg1 < arg2) ? arg1 + arg2 : min_int; } else { return (arg2 < max_int - arg1) ? arg1 + arg2 : max_int; } } static inline uint64_t msa_adds_u_df(uint32_t df, uint64_t arg1, uint64_t arg2) { uint64_t max_uint = DF_MAX_UINT(df); uint64_t u_arg1 = UNSIGNED(arg1, df); uint64_t u_arg2 = UNSIGNED(arg2, df); return (u_arg1 < max_uint - u_arg2) ? u_arg1 + u_arg2 : max_uint; } static inline int64_t msa_ave_s_df(uint32_t df, int64_t arg1, int64_t arg2) { /* signed shift */ return (arg1 >> 1) + (arg2 >> 1) + (arg1 & arg2 & 1); } static inline uint64_t msa_ave_u_df(uint32_t df, uint64_t arg1, uint64_t arg2) { uint64_t u_arg1 = UNSIGNED(arg1, df); uint64_t u_arg2 = UNSIGNED(arg2, df); /* unsigned shift */ return (u_arg1 >> 1) + (u_arg2 >> 1) + (u_arg1 & u_arg2 & 1); } static inline int64_t msa_aver_s_df(uint32_t df, int64_t arg1, int64_t arg2) { /* signed shift */ return (arg1 >> 1) + (arg2 >> 1) + ((arg1 | arg2) & 1); } static inline uint64_t msa_aver_u_df(uint32_t df, uint64_t arg1, uint64_t arg2) { uint64_t u_arg1 = UNSIGNED(arg1, df); uint64_t u_arg2 = UNSIGNED(arg2, df); /* unsigned shift */ return (u_arg1 >> 1) + (u_arg2 >> 1) + ((u_arg1 | u_arg2) & 1); } static inline int64_t msa_subs_s_df(uint32_t df, int64_t arg1, int64_t arg2) { int64_t max_int = DF_MAX_INT(df); int64_t min_int = DF_MIN_INT(df); if (arg2 > 0) { return (min_int + arg2 < arg1) ? arg1 - arg2 : min_int; } else { return (arg1 < max_int + arg2) ? arg1 - arg2 : max_int; } } static inline int64_t msa_subs_u_df(uint32_t df, int64_t arg1, int64_t arg2) { uint64_t u_arg1 = UNSIGNED(arg1, df); uint64_t u_arg2 = UNSIGNED(arg2, df); return (u_arg1 > u_arg2) ? u_arg1 - u_arg2 : 0; } static inline int64_t msa_subsus_u_df(uint32_t df, int64_t arg1, int64_t arg2) { uint64_t u_arg1 = UNSIGNED(arg1, df); uint64_t max_uint = DF_MAX_UINT(df); if (arg2 >= 0) { uint64_t u_arg2 = (uint64_t)arg2; return (u_arg1 > u_arg2) ? (int64_t)(u_arg1 - u_arg2) : 0; } else { uint64_t u_arg2 = (uint64_t)(-arg2); return (u_arg1 < max_uint - u_arg2) ? (int64_t)(u_arg1 + u_arg2) : (int64_t)max_uint; } } static inline int64_t msa_subsuu_s_df(uint32_t df, int64_t arg1, int64_t arg2) { uint64_t u_arg1 = UNSIGNED(arg1, df); uint64_t u_arg2 = UNSIGNED(arg2, df); int64_t max_int = DF_MAX_INT(df); int64_t min_int = DF_MIN_INT(df); if (u_arg1 > u_arg2) { return u_arg1 - u_arg2 < (uint64_t)max_int ? (int64_t)(u_arg1 - u_arg2) : max_int; } else { return u_arg2 - u_arg1 < (uint64_t)(-min_int) ? (int64_t)(u_arg1 - u_arg2) : min_int; } } static inline int64_t msa_asub_s_df(uint32_t df, int64_t arg1, int64_t arg2) { /* signed compare */ return (arg1 < arg2) ? (uint64_t)(arg2 - arg1) : (uint64_t)(arg1 - arg2); } static inline uint64_t msa_asub_u_df(uint32_t df, uint64_t arg1, uint64_t arg2) { uint64_t u_arg1 = UNSIGNED(arg1, df); uint64_t u_arg2 = UNSIGNED(arg2, df); /* unsigned compare */ return (u_arg1 < u_arg2) ? (uint64_t)(u_arg2 - u_arg1) : (uint64_t)(u_arg1 - u_arg2); } static inline int64_t msa_mulv_df(uint32_t df, int64_t arg1, int64_t arg2) { return arg1 * arg2; } static inline int64_t msa_div_s_df(uint32_t df, int64_t arg1, int64_t arg2) { if (arg1 == DF_MIN_INT(df) && arg2 == -1) { return DF_MIN_INT(df); } return arg2 ? arg1 / arg2 : 0; } static inline int64_t msa_div_u_df(uint32_t df, int64_t arg1, int64_t arg2) { uint64_t u_arg1 = UNSIGNED(arg1, df); uint64_t u_arg2 = UNSIGNED(arg2, df); return u_arg2 ? u_arg1 / u_arg2 : 0; } static inline int64_t msa_mod_s_df(uint32_t df, int64_t arg1, int64_t arg2) { if (arg1 == DF_MIN_INT(df) && arg2 == -1) { return 0; } return arg2 ? arg1 % arg2 : 0; } static inline int64_t msa_mod_u_df(uint32_t df, int64_t arg1, int64_t arg2) { uint64_t u_arg1 = UNSIGNED(arg1, df); uint64_t u_arg2 = UNSIGNED(arg2, df); return u_arg2 ? u_arg1 % u_arg2 : 0; } #define SIGNED_EVEN(a, df) \ ((((int64_t)(a)) << (64 - DF_BITS(df)/2)) >> (64 - DF_BITS(df)/2)) #define UNSIGNED_EVEN(a, df) \ ((((uint64_t)(a)) << (64 - DF_BITS(df)/2)) >> (64 - DF_BITS(df)/2)) #define SIGNED_ODD(a, df) \ ((((int64_t)(a)) << (64 - DF_BITS(df))) >> (64 - DF_BITS(df)/2)) #define UNSIGNED_ODD(a, df) \ ((((uint64_t)(a)) << (64 - DF_BITS(df))) >> (64 - DF_BITS(df)/2)) #define SIGNED_EXTRACT(e, o, a, df) \ do { \ e = SIGNED_EVEN(a, df); \ o = SIGNED_ODD(a, df); \ } while (0); #define UNSIGNED_EXTRACT(e, o, a, df) \ do { \ e = UNSIGNED_EVEN(a, df); \ o = UNSIGNED_ODD(a, df); \ } while (0); static inline int64_t msa_dotp_s_df(uint32_t df, int64_t arg1, int64_t arg2) { int64_t even_arg1; int64_t even_arg2; int64_t odd_arg1; int64_t odd_arg2; SIGNED_EXTRACT(even_arg1, odd_arg1, arg1, df); SIGNED_EXTRACT(even_arg2, odd_arg2, arg2, df); return (even_arg1 * even_arg2) + (odd_arg1 * odd_arg2); } static inline int64_t msa_dotp_u_df(uint32_t df, int64_t arg1, int64_t arg2) { int64_t even_arg1; int64_t even_arg2; int64_t odd_arg1; int64_t odd_arg2; UNSIGNED_EXTRACT(even_arg1, odd_arg1, arg1, df); UNSIGNED_EXTRACT(even_arg2, odd_arg2, arg2, df); return (even_arg1 * even_arg2) + (odd_arg1 * odd_arg2); } #define CONCATENATE_AND_SLIDE(s, k) \ do { \ for (i = 0; i < s; i++) { \ v[i] = pws->b[s * k + i]; \ v[i + s] = pwd->b[s * k + i]; \ } \ for (i = 0; i < s; i++) { \ pwd->b[s * k + i] = v[i + n]; \ } \ } while (0) static inline void msa_sld_df(uint32_t df, wr_t *pwd, wr_t *pws, target_ulong rt) { uint32_t n = rt % DF_ELEMENTS(df); uint8_t v[64]; uint32_t i, k; switch (df) { case DF_BYTE: CONCATENATE_AND_SLIDE(DF_ELEMENTS(DF_BYTE), 0); break; case DF_HALF: for (k = 0; k < 2; k++) { CONCATENATE_AND_SLIDE(DF_ELEMENTS(DF_HALF), k); } break; case DF_WORD: for (k = 0; k < 4; k++) { CONCATENATE_AND_SLIDE(DF_ELEMENTS(DF_WORD), k); } break; case DF_DOUBLE: for (k = 0; k < 8; k++) { CONCATENATE_AND_SLIDE(DF_ELEMENTS(DF_DOUBLE), k); } break; default: assert(0); } } static inline int64_t msa_hadd_s_df(uint32_t df, int64_t arg1, int64_t arg2) { return SIGNED_ODD(arg1, df) + SIGNED_EVEN(arg2, df); } static inline int64_t msa_hadd_u_df(uint32_t df, int64_t arg1, int64_t arg2) { return UNSIGNED_ODD(arg1, df) + UNSIGNED_EVEN(arg2, df); } static inline int64_t msa_hsub_s_df(uint32_t df, int64_t arg1, int64_t arg2) { return SIGNED_ODD(arg1, df) - SIGNED_EVEN(arg2, df); } static inline int64_t msa_hsub_u_df(uint32_t df, int64_t arg1, int64_t arg2) { return UNSIGNED_ODD(arg1, df) - UNSIGNED_EVEN(arg2, df); } static inline int64_t msa_mul_q_df(uint32_t df, int64_t arg1, int64_t arg2) { int64_t q_min = DF_MIN_INT(df); int64_t q_max = DF_MAX_INT(df); if (arg1 == q_min && arg2 == q_min) { return q_max; } return (arg1 * arg2) >> (DF_BITS(df) - 1); } static inline int64_t msa_mulr_q_df(uint32_t df, int64_t arg1, int64_t arg2) { int64_t q_min = DF_MIN_INT(df); int64_t q_max = DF_MAX_INT(df); int64_t r_bit = 1 << (DF_BITS(df) - 2); if (arg1 == q_min && arg2 == q_min) { return q_max; } return (arg1 * arg2 + r_bit) >> (DF_BITS(df) - 1); } #define MSA_BINOP_DF(func) \ void helper_msa_ ## func ## _df(CPUMIPSState *env, uint32_t df, \ uint32_t wd, uint32_t ws, uint32_t wt) \ { \ wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \ wr_t *pws = &(env->active_fpu.fpr[ws].wr); \ wr_t *pwt = &(env->active_fpu.fpr[wt].wr); \ uint32_t i; \ \ switch (df) { \ case DF_BYTE: \ for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { \ pwd->b[i] = msa_ ## func ## _df(df, pws->b[i], pwt->b[i]); \ } \ break; \ case DF_HALF: \ for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { \ pwd->h[i] = msa_ ## func ## _df(df, pws->h[i], pwt->h[i]); \ } \ break; \ case DF_WORD: \ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { \ pwd->w[i] = msa_ ## func ## _df(df, pws->w[i], pwt->w[i]); \ } \ break; \ case DF_DOUBLE: \ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { \ pwd->d[i] = msa_ ## func ## _df(df, pws->d[i], pwt->d[i]); \ } \ break; \ default: \ assert(0); \ } \ } MSA_BINOP_DF(sll) MSA_BINOP_DF(sra) MSA_BINOP_DF(srl) MSA_BINOP_DF(bclr) MSA_BINOP_DF(bset) MSA_BINOP_DF(bneg) MSA_BINOP_DF(addv) MSA_BINOP_DF(subv) MSA_BINOP_DF(max_s) MSA_BINOP_DF(max_u) MSA_BINOP_DF(min_s) MSA_BINOP_DF(min_u) MSA_BINOP_DF(max_a) MSA_BINOP_DF(min_a) MSA_BINOP_DF(ceq) MSA_BINOP_DF(clt_s) MSA_BINOP_DF(clt_u) MSA_BINOP_DF(cle_s) MSA_BINOP_DF(cle_u) MSA_BINOP_DF(add_a) MSA_BINOP_DF(adds_a) MSA_BINOP_DF(adds_s) MSA_BINOP_DF(adds_u) MSA_BINOP_DF(ave_s) MSA_BINOP_DF(ave_u) MSA_BINOP_DF(aver_s) MSA_BINOP_DF(aver_u) MSA_BINOP_DF(subs_s) MSA_BINOP_DF(subs_u) MSA_BINOP_DF(subsus_u) MSA_BINOP_DF(subsuu_s) MSA_BINOP_DF(asub_s) MSA_BINOP_DF(asub_u) MSA_BINOP_DF(mulv) MSA_BINOP_DF(div_s) MSA_BINOP_DF(div_u) MSA_BINOP_DF(mod_s) MSA_BINOP_DF(mod_u) MSA_BINOP_DF(dotp_s) MSA_BINOP_DF(dotp_u) MSA_BINOP_DF(srar) MSA_BINOP_DF(srlr) MSA_BINOP_DF(hadd_s) MSA_BINOP_DF(hadd_u) MSA_BINOP_DF(hsub_s) MSA_BINOP_DF(hsub_u) MSA_BINOP_DF(mul_q) MSA_BINOP_DF(mulr_q) #undef MSA_BINOP_DF void helper_msa_sld_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t rt) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); msa_sld_df(df, pwd, pws, env->active_tc.gpr[rt]); } static inline int64_t msa_maddv_df(uint32_t df, int64_t dest, int64_t arg1, int64_t arg2) { return dest + arg1 * arg2; } static inline int64_t msa_msubv_df(uint32_t df, int64_t dest, int64_t arg1, int64_t arg2) { return dest - arg1 * arg2; } static inline int64_t msa_dpadd_s_df(uint32_t df, int64_t dest, int64_t arg1, int64_t arg2) { int64_t even_arg1; int64_t even_arg2; int64_t odd_arg1; int64_t odd_arg2; SIGNED_EXTRACT(even_arg1, odd_arg1, arg1, df); SIGNED_EXTRACT(even_arg2, odd_arg2, arg2, df); return dest + (even_arg1 * even_arg2) + (odd_arg1 * odd_arg2); } static inline int64_t msa_dpadd_u_df(uint32_t df, int64_t dest, int64_t arg1, int64_t arg2) { int64_t even_arg1; int64_t even_arg2; int64_t odd_arg1; int64_t odd_arg2; UNSIGNED_EXTRACT(even_arg1, odd_arg1, arg1, df); UNSIGNED_EXTRACT(even_arg2, odd_arg2, arg2, df); return dest + (even_arg1 * even_arg2) + (odd_arg1 * odd_arg2); } static inline int64_t msa_dpsub_s_df(uint32_t df, int64_t dest, int64_t arg1, int64_t arg2) { int64_t even_arg1; int64_t even_arg2; int64_t odd_arg1; int64_t odd_arg2; SIGNED_EXTRACT(even_arg1, odd_arg1, arg1, df); SIGNED_EXTRACT(even_arg2, odd_arg2, arg2, df); return dest - ((even_arg1 * even_arg2) + (odd_arg1 * odd_arg2)); } static inline int64_t msa_dpsub_u_df(uint32_t df, int64_t dest, int64_t arg1, int64_t arg2) { int64_t even_arg1; int64_t even_arg2; int64_t odd_arg1; int64_t odd_arg2; UNSIGNED_EXTRACT(even_arg1, odd_arg1, arg1, df); UNSIGNED_EXTRACT(even_arg2, odd_arg2, arg2, df); return dest - ((even_arg1 * even_arg2) + (odd_arg1 * odd_arg2)); } static inline int64_t msa_madd_q_df(uint32_t df, int64_t dest, int64_t arg1, int64_t arg2) { int64_t q_prod, q_ret; int64_t q_max = DF_MAX_INT(df); int64_t q_min = DF_MIN_INT(df); q_prod = arg1 * arg2; q_ret = ((dest << (DF_BITS(df) - 1)) + q_prod) >> (DF_BITS(df) - 1); return (q_ret < q_min) ? q_min : (q_max < q_ret) ? q_max : q_ret; } static inline int64_t msa_msub_q_df(uint32_t df, int64_t dest, int64_t arg1, int64_t arg2) { int64_t q_prod, q_ret; int64_t q_max = DF_MAX_INT(df); int64_t q_min = DF_MIN_INT(df); q_prod = arg1 * arg2; q_ret = ((dest << (DF_BITS(df) - 1)) - q_prod) >> (DF_BITS(df) - 1); return (q_ret < q_min) ? q_min : (q_max < q_ret) ? q_max : q_ret; } static inline int64_t msa_maddr_q_df(uint32_t df, int64_t dest, int64_t arg1, int64_t arg2) { int64_t q_prod, q_ret; int64_t q_max = DF_MAX_INT(df); int64_t q_min = DF_MIN_INT(df); int64_t r_bit = 1 << (DF_BITS(df) - 2); q_prod = arg1 * arg2; q_ret = ((dest << (DF_BITS(df) - 1)) + q_prod + r_bit) >> (DF_BITS(df) - 1); return (q_ret < q_min) ? q_min : (q_max < q_ret) ? q_max : q_ret; } static inline int64_t msa_msubr_q_df(uint32_t df, int64_t dest, int64_t arg1, int64_t arg2) { int64_t q_prod, q_ret; int64_t q_max = DF_MAX_INT(df); int64_t q_min = DF_MIN_INT(df); int64_t r_bit = 1 << (DF_BITS(df) - 2); q_prod = arg1 * arg2; q_ret = ((dest << (DF_BITS(df) - 1)) - q_prod + r_bit) >> (DF_BITS(df) - 1); return (q_ret < q_min) ? q_min : (q_max < q_ret) ? q_max : q_ret; } #define MSA_TEROP_DF(func) \ void helper_msa_ ## func ## _df(CPUMIPSState *env, uint32_t df, uint32_t wd, \ uint32_t ws, uint32_t wt) \ { \ wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \ wr_t *pws = &(env->active_fpu.fpr[ws].wr); \ wr_t *pwt = &(env->active_fpu.fpr[wt].wr); \ uint32_t i; \ \ switch (df) { \ case DF_BYTE: \ for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { \ pwd->b[i] = msa_ ## func ## _df(df, pwd->b[i], pws->b[i], \ pwt->b[i]); \ } \ break; \ case DF_HALF: \ for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { \ pwd->h[i] = msa_ ## func ## _df(df, pwd->h[i], pws->h[i], \ pwt->h[i]); \ } \ break; \ case DF_WORD: \ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { \ pwd->w[i] = msa_ ## func ## _df(df, pwd->w[i], pws->w[i], \ pwt->w[i]); \ } \ break; \ case DF_DOUBLE: \ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { \ pwd->d[i] = msa_ ## func ## _df(df, pwd->d[i], pws->d[i], \ pwt->d[i]); \ } \ break; \ default: \ assert(0); \ } \ } MSA_TEROP_DF(maddv) MSA_TEROP_DF(msubv) MSA_TEROP_DF(dpadd_s) MSA_TEROP_DF(dpadd_u) MSA_TEROP_DF(dpsub_s) MSA_TEROP_DF(dpsub_u) MSA_TEROP_DF(binsl) MSA_TEROP_DF(binsr) MSA_TEROP_DF(madd_q) MSA_TEROP_DF(msub_q) MSA_TEROP_DF(maddr_q) MSA_TEROP_DF(msubr_q) #undef MSA_TEROP_DF static inline void msa_splat_df(uint32_t df, wr_t *pwd, wr_t *pws, target_ulong rt) { uint32_t n = rt % DF_ELEMENTS(df); uint32_t i; switch (df) { case DF_BYTE: for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { pwd->b[i] = pws->b[n]; } break; case DF_HALF: for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { pwd->h[i] = pws->h[n]; } break; case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { pwd->w[i] = pws->w[n]; } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { pwd->d[i] = pws->d[n]; } break; default: assert(0); } } void helper_msa_splat_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t rt) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); msa_splat_df(df, pwd, pws, env->active_tc.gpr[rt]); } #define MSA_DO_B MSA_DO(b) #define MSA_DO_H MSA_DO(h) #define MSA_DO_W MSA_DO(w) #define MSA_DO_D MSA_DO(d) #define MSA_LOOP_B MSA_LOOP(B) #define MSA_LOOP_H MSA_LOOP(H) #define MSA_LOOP_W MSA_LOOP(W) #define MSA_LOOP_D MSA_LOOP(D) #define MSA_LOOP_COND_B MSA_LOOP_COND(DF_BYTE) #define MSA_LOOP_COND_H