/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * KVM/MIPS: MIPS specific KVM APIs * * Copyright (C) 2012-2014 Imagination Technologies Ltd. * Authors: Sanjay Lal */ #include "qemu/osdep.h" #include #include #include "qemu-common.h" #include "cpu.h" #include "qemu/error-report.h" #include "qemu/timer.h" #include "sysemu/sysemu.h" #include "sysemu/kvm.h" #include "sysemu/cpus.h" #include "kvm_mips.h" #include "exec/memattrs.h" #define DEBUG_KVM 0 #define DPRINTF(fmt, ...) \ do { if (DEBUG_KVM) { fprintf(stderr, fmt, ## __VA_ARGS__); } } while (0) static int kvm_mips_fpu_cap; static int kvm_mips_msa_cap; const KVMCapabilityInfo kvm_arch_required_capabilities[] = { KVM_CAP_LAST_INFO }; static void kvm_mips_update_state(void *opaque, int running, RunState state); unsigned long kvm_arch_vcpu_id(CPUState *cs) { return cs->cpu_index; } int kvm_arch_init(MachineState *ms, KVMState *s) { /* MIPS has 128 signals */ kvm_set_sigmask_len(s, 16); kvm_mips_fpu_cap = kvm_check_extension(s, KVM_CAP_MIPS_FPU); kvm_mips_msa_cap = kvm_check_extension(s, KVM_CAP_MIPS_MSA); DPRINTF("%s\n", __func__); return 0; } int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) { return 0; } int kvm_arch_init_vcpu(CPUState *cs) { MIPSCPU *cpu = MIPS_CPU(cs); CPUMIPSState *env = &cpu->env; int ret = 0; qemu_add_vm_change_state_handler(kvm_mips_update_state, cs); if (kvm_mips_fpu_cap && env->CP0_Config1 & (1 << CP0C1_FP)) { ret = kvm_vcpu_enable_cap(cs, KVM_CAP_MIPS_FPU, 0, 0); if (ret < 0) { /* mark unsupported so it gets disabled on reset */ kvm_mips_fpu_cap = 0; ret = 0; } } if (kvm_mips_msa_cap && env->CP0_Config3 & (1 << CP0C3_MSAP)) { ret = kvm_vcpu_enable_cap(cs, KVM_CAP_MIPS_MSA, 0, 0); if (ret < 0) { /* mark unsupported so it gets disabled on reset */ kvm_mips_msa_cap = 0; ret = 0; } } DPRINTF("%s\n", __func__); return ret; } void kvm_mips_reset_vcpu(MIPSCPU *cpu) { CPUMIPSState *env = &cpu->env; if (!kvm_mips_fpu_cap && env->CP0_Config1 & (1 << CP0C1_FP)) { fprintf(stderr, "Warning: KVM does not support FPU, disabling\n"); env->CP0_Config1 &= ~(1 << CP0C1_FP); } if (!kvm_mips_msa_cap && env->CP0_Config3 & (1 << CP0C3_MSAP)) { fprintf(stderr, "Warning: KVM does not support MSA, disabling\n"); env->CP0_Config3 &= ~(1 << CP0C3_MSAP); } DPRINTF("%s\n", __func__); } int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) { DPRINTF("%s\n", __func__); return 0; } int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) { DPRINTF("%s\n", __func__); return 0; } static inline int cpu_mips_io_interrupts_pending(MIPSCPU *cpu) { CPUMIPSState *env = &cpu->env; return env->CP0_Cause & (0x1 << (2 + CP0Ca_IP)); } void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) { MIPSCPU *cpu = MIPS_CPU(cs); int r; struct kvm_mips_interrupt intr; qemu_mutex_lock_iothread(); if ((cs->interrupt_request & CPU_INTERRUPT_HARD) && cpu_mips_io_interrupts_pending(cpu)) { intr.cpu = -1; intr.irq = 2; r = kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &intr); if (r < 0) { error_report("%s: cpu %d: failed to inject IRQ %x", __func__, cs->cpu_index, intr.irq); } } qemu_mutex_unlock_iothread(); } MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) { return