MSA_LOOP_COND(DF_HALF) #define MSA_LOOP_COND_W MSA_LOOP_COND(DF_WORD) #define MSA_LOOP_COND_D MSA_LOOP_COND(DF_DOUBLE) #define MSA_LOOP(DF) \ for (i = 0; i < (MSA_LOOP_COND_ ## DF) ; i++) { \ MSA_DO_ ## DF \ } #define MSA_FN_DF(FUNC) \ void helper_msa_##FUNC(CPUMIPSState *env, uint32_t df, uint32_t wd, \ uint32_t ws, uint32_t wt) \ { \ wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \ wr_t *pws = &(env->active_fpu.fpr[ws].wr); \ wr_t *pwt = &(env->active_fpu.fpr[wt].wr); \ wr_t wx, *pwx = &wx; \ uint32_t i; \ switch (df) { \ case DF_BYTE: \ MSA_LOOP_B \ break; \ case DF_HALF: \ MSA_LOOP_H \ break; \ case DF_WORD: \ MSA_LOOP_W \ break; \ case DF_DOUBLE: \ MSA_LOOP_D \ break; \ default: \ assert(0); \ } \ msa_move_v(pwd, pwx); \ } #define MSA_LOOP_COND(DF) \ (DF_ELEMENTS(DF) / 2) #define Rb(pwr, i) (pwr->b[i]) #define Lb(pwr, i) (pwr->b[i + DF_ELEMENTS(DF_BYTE)/2]) #define Rh(pwr, i) (pwr->h[i]) #define Lh(pwr, i) (pwr->h[i + DF_ELEMENTS(DF_HALF)/2]) #define Rw(pwr, i) (pwr->w[i]) #define Lw(pwr, i) (pwr->w[i + DF_ELEMENTS(DF_WORD)/2]) #define Rd(pwr, i) (pwr->d[i]) #define Ld(pwr, i) (pwr->d[i + DF_ELEMENTS(DF_DOUBLE)/2]) #define MSA_DO(DF) \ do { \ R##DF(pwx, i) = pwt->DF[2*i]; \ L##DF(pwx, i) = pws->DF[2*i]; \ } while (0); MSA_FN_DF(pckev_df) #undef MSA_DO #define MSA_DO(DF) \ do { \ R##DF(pwx, i) = pwt->DF[2*i+1]; \ L##DF(pwx, i) = pws->DF[2*i+1]; \ } while (0); MSA_FN_DF(pckod_df) #undef MSA_DO #define MSA_DO(DF) \ do { \ pwx->DF[2*i] = L##DF(pwt, i); \ pwx->DF[2*i+1] = L##DF(pws, i); \ } while (0); MSA_FN_DF(ilvl_df) #undef MSA_DO #define MSA_DO(DF) \ do { \ pwx->DF[2*i] = R##DF(pwt, i); \ pwx->DF[2*i+1] = R##DF(pws, i); \ } while (0); MSA_FN_DF(ilvr_df) #undef MSA_DO #define MSA_DO(DF) \ do { \ pwx->DF[2*i] = pwt->DF[2*i]; \ pwx->DF[2*i+1] = pws->DF[2*i]; \ } while (0); MSA_FN_DF(ilvev_df) #undef MSA_DO #define MSA_DO(DF) \ do { \ pwx->DF[2*i] = pwt->DF[2*i+1]; \ pwx->DF[2*i+1] = pws->DF[2*i+1]; \ } while (0); MSA_FN_DF(ilvod_df) #undef MSA_DO #undef MSA_LOOP_COND #define MSA_LOOP_COND(DF) \ (DF_ELEMENTS(DF)) #define MSA_DO(DF) \ do { \ uint32_t n = DF_ELEMENTS(df); \ uint32_t k = (pwd->DF[i] & 0x3f) % (2 * n); \ pwx->DF[i] = \ (pwd->DF[i] & 0xc0) ? 0 : k < n ? pwt->DF[k] : pws->DF[k - n]; \ } while (0); MSA_FN_DF(vshf_df) #undef MSA_DO #undef MSA_LOOP_COND #undef MSA_FN_DF void helper_msa_sldi_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t n) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); msa_sld_df(df, pwd, pws, n); } void helper_msa_splati_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t n) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); msa_splat_df(df, pwd, pws, n); } void helper_msa_copy_s_df(CPUMIPSState *env, uint32_t df, uint32_t rd, uint32_t ws, uint32_t n) { n %= DF_ELEMENTS(df); switch (df) { case DF_BYTE: env->active_tc.gpr[rd] = (int8_t)env->active_fpu.fpr[ws].wr.b[n]; break; case DF_HALF: env->active_tc.gpr[rd] = (int16_t)env->active_fpu.fpr[ws].wr.h[n]; break; case DF_WORD: env->active_tc.gpr[rd] = (int32_t)env->active_fpu.fpr[ws].wr.w[n]; break; #ifdef TARGET_MIPS64 case DF_DOUBLE: env->active_tc.gpr[rd] = (int64_t)env->active_fpu.fpr[ws].wr.d[n]; break; #endif default: assert(0); } } void helper_msa_copy_u_df(CPUMIPSState *env, uint32_t df, uint32_t rd, uint32_t ws, uint32_t n) { n %= DF_ELEMENTS(df); switch (df) { case DF_BYTE: env->active_tc.gpr[rd] = (uint8_t)env->active_fpu.fpr[ws].wr.b[n]; break; case DF_HALF: env->active_tc.gpr[rd] = (uint16_t)env->active_fpu.fpr[ws].wr.h[n]; break; case DF_WORD: env->active_tc.gpr[rd] = (uint32_t)env->active_fpu.fpr[ws].wr.w[n]; break; #ifdef TARGET_MIPS64 case DF_DOUBLE: env->active_tc.gpr[rd] = (uint64_t)env->active_fpu.fpr[ws].wr.d[n]; break; #endif default: assert(0); } } void helper_msa_insert_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t rs_num, uint32_t n) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); target_ulong rs = env->active_tc.gpr[rs_num]; switch (df) { case DF_BYTE: pwd->b[n] = (int8_t)rs; break; case DF_HALF: pwd->h[n] = (int16_t)rs; break; case DF_WORD: pwd->w[n] = (int32_t)rs; break; case DF_DOUBLE: pwd->d[n] = (int64_t)rs; break; default: assert(0); } } void helper_msa_insve_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t n) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); switch (df) { case DF_BYTE: pwd->b[n] = (int8_t)pws->b[0]; break; case DF_HALF: pwd->h[n] = (int16_t)pws->h[0]; break; case DF_WORD: pwd->w[n] = (int32_t)pws->w[0]; break; case DF_DOUBLE: pwd->d[n] = (int64_t)pws->d[0]; break; default: assert(0); } } void helper_msa_ctcmsa(CPUMIPSState *env, target_ulong elm, uint32_t cd) { switch (cd) { case 0: break; case 1: env->active_tc.msacsr = (int32_t)elm & MSACSR_MASK; restore_msa_fp_status(env); /* check exception */ if ((GET_FP_ENABLE(env->active_tc.msacsr) | FP_UNIMPLEMENTED) & GET_FP_CAUSE(env->active_tc.msacsr)) { do_raise_exception(env, EXCP_MSAFPE, GETPC()); } break; } } target_ulong helper_msa_cfcmsa(CPUMIPSState *env, uint32_t cs) { switch (cs) { case 0: return env->msair; case 1: return env->active_tc.msacsr & MSACSR_MASK; } return 0; } void helper_msa_move_v(CPUMIPSState *env, uint32_t wd, uint32_t ws) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); msa_move_v(pwd, pws); } static inline int64_t msa_pcnt_df(uint32_t df, int64_t arg) { uint64_t x; x = UNSIGNED(arg, df); x = (x & 0x5555555555555555ULL) + ((x >> 1) & 0x5555555555555555ULL); x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL); x = (x & 0x0F0F0F0F0F0F0F0FULL) + ((x >> 4) & 0x0F0F0F0F0F0F0F0FULL); x = (x & 0x00FF00FF00FF00FFULL) + ((x >> 8) & 0x00FF00FF00FF00FFULL); x = (x & 0x0000FFFF0000FFFFULL) + ((x >> 16) & 0x0000FFFF0000FFFFULL); x = (x & 0x00000000FFFFFFFFULL) + ((x >> 32)); return x; } static inline int64_t msa_nlzc_df(uint32_t df, int64_t arg) { uint64_t x, y; int n, c; x = UNSIGNED(arg, df); n = DF_BITS(df); c = DF_BITS(df) / 2; do { y = x >> c; if (y != 0) { n = n - c; x = y; } c = c >> 1; } while (c != 0); return n - x; } static inline int64_t msa_nloc_df(uint32_t df, int64_t arg) { return msa_nlzc_df(df, UNSIGNED((~arg), df)); } void helper_msa_fill_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t rs) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); uint32_t i; switch (df) { case DF_BYTE: for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { pwd->b[i] = (int8_t)env->active_tc.gpr[rs]; } break; case DF_HALF: for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { pwd->h[i] = (int16_t)env->active_tc.gpr[rs]; } break; case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { pwd->w[i] = (int32_t)env->active_tc.gpr[rs]; } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { pwd->d[i] = (int64_t)env->active_tc.gpr[rs]; } break; default: assert(0); } } #define MSA_UNOP_DF(func) \ void helper_msa_ ## func ## _df(CPUMIPSState *env, uint32_t df, \ uint32_t wd, uint32_t ws) \ { \ wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \ wr_t *pws = &(env->active_fpu.fpr[ws].wr); \ uint32_t i; \ \ switch (df) { \ case DF_BYTE: \ for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { \ pwd->b[i] = msa_ ## func ## _df(df, pws->b[i]); \ } \ break; \ case DF_HALF: \ for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { \ pwd->h[i] = msa_ ## func ## _df(df, pws->h[i]); \ } \ break; \ case DF_WORD: \ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { \ pwd->w[i] = msa_ ## func ## _df(df, pws->w[i]); \ } \ break; \ case DF_DOUBLE: \ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { \ pwd->d[i] = msa_ ## func ## _df(df, pws->d[i]); \ } \ break; \ default: \ assert(0); \ } \ } MSA_UNOP_DF(nlzc) MSA_UNOP_DF(nloc) MSA_UNOP_DF(pcnt) #undef MSA_UNOP_DF #define FLOAT_ONE32 make_float32(0x3f8 << 20) #define FLOAT_ONE64 make_float64(0x3ffULL << 52) #define FLOAT_SNAN16(s) (float16_default_nan(s) ^ 0x0220) /* 0x7c20 */ #define FLOAT_SNAN32(s) (float32_default_nan(s) ^ 0x00400020) /* 0x7f800020 */ #define FLOAT_SNAN64(s) (float64_default_nan(s) ^ 0x0008000000000020ULL) /* 0x7ff0000000000020 */ static inline void clear_msacsr_cause(CPUMIPSState *env) { SET_FP_CAUSE(env->active_tc.msacsr, 0); } static inline void check_msacsr_cause(CPUMIPSState *env, uintptr_t retaddr) { if ((GET_FP_CAUSE(env->active_tc.msacsr) & (GET_FP_ENABLE(env->active_tc.msacsr) | FP_UNIMPLEMENTED)) == 0) { UPDATE_FP_FLAGS(env->active_tc.msacsr, GET_FP_CAUSE(env->active_tc.msacsr)); } else { do_raise_exception(env, EXCP_MSAFPE, retaddr); } } /* Flush-to-zero use cases for update_msacsr() */ #define CLEAR_FS_UNDERFLOW 1 #define CLEAR_IS_INEXACT 2 #define RECIPROCAL_INEXACT 4 static inline int update_msacsr(CPUMIPSState *env, int action, int denormal) { int ieee_ex; int c; int cause; int enable; ieee_ex = get_float_exception_flags(&env->active_tc.msa_fp_status); /* QEMU softfloat does not signal all underflow cases */ if (denormal) { ieee_ex |= float_flag_underflow; } c = ieee_ex_to_mips(ieee_ex); enable = GET_FP_ENABLE(env->active_tc.msacsr) | FP_UNIMPLEMENTED; /* Set Inexact (I) when flushing inputs to zero */ if ((ieee_ex & float_flag_input_denormal) && (env->active_tc.msacsr & MSACSR_FS_MASK) != 0) { if (action & CLEAR_IS_INEXACT) { c &= ~FP_INEXACT; } else { c |= FP_INEXACT; } } /* Set Inexact (I) and Underflow (U) when flushing outputs to zero */ if ((ieee_ex & float_flag_output_denormal) && (env->active_tc.msacsr & MSACSR_FS_MASK) != 0) { c |= FP_INEXACT; if (action & CLEAR_FS_UNDERFLOW) { c &= ~FP_UNDERFLOW; } else { c |= FP_UNDERFLOW; } } /* Set Inexact (I) when Overflow (O) is not enabled */ if ((c & FP_OVERFLOW) != 0 && (enable & FP_OVERFLOW) == 0) { c |= FP_INEXACT; } /* Clear Exact Underflow when Underflow (U) is not enabled */ if ((c & FP_UNDERFLOW) != 0 && (enable & FP_UNDERFLOW) == 0 && (c & FP_INEXACT) == 0) { c &= ~FP_UNDERFLOW; } /* Reciprocal operations set only Inexact when valid and not divide by zero */ if ((action & RECIPROCAL_INEXACT) && (c & (FP_INVALID | FP_DIV0)) == 0) { c = FP_INEXACT; } cause = c & enable; /* all current enabled exceptions */ if (cause == 0) { /* No enabled exception, update the MSACSR Cause with all current exceptions */ SET_FP_CAUSE(env->active_tc.msacsr, (GET_FP_CAUSE(env->active_tc.msacsr) | c)); } else { /* Current exceptions are enabled */ if ((env->active_tc.msacsr & MSACSR_NX_MASK) == 0) { /* Exception(s) will trap, update MSACSR Cause with all enabled exceptions */ SET_FP_CAUSE(env->active_tc.msacsr, (GET_FP_CAUSE(env->active_tc.msacsr) | c)); } } return c; } static inline int get_enabled_exceptions(const CPUMIPSState *env, int c) { int enable = GET_FP_ENABLE(env->active_tc.msacsr) | FP_UNIMPLEMENTED; return c & enable; } static inline float16 float16_from_float32(int32_t a, flag ieee, float_status *status) { float16 f_val; f_val = float32_to_float16((float32)a, ieee, status); f_val = float16_maybe_silence_nan(f_val, status); return a < 0 ? (f_val | (1 << 15)) : f_val; } static inline float32 float32_from_float64(int64_t a, float_status *status) { float32 f_val; f_val = float64_to_float32((float64)a, status); f_val = float32_maybe_silence_nan(f_val, status); return a < 0 ? (f_val | (1 << 31)) : f_val; } static inline float32 float32_from_float16(int16_t a, flag ieee, float_status *status) { float32 f_val; f_val = float16_to_float32((float16)a, ieee, status); f_val = float32_maybe_silence_nan(f_val, status); return a < 0 ? (f_val | (1 << 31)) : f_val; } static inline float64 float64_from_float32(int32_t a, float_status *status) { float64 f_val; f_val = float32_to_float64((float64)a, status); f_val = float64_maybe_silence_nan(f_val, status); return a < 0 ? (f_val | (1ULL << 63)) : f_val; } static inline float32 float32_from_q16(int16_t a, float_status *status) { float32 f_val; /* conversion as integer and scaling */ f_val = int32_to_float32(a, status); f_val = float32_scalbn(f_val, -15, status); return f_val; } static inline float64 float64_from_q32(int32_t a, float_status *status) { float64 f_val; /* conversion as integer and scaling */ f_val = int32_to_float64(a, status); f_val = float64_scalbn(f_val, -31, status); return f_val; } static inline int16_t float32_to_q16(float32 a, float_status *status) { int32_t q_val; int32_t q_min = 0xffff8000; int32_t q_max = 0x00007fff; int ieee_ex; if (float32_is_any_nan(a)) { float_raise(float_flag_invalid, status); return 0; } /* scaling */ a = float32_scalbn(a, 15, status); ieee_ex = get_float_exception_flags(status); set_float_exception_flags(ieee_ex & (~float_flag_underflow) , status); if (ieee_ex & float_flag_overflow) { float_raise(float_flag_inexact, status); return (int32_t)a < 0 ? q_min : q_max; } /* conversion to int */ q_val = float32_to_int32(a, status); ieee_ex = get_float_exception_flags(status); set_float_exception_flags(ieee_ex & (~float_flag_underflow) , status); if (ieee_ex & float_flag_invalid) { set_float_exception_flags(ieee_ex & (~float_flag_invalid) , status); float_raise(float_flag_overflow | float_flag_inexact, status); return (int32_t)a < 0 ? q_min : q_max; } if (q_val < q_min) { float_raise(float_flag_overflow | float_flag_inexact, status); return (int16_t)q_min; } if (q_max < q_val) { float_raise(float_flag_overflow | float_flag_inexact, status); return (int16_t)q_max; } return (int16_t)q_val; } static inline int32_t float64_to_q32(float64 a, float_status *status) { int64_t q_val; int64_t q_min = 0xffffffff80000000LL; int64_t q_max = 0x000000007fffffffLL; int ieee_ex; if (float64_is_any_nan(a)) { float_raise(float_flag_invalid, status); return 0; } /* scaling */ a = float64_scalbn(a, 31, status); ieee_ex = get_float_exception_flags(status); set_float_exception_flags(ieee_ex & (~float_flag_underflow) , status); if (ieee_ex & float_flag_overflow) { float_raise(float_flag_inexact, status); return (int64_t)a < 0 ? q_min : q_max; } /* conversion to integer */ q_val = float64_to_int64(a, status); ieee_ex = get_float_exception_flags(status); set_float_exception_flags(ieee_ex & (~float_flag_underflow) , status); if (ieee_ex & float_flag_invalid) { set_float_exception_flags(ieee_ex & (~float_flag_invalid) , status); float_raise(float_flag_overflow | float_flag_inexact, status); return (int64_t)a < 0 ? q_min : q_max; } if (q_val < q_min) { float_raise(float_flag_overflow | float_flag_inexact, status); return (int32_t)q_min; } if (q_max < q_val) { float_raise(float_flag_overflow | float_flag_inexact, status); return (int32_t)q_max; } return (int32_t)q_val; } #define MSA_FLOAT_COND(DEST, OP, ARG1, ARG2, BITS, QUIET) \ do { \ float_status *status = &env->active_tc.msa_fp_status; \ int c; \ int64_t cond; \ set_float_exception_flags(0, status); \ if (!QUIET) { \ cond = float ## BITS ## _ ## OP(ARG1, ARG2, status); \ } else { \ cond = float ## BITS ## _ ## OP ## _quiet(ARG1, ARG2, status); \ } \ DEST = cond ? M_MAX_UINT(BITS) : 0; \ c = update_msacsr(env, CLEAR_IS_INEXACT, 0); \ \ if (get_enabled_exceptions(env, c)) { \ DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \ } \ } while (0) #define MSA_FLOAT_AF(DEST, ARG1, ARG2, BITS, QUIET) \ do { \ MSA_FLOAT_COND(DEST, eq, ARG1, ARG2, BITS, QUIET); \ if ((DEST & M_MAX_UINT(BITS)) == M_MAX_UINT(BITS)) { \ DEST = 0; \ } \ } while (0) #define MSA_FLOAT_UEQ(DEST, ARG1, ARG2, BITS, QUIET) \ do { \ MSA_FLOAT_COND(DEST, unordered, ARG1, ARG2, BITS, QUIET); \ if (DEST == 0) { \ MSA_FLOAT_COND(DEST, eq, ARG1, ARG2, BITS, QUIET); \ } \ } while (0) #define MSA_FLOAT_NE(DEST, ARG1, ARG2, BITS, QUIET) \ do { \ MSA_FLOAT_COND(DEST, lt, ARG1, ARG2, BITS, QUIET); \ if (DEST == 0) { \ MSA_FLOAT_COND(DEST, lt, ARG2, ARG1, BITS, QUIET); \ } \ } while (0) #define MSA_FLOAT_UNE(DEST, ARG1, ARG2, BITS, QUIET) \ do { \ MSA_FLOAT_COND(DEST, unordered, ARG1, ARG2, BITS, QUIET); \ if (DEST == 0) { \ MSA_FLOAT_COND(DEST, lt, ARG1, ARG2, BITS, QUIET); \ if (DEST == 0) { \ MSA_FLOAT_COND(DEST, lt, ARG2, ARG1, BITS, QUIET); \ } \ } \ } while (0) #define MSA_FLOAT_ULE(DEST, ARG1, ARG2, BITS, QUIET) \ do { \ MSA_FLOAT_COND(DEST, unordered, ARG1, ARG2, BITS, QUIET); \ if (DEST == 0) { \ MSA_FLOAT_COND(DEST, le, ARG1, ARG2, BITS, QUIET); \ } \ } while (0) #define MSA_FLOAT_ULT(DEST, ARG1, ARG2, BITS, QUIET) \ do { \ MSA_FLOAT_COND(DEST, unordered, ARG1, ARG2, BITS, QUIET); \ if (DEST == 0) { \ MSA_FLOAT_COND(DEST, lt, ARG1, ARG2, BITS, QUIET); \ } \ } while (0) #define MSA_FLOAT_OR(DEST, ARG1, ARG2, BITS, QUIET) \ do { \ MSA_FLOAT_COND(DEST, le, ARG1, ARG2, BITS, QUIET); \ if (DEST == 0) { \ MSA_FLOAT_COND(DEST, le, ARG2, ARG1, BITS, QUIET); \ } \ } while (0) static inline void compare_af(CPUMIPSState *env, wr_t *pwd, wr_t *pws, wr_t *pwt, uint32_t df, int quiet, uintptr_t retaddr) { wr_t wx, *pwx = &wx; uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_AF(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_AF(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet); } break; default: assert(0); } check_msacsr_cause(env, retaddr); msa_move_v(pwd, pwx); } static inline void compare_un(CPUMIPSState *env, wr_t *pwd, wr_t *pws, wr_t *pwt, uint32_t df, int quiet, uintptr_t retaddr) { wr_t wx, *pwx = &wx; uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_COND(pwx->w[i], unordered, pws->w[i], pwt->w[i], 32, quiet); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_COND(pwx->d[i], unordered, pws->d[i], pwt->d[i], 64, quiet); } break; default: assert(0); } check_msacsr_cause(env, retaddr); msa_move_v(pwd, pwx); } static inline void compare_eq(CPUMIPSState *env, wr_t *pwd, wr_t *pws, wr_t *pwt, uint32_t df, int quiet, uintptr_t retaddr) { wr_t wx, *pwx = &wx; uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_COND(pwx->w[i], eq, pws->w[i], pwt->w[i], 32, quiet); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_COND(pwx->d[i], eq, pws->d[i], pwt->d[i], 64, quiet); } break; default: assert(0); } check_msacsr_cause(env, retaddr); msa_move_v(pwd, pwx); } static inline void compare_ueq(CPUMIPSState *env, wr_t *pwd, wr_t *pws, wr_t *pwt, uint32_t df, int quiet, uintptr_t retaddr) { wr_t wx, *pwx = &wx; uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_UEQ(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_UEQ(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet); } break; default: assert(0); } check_msacsr_cause(env, retaddr); msa_move_v(pwd, pwx); } static inline void compare_lt(CPUMIPSState *env, wr_t *pwd, wr_t *pws, wr_t *pwt, uint32_t df, int quiet, uintptr_t retaddr) { wr_t wx, *pwx = &wx; uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_COND(pwx->w[i], lt, pws->w[i], pwt->w[i], 32, quiet); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_COND(pwx->d[i], lt, pws->d[i], pwt->d[i], 64, quiet); } break; default: assert(0); } check_msacsr_cause(env, retaddr); msa_move_v(pwd, pwx); } static inline void compare_ult(CPUMIPSState *env, wr_t *pwd, wr_t *pws, wr_t *pwt, uint32_t df, int quiet, uintptr_t retaddr) { wr_t wx, *pwx = &wx; uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_ULT(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_ULT(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet); } break; default: assert(0); } check_msacsr_cause(env, retaddr); msa_move_v(pwd, pwx); } static inline void compare_le(CPUMIPSState *env, wr_t *pwd, wr_t *pws, wr_t *pwt, uint32_t df, int quiet, uintptr_t retaddr) { wr_t wx, *pwx = &wx; uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_COND(pwx->w[i], le, pws->w[i], pwt->w[i], 32, quiet); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_COND(pwx->d[i], le, pws->d[i], pwt->d[i], 64, quiet); } break; default: assert(0); } check_msacsr_cause(env, retaddr); msa_move_v(pwd, pwx); } static inline void compare_ule(CPUMIPSState *env, wr_t *pwd, wr_t *pws, wr_t *pwt, uint32_t df, int quiet, uintptr_t retaddr) { wr_t wx, *pwx = &wx; uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_ULE(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_ULE(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet); } break; default: assert(0); } check_msacsr_cause(env, retaddr); msa_move_v(pwd, pwx); } static inline void compare_or(CPUMIPSState *env, wr_t *pwd, wr_t *pws, wr_t *pwt, uint32_t df, int quiet, uintptr_t retaddr) { wr_t wx, *pwx = &wx; uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_OR(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_OR(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet); } break; default: assert(0); } check_msacsr_cause(env, retaddr); msa_move_v(pwd, pwx); } static inline void compare_une(CPUMIPSState *env, wr_t *pwd, wr_t *pws, wr_t *pwt, uint32_t df, int quiet, uintptr_t retaddr) { wr_t wx, *pwx = &wx; uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_UNE(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_UNE(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet); } break; default: assert(0); } check_msacsr_cause(env, retaddr); msa_move_v(pwd, pwx); } static inline void compare_ne(CPUMIPSState *env, wr_t *pwd, wr_t *pws, wr_t *pwt, uint32_t df, int quiet, uintptr_t retaddr) { wr_t wx, *pwx = &wx; uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_NE(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_NE(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet); } break; default: assert(0); } check_msacsr_cause(env, retaddr); msa_move_v(pwd, pwx); } void helper_msa_fcaf_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); compare_af(env, pwd, pws, pwt, df, 1, GETPC()); } void helper_msa_fcun_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); compare_un(env, pwd, pws, pwt, df, 1, GETPC()); } void