MEMTXATTRS_UNSPECIFIED; } int kvm_arch_process_async_events(CPUState *cs) { return cs->halted; } int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) { int ret; DPRINTF("%s\n", __func__); switch (run->exit_reason) { default: error_report("%s: unknown exit reason %d", __func__, run->exit_reason); ret = -1; break; } return ret; } bool kvm_arch_stop_on_emulation_error(CPUState *cs) { DPRINTF("%s\n", __func__); return true; } int kvm_arch_on_sigbus_vcpu(CPUState *cs, int code, void *addr) { DPRINTF("%s\n", __func__); return 1; } void kvm_arch_init_irq_routing(KVMState *s) { } int kvm_mips_set_interrupt(MIPSCPU *cpu, int irq, int level) { CPUState *cs = CPU(cpu); struct kvm_mips_interrupt intr; if (!kvm_enabled()) { return 0; } intr.cpu = -1; if (level) { intr.irq = irq; } else { intr.irq = -irq; } kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &intr); return 0; } int kvm_mips_set_ipi_interrupt(MIPSCPU *cpu, int irq, int level) { CPUState *cs = current_cpu; CPUState *dest_cs = CPU(cpu); struct kvm_mips_interrupt intr; if (!kvm_enabled()) { return 0; } intr.cpu = dest_cs->cpu_index; if (level) { intr.irq = irq; } else { intr.irq = -irq; } DPRINTF("%s: CPU %d, IRQ: %d\n", __func__, intr.cpu, intr.irq); kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &intr); return 0; } #define MIPS_CP0_32(_R, _S) \ (KVM_REG_MIPS_CP0 | KVM_REG_SIZE_U32 | (8 * (_R) + (_S))) #define MIPS_CP0_64(_R, _S) \ (KVM_REG_MIPS_CP0 | KVM_REG_SIZE_U64 | (8 * (_R) + (_S))) #define KVM_REG_MIPS_CP0_INDEX MIPS_CP0_32(0, 0) #define KVM_REG_MIPS_CP0_CONTEXT MIPS_CP0_64(4, 0) #define KVM_REG_MIPS_CP0_USERLOCAL MIPS_CP0_64(4, 2) #define KVM_REG_MIPS_CP0_PAGEMASK MIPS_CP0_32(5, 0) #define KVM_REG_MIPS_CP0_WIRED MIPS_CP0_32(6, 0) #define KVM_REG_MIPS_CP0_HWRENA MIPS_CP0_32(7, 0) #define KVM_REG_MIPS_CP0_BADVADDR MIPS_CP0_64(8, 0) #define KVM_REG_MIPS_CP0_COUNT MIPS_CP0_32(9, 0) #define KVM_REG_MIPS_CP0_ENTRYHI MIPS_CP0_64(10, 0) #define KVM_REG_MIPS_CP0_COMPARE MIPS_CP0_32(11, 0) #define KVM_REG_MIPS_CP0_STATUS MIPS_CP0_32(12, 0) #define KVM_REG_MIPS_CP0_CAUSE MIPS_CP0_32(13, 0) #define KVM_REG_MIPS_CP0_EPC MIPS_CP0_64(14, 0) #define KVM_REG_MIPS_CP0_PRID MIPS_CP0_32(15, 0) #define KVM_REG_MIPS_CP0_CONFIG MIPS_CP0_32(16, 0) #define KVM_REG_MIPS_CP0_CONFIG1 MIPS_CP0_32(16, 1) #define KVM_REG_MIPS_CP0_CONFIG2 MIPS_CP0_32(16, 2) #define KVM_REG_MIPS_CP0_CONFIG3 MIPS_CP0_32(16, 3) #define KVM_REG_MIPS_CP0_CONFIG4 MIPS_CP0_32(16, 4) #define KVM_REG_MIPS_CP0_CONFIG5 MIPS_CP0_32(16, 5) #define KVM_REG_MIPS_CP0_ERROREPC MIPS_CP0_64(30, 0) static inline int kvm_mips_put_one_reg(CPUState *cs, uint64_t reg_id, int32_t *addr) { struct kvm_one_reg cp0reg = { .id = reg_id, .addr = (uintptr_t)addr }; return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &cp0reg); } static inline int kvm_mips_put_one_ureg(CPUState *cs, uint64_t reg_id, uint32_t *addr) { struct kvm_one_reg cp0reg = { .id = reg_id, .addr = (uintptr_t)addr }; return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &cp0reg); } static inline int kvm_mips_put_one_ulreg(CPUState *cs, uint64_t reg_id, target_ulong *addr) { uint64_t val64 = *addr; struct kvm_one_reg cp0reg = { .id = reg_id, .addr = (uintptr_t)&val64 }; return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &cp0reg); } static inline int kvm_mips_put_one_reg64(CPUState *cs, uint64_t reg_id, int64_t *addr) { struct kvm_one_reg cp0reg = { .id = reg_id, .addr = (uintptr_t)addr }; return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &cp0reg); } static inline int kvm_mips_put_one_ureg64(CPUState *cs, uint64_t reg_id, uint64_t *addr) { struct kvm_one_reg cp0reg = { .id = reg_id, .addr = (uintptr_t)addr }; return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &cp0reg); } static inline int kvm_mips_get_one_reg(CPUState *cs, uint64_t reg_id, int32_t *addr) { struct kvm_one_reg cp0reg = { .id = reg_id, .addr = (uintptr_t)addr }; return kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &cp0reg); } static inline int kvm_mips_get_one_ureg(CPUState *cs, uint64_t reg_id, uint32_t *addr) { struct kvm_one_reg cp0reg = { .id = reg_id, .addr = (uintptr_t)addr }; return kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &cp0reg); } static inline int kvm_mips_get_one_ulreg(CPUState *cs, uint64_t reg_id, target_ulong *addr) { int ret; uint64_t val64 = 0; struct kvm_one_reg cp0reg = { .id = reg_id, .addr = (uintptr_t)&val64 }; ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &cp0reg); if (ret >= 0) { *addr = val64; } return ret; } static inline int kvm_mips_get_one_reg64(CPUState *cs, uint64_t reg_id, int64_t *addr) { struct kvm_one_reg cp0reg = { .id = reg_id, .addr = (uintptr_t)addr }; return kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &cp0reg); } static inline int kvm_mips_get_one_ureg64(CPUState *cs, uint64_t reg_id, uint64_t *addr) { struct kvm_one_reg cp0reg = { .id = reg_id, .addr = (uintptr_t)addr }; return kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &cp0reg); } #define KVM_REG_MIPS_CP0_CONFIG_MASK (1U << CP0C0_M) #define KVM_REG_MIPS_CP0_CONFIG1_MASK ((1U << CP0C1_M) | \ (1U << CP0C1_FP)) #define KVM_REG_MIPS_CP0_CONFIG2_MASK (1U << CP0C2_M) #define KVM_REG_MIPS_CP0_CONFIG3_MASK ((1U << CP0C3_M) | \ (1U << CP0C3_MSAP)) #define KVM_REG_MIPS_CP0_CONFIG4_MASK (1U << CP0C4_M) #define KVM_REG_MIPS_CP0_CONFIG5_MASK ((1U << CP0C5_MSAEn) | \ (1U << CP0C5_UFE) | \ (1U << CP0C5_FRE) | \ (1U << CP0C5_UFR)) static inline int kvm_mips_change_one_reg(CPUState *cs, uint64_t reg_id, int32_t *addr, int32_t mask) { int err; int32_t tmp, change; err = kvm_mips_get_one_reg(cs, reg_id, &tmp); if (err < 0) { return err; } /* only change bits in mask */ change = (*addr ^ tmp) & mask; if (!change) { return 0; } tmp = tmp ^ change; return kvm_mips_put_one_reg(cs, reg_id, &tmp); } /* * We freeze the KVM timer when either the VM clock is stopped or the state is * saved (the state is dirty). */ /* * Save the state of the KVM timer when VM clock is stopped or state is synced * to QEMU. */ static int kvm_mips_save_count(CPUState *cs) { MIPSCPU *cpu = MIPS_CPU(cs); CPUMIPSState *env = &cpu->env; uint64_t count_ctl; int err, ret = 0; /* freeze KVM timer */ err = kvm_mips_get_one_ureg64(cs, KVM_REG_MIPS_COUNT_CTL, &count_ctl); if (err < 0) { DPRINTF("%s: Failed to get COUNT_CTL (%d)\n", __func__, err); ret = err; } else if (!