helper_msa_fceq_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); compare_eq(env, pwd, pws, pwt, df, 1, GETPC()); } void helper_msa_fcueq_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); compare_ueq(env, pwd, pws, pwt, df, 1, GETPC()); } void helper_msa_fclt_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); compare_lt(env, pwd, pws, pwt, df, 1, GETPC()); } void helper_msa_fcult_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); compare_ult(env, pwd, pws, pwt, df, 1, GETPC()); } void helper_msa_fcle_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); compare_le(env, pwd, pws, pwt, df, 1, GETPC()); } void helper_msa_fcule_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); compare_ule(env, pwd, pws, pwt, df, 1, GETPC()); } void helper_msa_fsaf_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); compare_af(env, pwd, pws, pwt, df, 0, GETPC()); } void helper_msa_fsun_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); compare_un(env, pwd, pws, pwt, df, 0, GETPC()); } void helper_msa_fseq_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); compare_eq(env, pwd, pws, pwt, df, 0, GETPC()); } void helper_msa_fsueq_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); compare_ueq(env, pwd, pws, pwt, df, 0, GETPC()); } void helper_msa_fslt_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); compare_lt(env, pwd, pws, pwt, df, 0, GETPC()); } void helper_msa_fsult_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); compare_ult(env, pwd, pws, pwt, df, 0, GETPC()); } void helper_msa_fsle_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); compare_le(env, pwd, pws, pwt, df, 0, GETPC()); } void helper_msa_fsule_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); compare_ule(env, pwd, pws, pwt, df, 0, GETPC()); } void helper_msa_fcor_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); compare_or(env, pwd, pws, pwt, df, 1, GETPC()); } void helper_msa_fcune_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); compare_une(env, pwd, pws, pwt, df, 1, GETPC()); } void helper_msa_fcne_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); compare_ne(env, pwd, pws, pwt, df, 1, GETPC()); } void helper_msa_fsor_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); compare_or(env, pwd, pws, pwt, df, 0, GETPC()); } void helper_msa_fsune_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); compare_une(env, pwd, pws, pwt, df, 0, GETPC()); } void helper_msa_fsne_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); compare_ne(env, pwd, pws, pwt, df, 0, GETPC()); } #define float16_is_zero(ARG) 0 #define float16_is_zero_or_denormal(ARG) 0 #define IS_DENORMAL(ARG, BITS) \ (!float ## BITS ## _is_zero(ARG) \ && float ## BITS ## _is_zero_or_denormal(ARG)) #define MSA_FLOAT_BINOP(DEST, OP, ARG1, ARG2, BITS) \ do { \ float_status *status = &env->active_tc.msa_fp_status; \ int c; \ \ set_float_exception_flags(0, status); \ DEST = float ## BITS ## _ ## OP(ARG1, ARG2, status); \ c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS)); \ \ if (get_enabled_exceptions(env, c)) { \ DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \ } \ } while (0) void helper_msa_fadd_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { wr_t wx, *pwx = &wx; wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_BINOP(pwx->w[i], add, pws->w[i], pwt->w[i], 32); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_BINOP(pwx->d[i], add, pws->d[i], pwt->d[i], 64); } break; default: assert(0); } check_msacsr_cause(env, GETPC()); msa_move_v(pwd, pwx); } void helper_msa_fsub_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { wr_t wx, *pwx = &wx; wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_BINOP(pwx->w[i], sub, pws->w[i], pwt->w[i], 32); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_BINOP(pwx->d[i], sub, pws->d[i], pwt->d[i], 64); } break; default: assert(0); } check_msacsr_cause(env, GETPC()); msa_move_v(pwd, pwx); } void helper_msa_fmul_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { wr_t wx, *pwx = &wx; wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_BINOP(pwx->w[i], mul, pws->w[i], pwt->w[i], 32); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_BINOP(pwx->d[i], mul, pws->d[i], pwt->d[i], 64); } break; default: assert(0); } check_msacsr_cause(env, GETPC()); msa_move_v(pwd, pwx); } void helper_msa_fdiv_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { wr_t wx, *pwx = &wx; wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_BINOP(pwx->w[i], div, pws->w[i], pwt->w[i], 32); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_BINOP(pwx->d[i], div, pws->d[i], pwt->d[i], 64); } break; default: assert(0); } check_msacsr_cause(env, GETPC()); msa_move_v(pwd, pwx); } #define MSA_FLOAT_MULADD(DEST, ARG1, ARG2, ARG3, NEGATE, BITS) \ do { \ float_status *status = &env->active_tc.msa_fp_status; \ int c; \ \ set_float_exception_flags(0, status); \ DEST = float ## BITS ## _muladd(ARG2, ARG3, ARG1, NEGATE, status); \ c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS)); \ \ if (get_enabled_exceptions(env, c)) { \ DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \ } \ } while (0) void helper_msa_fmadd_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { wr_t wx, *pwx = &wx; wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_MULADD(pwx->w[i], pwd->w[i], pws->w[i], pwt->w[i], 0, 32); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_MULADD(pwx->d[i], pwd->d[i], pws->d[i], pwt->d[i], 0, 64); } break; default: assert(0); } check_msacsr_cause(env, GETPC()); msa_move_v(pwd, pwx); } void helper_msa_fmsub_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { wr_t wx, *pwx = &wx; wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_MULADD(pwx->w[i], pwd->w[i], pws->w[i], pwt->w[i], float_muladd_negate_product, 32); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_MULADD(pwx->d[i], pwd->d[i], pws->d[i], pwt->d[i], float_muladd_negate_product, 64); } break; default: assert(0); } check_msacsr_cause(env, GETPC()); msa_move_v(pwd, pwx); } void helper_msa_fexp2_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { wr_t wx, *pwx = &wx; wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_BINOP(pwx->w[i], scalbn, pws->w[i], pwt->w[i] > 0x200 ? 0x200 : pwt->w[i] < -0x200 ? -0x200 : pwt->w[i], 32); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_BINOP(pwx->d[i], scalbn, pws->d[i], pwt->d[i] > 0x1000 ? 