(count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)) { count_ctl |= KVM_REG_MIPS_COUNT_CTL_DC; err = kvm_mips_put_one_ureg64(cs, KVM_REG_MIPS_COUNT_CTL, &count_ctl); if (err < 0) { DPRINTF("%s: Failed to set COUNT_CTL.DC=1 (%d)\n", __func__, err); ret = err; } } /* read CP0_Cause */ err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_CP0_CAUSE, &env->CP0_Cause); if (err < 0) { DPRINTF("%s: Failed to get CP0_CAUSE (%d)\n", __func__, err); ret = err; } /* read CP0_Count */ err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_CP0_COUNT, &env->CP0_Count); if (err < 0) { DPRINTF("%s: Failed to get CP0_COUNT (%d)\n", __func__, err); ret = err; } return ret; } /* * Restore the state of the KVM timer when VM clock is restarted or state is * synced to KVM. */ static int kvm_mips_restore_count(CPUState *cs) { MIPSCPU *cpu = MIPS_CPU(cs); CPUMIPSState *env = &cpu->env; uint64_t count_ctl; int err_dc, err, ret = 0; /* check the timer is frozen */ err_dc = kvm_mips_get_one_ureg64(cs, KVM_REG_MIPS_COUNT_CTL, &count_ctl); if (err_dc < 0) { DPRINTF("%s: Failed to get COUNT_CTL (%d)\n", __func__, err_dc); ret = err_dc; } else if (!(count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)) { /* freeze timer (sets COUNT_RESUME for us) */ count_ctl |= KVM_REG_MIPS_COUNT_CTL_DC; err = kvm_mips_put_one_ureg64(cs, KVM_REG_MIPS_COUNT_CTL, &count_ctl); if (err < 0) { DPRINTF("%s: Failed to set COUNT_CTL.DC=1 (%d)\n", __func__, err); ret = err; } } /* load CP0_Cause */ err = kvm_mips_put_one_reg(cs, KVM_REG_MIPS_CP0_CAUSE, &env->CP0_Cause); if (err < 0) { DPRINTF("%s: Failed to put CP0_CAUSE (%d)\n", __func__, err); ret = err; } /* load CP0_Count */ err = kvm_mips_put_one_reg(cs, KVM_REG_MIPS_CP0_COUNT, &env->CP0_Count); if (err < 0) { DPRINTF("%s: Failed to put CP0_COUNT (%d)\n", __func__, err); ret = err; } /* resume KVM timer */ if (err_dc >= 0) { count_ctl &= ~KVM_REG_MIPS_COUNT_CTL_DC; err = kvm_mips_put_one_ureg64(cs, KVM_REG_MIPS_COUNT_CTL, &count_ctl); if (err < 0) { DPRINTF("%s: Failed to set COUNT_CTL.DC=0 (%d)\n", __func__, err); ret = err; } } return ret; } /* * Handle the VM clock being started or stopped */ static void kvm_mips_update_state(void *opaque, int running, RunState state) { CPUState *cs = opaque; int ret; uint64_t count_resume; /* * If state is already dirty (synced to QEMU) then the KVM timer state is * already saved and can be restored when it is synced back to KVM. */ if (!running) { if (!cs->kvm_vcpu_dirty) { ret = kvm_mips_save_count(cs); if (ret < 0) { fprintf(stderr, "Failed saving count\n"); } } } else { /* Set clock restore time to now */ count_resume = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); ret = kvm_mips_put_one_ureg64(cs, KVM_REG_MIPS_COUNT_RESUME, &count_resume); if (ret < 0) { fprintf(stderr, "Failed setting COUNT_RESUME\n"); return; } if (!cs->kvm_vcpu_dirty) { ret = kvm_mips_restore_count(cs); if (ret < 0) { fprintf(stderr, "Failed restoring count\n"); } } } } static int kvm_mips_put_fpu_registers(CPUState *cs, int level) { MIPSCPU *cpu = MIPS_CPU(cs); CPUMIPSState *env = &cpu->env; int err, ret = 0; unsigned int i; /* Only put FPU state if we're emulating a CPU with an FPU */ if (env->CP0_Config1 & (1 << CP0C1_FP)) { /* FPU Control Registers */ if (level == KVM_PUT_FULL_STATE) { err = kvm_mips_put_one_ureg(cs, KVM_REG_MIPS_FCR_IR, &env->active_fpu.fcr0); if (err < 0) { DPRINTF("%s: Failed to put FCR_IR (%d)\n", __func__, err); ret = err; } } err = kvm_mips_put_one_ureg(cs, KVM_REG_MIPS_FCR_CSR, &env->active_fpu.fcr31); if (err < 0) { DPRINTF("%s: Failed to put FCR_CSR (%d)\n", __func__, err); ret = err; } /* * FPU register state is a subset of MSA vector state, so don't put FPU * registers if we're emulating a CPU with MSA. */ if (!(env->CP0_Config3 & (1 << CP0C3_MSAP))) { /* Floating point registers */ for (i = 0; i < 32; ++i) { if (env->CP0_Status & (1 << CP0St_FR)) { err = kvm_mips_put_one_ureg64(cs, KVM_REG_MIPS_FPR_64(i), &env->active_fpu.fpr[i].d); } else { err = kvm_mips_get_one_ureg(cs, KVM_REG_MIPS_FPR_32(i), &env->active_fpu.fpr[i].w[FP_ENDIAN_IDX]); } if (err < 0) { DPRINTF("%s: Failed to put FPR%u (%d)\n", __func__, i, err); ret = err; } } } } /* Only put MSA state if we're emulating a CPU with MSA */ if (env->CP0_Config3 & (1 << CP0C3_MSAP)) { /* MSA Control Registers */ if (level == KVM_PUT_FULL_STATE) { err = kvm_mips_put_one_reg(cs, KVM_REG_MIPS_MSA_IR, &env->msair); if (err < 0) { DPRINTF("%s: Failed to put MSA_IR (%d)\n", __func__, err); ret = err; } } err = kvm_mips_put_one_reg(cs, KVM_REG_MIPS_MSA_CSR, &env->active_tc.msacsr); if (err < 0) { DPRINTF("%s: Failed to put MSA_CSR (%d)\n", __func__, err); ret = err; } /* Vector registers (includes FP registers) */ for (i = 0; i < 32; ++i) { /* Big endian MSA not supported by QEMU yet anyway */ err = kvm_mips_put_one_reg64(cs, KVM_REG_MIPS_VEC_128(i), env->active_fpu.fpr[i].wr.d); if (err < 0) { DPRINTF("%s: Failed to put VEC%u (%d)\n", __func__, i, err); ret = err; } } } return ret; } static int kvm_mips_get_fpu_registers(CPUState *cs) { MIPSCPU *cpu = MIPS_CPU(cs); CPUMIPSState *env = &cpu->env; int err, ret = 0; unsigned int i; /* Only get FPU state if we're emulating a CPU with an FPU */ if (env->CP0_Config1 & (1 << CP0C1_FP)) { /* FPU Control Registers */ err = kvm_mips_get_one_ureg(cs, KVM_REG_MIPS_FCR_IR, &env->active_fpu.fcr0); if (err < 0) { DPRINTF("%s: Failed to get FCR_IR (%d)\n", __func__, err); ret = err; } err = kvm_mips_get_one_ureg(cs, KVM_REG_MIPS_FCR_CSR, &env->active_fpu.fcr31); if (err < 0) { DPRINTF("%s: Failed to get FCR_CSR (%d)\n", __func__, err); ret = err; } else { restore_fp_status(env); } /* * FPU register state is a subset of MSA vector state, so don't save FPU * registers if we're emulating a CPU with MSA. */ if (!