0x1000 : pwt->d[i] < -0x1000 ? -0x1000 : pwt->d[i], 64); } break; default: assert(0); } check_msacsr_cause(env, GETPC()); msa_move_v(pwd, pwx); } #define MSA_FLOAT_UNOP(DEST, OP, ARG, BITS) \ do { \ float_status *status = &env->active_tc.msa_fp_status; \ int c; \ \ set_float_exception_flags(0, status); \ DEST = float ## BITS ## _ ## OP(ARG, status); \ c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS)); \ \ if (get_enabled_exceptions(env, c)) { \ DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \ } \ } while (0) void helper_msa_fexdo_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { wr_t wx, *pwx = &wx; wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { /* Half precision floats come in two formats: standard IEEE and "ARM" format. The latter gains extra exponent range by omitting the NaN/Inf encodings. */ flag ieee = 1; MSA_FLOAT_BINOP(Lh(pwx, i), from_float32, pws->w[i], ieee, 16); MSA_FLOAT_BINOP(Rh(pwx, i), from_float32, pwt->w[i], ieee, 16); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_UNOP(Lw(pwx, i), from_float64, pws->d[i], 32); MSA_FLOAT_UNOP(Rw(pwx, i), from_float64, pwt->d[i], 32); } break; default: assert(0); } check_msacsr_cause(env, GETPC()); msa_move_v(pwd, pwx); } #define MSA_FLOAT_UNOP_XD(DEST, OP, ARG, BITS, XBITS) \ do { \ float_status *status = &env->active_tc.msa_fp_status; \ int c; \ \ set_float_exception_flags(0, status); \ DEST = float ## BITS ## _ ## OP(ARG, status); \ c = update_msacsr(env, CLEAR_FS_UNDERFLOW, 0); \ \ if (get_enabled_exceptions(env, c)) { \ DEST = ((FLOAT_SNAN ## XBITS(status) >> 6) << 6) | c; \ } \ } while (0) void helper_msa_ftq_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { wr_t wx, *pwx = &wx; wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_UNOP_XD(Lh(pwx, i), to_q16, pws->w[i], 32, 16); MSA_FLOAT_UNOP_XD(Rh(pwx, i), to_q16, pwt->w[i], 32, 16); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_UNOP_XD(Lw(pwx, i), to_q32, pws->d[i], 64, 32); MSA_FLOAT_UNOP_XD(Rw(pwx, i), to_q32, pwt->d[i], 64, 32); } break; default: assert(0); } check_msacsr_cause(env, GETPC()); msa_move_v(pwd, pwx); } #define NUMBER_QNAN_PAIR(ARG1, ARG2, BITS, STATUS) \ !float ## BITS ## _is_any_nan(ARG1) \ && float ## BITS ## _is_quiet_nan(ARG2, STATUS) #define MSA_FLOAT_MAXOP(DEST, OP, ARG1, ARG2, BITS) \ do { \ float_status *status = &env->active_tc.msa_fp_status; \ int c; \ \ set_float_exception_flags(0, status); \ DEST = float ## BITS ## _ ## OP(ARG1, ARG2, status); \ c = update_msacsr(env, 0, 0); \ \ if (get_enabled_exceptions(env, c)) { \ DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \ } \ } while (0) #define FMAXMIN_A(F, G, X, _S, _T, BITS, STATUS) \ do { \ uint## BITS ##_t S = _S, T = _T; \ uint## BITS ##_t as, at, xs, xt, xd; \ if (NUMBER_QNAN_PAIR(S, T, BITS, STATUS)) { \ T = S; \ } \ else if (NUMBER_QNAN_PAIR(T, S, BITS, STATUS)) { \ S = T; \ } \ as = float## BITS ##_abs(S); \ at = float## BITS ##_abs(T); \ MSA_FLOAT_MAXOP(xs, F, S, T, BITS); \ MSA_FLOAT_MAXOP(xt, G, S, T, BITS); \ MSA_FLOAT_MAXOP(xd, F, as, at, BITS); \ X = (as == at || xd == float## BITS ##_abs(xs)) ? xs : xt; \ } while (0) void helper_msa_fmin_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { float_status *status = &env->active_tc.msa_fp_status; wr_t wx, *pwx = &wx; wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { if (NUMBER_QNAN_PAIR(pws->w[i], pwt->w[i], 32, status)) { MSA_FLOAT_MAXOP(pwx->w[i], min, pws->w[i], pws->w[i], 32); } else if (NUMBER_QNAN_PAIR(pwt->w[i], pws->w[i], 32, status)) { MSA_FLOAT_MAXOP(pwx->w[i], min, pwt->w[i], pwt->w[i], 32); } else { MSA_FLOAT_MAXOP(pwx->w[i], min, pws->w[i], pwt->w[i], 32); } } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { if (NUMBER_QNAN_PAIR(pws->d[i], pwt->d[i], 64, status)) { MSA_FLOAT_MAXOP(pwx->d[i], min, pws->d[i], pws->d[i], 64); } else if (NUMBER_QNAN_PAIR(pwt->d[i], pws->d[i], 64, status)) { MSA_FLOAT_MAXOP(pwx->d[i], min, pwt->d[i], pwt->d[i], 64); } else { MSA_FLOAT_MAXOP(pwx->d[i], min, pws->d[i], pwt->d[i], 64); } } break; default: assert(0); } check_msacsr_cause(env, GETPC()); msa_move_v(pwd, pwx); } void helper_msa_fmin_a_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { float_status *status = &env->active_tc.msa_fp_status; wr_t wx, *pwx = &wx; wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { FMAXMIN_A(min, max, pwx->w[i], pws->w[i], pwt->w[i], 32, status); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { FMAXMIN_A(min, max, pwx->d[i], pws->d[i], pwt->d[i], 64, status); } break; default: assert(0); } check_msacsr_cause(env, GETPC()); msa_move_v(pwd, pwx); } void helper_msa_fmax_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { float_status *status = &env->active_tc.msa_fp_status; wr_t wx, *pwx = &wx; wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { if (NUMBER_QNAN_PAIR(pws->w[i], pwt->w[i], 32, status)) { MSA_FLOAT_MAXOP(pwx->w[i], max, pws->w[i], pws->w[i], 32); } else if (NUMBER_QNAN_PAIR(pwt->w[i], pws->w[i], 32, status)) { MSA_FLOAT_MAXOP(pwx->w[i], max, pwt->w[i], pwt->w[i], 32); } else { MSA_FLOAT_MAXOP(pwx->w[i], max, pws->w[i], pwt->w[i], 32); } } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { if (NUMBER_QNAN_PAIR(pws->d[i], pwt->d[i], 64, status)) { MSA_FLOAT_MAXOP(pwx->d[i], max, pws->d[i], pws->d[i], 64); } else if (NUMBER_QNAN_PAIR(pwt->d[i], pws->d[i], 64, status)) { MSA_FLOAT_MAXOP(pwx->d[i], max, pwt->d[i], pwt->d[i], 64); } else { MSA_FLOAT_MAXOP(pwx->d[i], max, pws->d[i], pwt->d[i], 64); } } break; default: assert(0); } check_msacsr_cause(env, GETPC()); msa_move_v(pwd, pwx); } void helper_msa_fmax_a_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws, uint32_t wt) { float_status *status = &env->active_tc.msa_fp_status; wr_t wx, *pwx = &wx; wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pwt = &(env->active_fpu.fpr[wt].wr); uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { FMAXMIN_A(max, min, pwx->w[i], pws->w[i], pwt->w[i], 32, status); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { FMAXMIN_A(max, min, pwx->d[i], pws->d[i], pwt->d[i], 64, status); } break; default: assert(0); } check_msacsr_cause(env, GETPC()); msa_move_v(pwd, pwx); } void helper_msa_fclass_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws) { float_status* status = &env->active_tc.msa_fp_status; wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); if (df == DF_WORD) { pwd->w[0] = float_class_s(pws->w[0], status); pwd->w[1] = float_class_s(pws->w[1], status); pwd->w[2] = float_class_s(pws->w[2], status); pwd->w[3] = float_class_s(pws->w[3], status); } else { pwd->d[0] = float_class_d(pws->d[0], status); pwd->d[1] = float_class_d(pws->d[1], status); } } #define MSA_FLOAT_UNOP0(DEST, OP, ARG, BITS) \ do { \ float_status *status = &env->active_tc.msa_fp_status; \ int c; \ \ set_float_exception_flags(0, status); \ DEST = float ## BITS ## _ ## OP(ARG, status); \ c = update_msacsr(env, CLEAR_FS_UNDERFLOW, 0); \ \ if (get_enabled_exceptions(env, c)) { \ DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \ } else if (float ## BITS ## _is_any_nan(ARG)) { \ DEST = 0; \ } \ } while (0) void helper_msa_ftrunc_s_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws) { wr_t wx, *pwx = &wx; wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_UNOP0(pwx->w[i], to_int32_round_to_zero, pws->w[i], 32); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_UNOP0(pwx->d[i], to_int64_round_to_zero, pws->d[i], 64); } break; default: assert(0); } check_msacsr_cause(env, GETPC()); msa_move_v(pwd, pwx); } void helper_msa_ftrunc_u_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws) { wr_t wx, *pwx = &wx; wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_UNOP0(pwx->w[i], to_uint32_round_to_zero, pws->w[i], 32); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_UNOP0(pwx->d[i], to_uint64_round_to_zero, pws->d[i], 64); } break; default: assert(0); } check_msacsr_cause(env, GETPC()); msa_move_v(pwd, pwx); } void helper_msa_fsqrt_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws) { wr_t wx, *pwx = &wx; wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_UNOP(pwx->w[i], sqrt, pws->w[i], 32); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_UNOP(pwx->d[i], sqrt, pws->d[i], 64); } break; default: assert(0); } check_msacsr_cause(env, GETPC()); msa_move_v(pwd, pwx); } #define MSA_FLOAT_RECIPROCAL(DEST, ARG, BITS) \ do { \ float_status *status = &env->active_tc.msa_fp_status; \ int c; \ \ set_float_exception_flags(0, status); \ DEST = float ## BITS ## _ ## div(FLOAT_ONE ## BITS, ARG, status); \ c = update_msacsr(env, float ## BITS ## _is_infinity(ARG) || \ float ## BITS ## _is_quiet_nan(DEST, status) ? \ 0 : RECIPROCAL_INEXACT, \ IS_DENORMAL(DEST, BITS)); \ \ if (get_enabled_exceptions(env, c)) { \ DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \ } \ } while (0) void helper_msa_frsqrt_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws) { wr_t wx, *pwx = &wx; wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_RECIPROCAL(pwx->w[i], float32_sqrt(pws->w[i], &env->active_tc.msa_fp_status), 32); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_RECIPROCAL(pwx->d[i], float64_sqrt(pws->d[i], &env->active_tc.msa_fp_status), 64); } break; default: assert(0); } check_msacsr_cause(env, GETPC()); msa_move_v(pwd, pwx); } void helper_msa_frcp_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws) { wr_t wx, *pwx = &wx; wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_RECIPROCAL(pwx->w[i], pws->w[i], 32); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_RECIPROCAL(pwx->d[i], pws->d[i], 64); } break; default: assert(0); } check_msacsr_cause(env, GETPC()); msa_move_v(pwd, pwx); } void helper_msa_frint_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws) { wr_t wx, *pwx = &wx; wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_UNOP(pwx->w[i], round_to_int, pws->w[i], 32); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_UNOP(pwx->d[i], round_to_int, pws->d[i], 64); } break; default: assert(0); } check_msacsr_cause(env, GETPC()); msa_move_v(pwd, pwx); } #define MSA_FLOAT_LOGB(DEST, ARG, BITS) \ do { \ float_status *status = &env->active_tc.msa_fp_status; \ int c; \ \ set_float_exception_flags(0, status); \ set_float_rounding_mode(float_round_down, status); \ DEST = float ## BITS ## _ ## log2(ARG, status); \ DEST = float ## BITS ## _ ## round_to_int(DEST, status); \ set_float_rounding_mode(ieee_rm[(env->active_tc.msacsr & \ MSACSR_RM_MASK) >> MSACSR_RM], \ status); \ \ set_float_exception_flags(get_float_exception_flags(status) & \ (~float_flag_inexact), \ status); \ \ c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS)); \ \ if (get_enabled_exceptions(env, c)) { \ DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \ } \ } while (0) void helper_msa_flog2_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws) { wr_t wx, *pwx = &wx; wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_LOGB(pwx->w[i], pws->w[i], 32); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_LOGB(pwx->d[i], pws->d[i], 64); } break; default: assert(0); } check_msacsr_cause(env, GETPC()); msa_move_v(pwd, pwx); } void helper_msa_fexupl_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws) { wr_t wx, *pwx = &wx; wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { /* Half precision floats come in two formats: standard IEEE and "ARM" format. The latter gains extra exponent range by omitting the NaN/Inf encodings. */ flag ieee = 1; MSA_FLOAT_BINOP(pwx->w[i], from_float16, Lh(pws, i), ieee, 32); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_UNOP(pwx->d[i], from_float32, Lw(pws, i), 64); } break; default: assert(0); } check_msacsr_cause(env, GETPC()); msa_move_v(pwd, pwx); } void helper_msa_fexupr_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws) { wr_t wx, *pwx = &wx; wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { /* Half precision floats come in two formats: standard IEEE and "ARM" format. The latter gains extra exponent range by omitting the NaN/Inf encodings. */ flag ieee = 1; MSA_FLOAT_BINOP(pwx->w[i], from_float16, Rh(pws, i), ieee, 32); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_UNOP(pwx->d[i], from_float32, Rw(pws, i), 64); } break; default: assert(0); } check_msacsr_cause(env, GETPC()); msa_move_v(pwd, pwx); } void helper_msa_ffql_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws) { wr_t wx, *pwx = &wx; wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); uint32_t i; switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_UNOP(pwx->w[i], from_q16, Lh(pws, i), 32); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_UNOP(pwx->d[i], from_q32, Lw(pws, i), 64); } break; default: assert(0); } msa_move_v(pwd, pwx); } void helper_msa_ffqr_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws) { wr_t wx, *pwx = &wx; wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); uint32_t i; switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_UNOP(pwx->w[i], from_q16, Rh(pws, i), 32); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_UNOP(pwx->d[i], from_q32, Rw(pws, i), 64); } break; default: assert(0); } msa_move_v(pwd, pwx); } void helper_msa_ftint_s_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws) { wr_t wx, *pwx = &wx; wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_UNOP0(pwx->w[i], to_int32, pws->w[i], 32); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_UNOP0(pwx->d[i], to_int64, pws->d[i], 64); } break; default: assert(0); } check_msacsr_cause(env, GETPC()); msa_move_v(pwd, pwx); } void helper_msa_ftint_u_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws) { wr_t wx, *pwx = &wx; wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_UNOP0(pwx->w[i], to_uint32, pws->w[i], 32); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_UNOP0(pwx->d[i], to_uint64, pws->d[i], 64); } break; default: assert(0); } check_msacsr_cause(env, GETPC()); msa_move_v(pwd, pwx); } #define float32_from_int32 int32_to_float32 #define float32_from_uint32 uint32_to_float32 #define float64_from_int64 int64_to_float64 #define float64_from_uint64 uint64_to_float64 void helper_msa_ffint_s_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws) { wr_t wx, *pwx = &wx; wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_UNOP(pwx->w[i], from_int32, pws->w[i], 32); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_UNOP(pwx->d[i], from_int64, pws->d[i], 64); } break; default: assert(0); } check_msacsr_cause(env, GETPC()); msa_move_v(pwd, pwx); } void helper_msa_ffint_u_df(CPUMIPSState *env, uint32_t df, uint32_t wd, uint32_t ws) { wr_t wx, *pwx = &wx; wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr); uint32_t i; clear_msacsr_cause(env); switch (df) { case DF_WORD: for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { MSA_FLOAT_UNOP(pwx->w[i], from_uint32, pws->w[i], 32); } break; case DF_DOUBLE: for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { MSA_FLOAT_UNOP(pwx->d[i], from_uint64, pws->d[i], 64); } break; default: assert(0); } check_msacsr_cause(env, GETPC()); msa_move_v(pwd, pwx); }