(env->CP0_Config3 & (1 << CP0C3_MSAP))) { /* Floating point registers */ for (i = 0; i < 32; ++i) { if (env->CP0_Status & (1 << CP0St_FR)) { err = kvm_mips_get_one_ureg64(cs, KVM_REG_MIPS_FPR_64(i), &env->active_fpu.fpr[i].d); } else { err = kvm_mips_get_one_ureg(cs, KVM_REG_MIPS_FPR_32(i), &env->active_fpu.fpr[i].w[FP_ENDIAN_IDX]); } if (err < 0) { DPRINTF("%s: Failed to get FPR%u (%d)\n", __func__, i, err); ret = err; } } } } /* Only get MSA state if we're emulating a CPU with MSA */ if (env->CP0_Config3 & (1 << CP0C3_MSAP)) { /* MSA Control Registers */ err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_MSA_IR, &env->msair); if (err < 0) { DPRINTF("%s: Failed to get MSA_IR (%d)\n", __func__, err); ret = err; } err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_MSA_CSR, &env->active_tc.msacsr); if (err < 0) { DPRINTF("%s: Failed to get MSA_CSR (%d)\n", __func__, err); ret = err; } else { restore_msa_fp_status(env); } /* Vector registers (includes FP registers) */ for (i = 0; i < 32; ++i) { /* Big endian MSA not supported by QEMU yet anyway */ err = kvm_mips_get_one_reg64(cs, KVM_REG_MIPS_VEC_128(i), env->active_fpu.fpr[i].wr.d); if (err < 0) { DPRINTF("%s: Failed to get VEC%u (%d)\n", __func__, i, err); ret = err; } } } return ret; } static int kvm_mips_put_cp0_registers(CPUState *cs, int level) { MIPSCPU *cpu = MIPS_CPU(cs); CPUMIPSState *env = &cpu->env; int err, ret = 0; (void)level; err = kvm_mips_put_one_reg(cs, KVM_REG_MIPS_CP0_INDEX, &env->CP0_Index); if (err < 0) { DPRINTF("%s: Failed to put CP0_INDEX (%d)\n", __func__, err); ret = err; } err = kvm_mips_put_one_ulreg(cs, KVM_REG_MIPS_CP0_CONTEXT, &env->CP0_Context); if (err < 0) { DPRINTF("%s: Failed to put CP0_CONTEXT (%d)\n", __func__, err); ret = err; } err = kvm_mips_put_one_ulreg(cs, KVM_REG_MIPS_CP0_USERLOCAL, &env->active_tc.CP0_UserLocal); if (err < 0) { DPRINTF("%s: Failed to put CP0_USERLOCAL (%d)\n", __func__, err); ret = err; } err = kvm_mips_put_one_reg(cs, KVM_REG_MIPS_CP0_PAGEMASK, &env->CP0_PageMask); if (err < 0) { DPRINTF("%s: Failed to put CP0_PAGEMASK (%d)\n", __func__, err); ret = err; } err = kvm_mips_put_one_reg(cs, KVM_REG_MIPS_CP0_WIRED, &env->CP0_Wired); if (err < 0) { DPRINTF("%s: Failed to put CP0_WIRED (%d)\n", __func__, err); ret = err; } err = kvm_mips_put_one_reg(cs, KVM_REG_MIPS_CP0_HWRENA, &env->CP0_HWREna); if (err < 0) { DPRINTF("%s: Failed to put CP0_HWRENA (%d)\n", __func__, err); ret = err; } err = kvm_mips_put_one_ulreg(cs, KVM_REG_MIPS_CP0_BADVADDR, &env->CP0_BadVAddr); if (err < 0) { DPRINTF("%s: Failed to put CP0_BADVADDR (%d)\n", __func__, err); ret = err; } /* If VM clock stopped then state will be restored when it is restarted */ if (runstate_is_running()) { err = kvm_mips_restore_count(cs); if (err < 0) { ret = err; } } err = kvm_mips_put_one_ulreg(cs, KVM_REG_MIPS_CP0_ENTRYHI, &env->CP0_EntryHi); if (err < 0) { DPRINTF("%s: Failed to put CP0_ENTRYHI (%d)\n", __func__, err); ret = err; } err = kvm_mips_put_one_reg(cs, KVM_REG_MIPS_CP0_COMPARE, &env->CP0_Compare); if (err < 0) { DPRINTF("%s: Failed to put CP0_COMPARE (%d)\n", __func__, err); ret = err; } err = kvm_mips_put_one_reg(cs, KVM_REG_MIPS_CP0_STATUS, &env->CP0_Status); if (err < 0) { DPRINTF("%s: Failed to put CP0_STATUS (%d)\n", __func__, err); ret = err; } err = kvm_mips_put_one_ulreg(cs, KVM_REG_MIPS_CP0_EPC, &env->CP0_EPC); if (err < 0) { DPRINTF("%s: Failed to put CP0_EPC (%d)\n", __func__, err); ret = err; } err = kvm_mips_put_one_reg(cs, KVM_REG_MIPS_CP0_PRID, &env->CP0_PRid); if (err < 0) { DPRINTF("%s: Failed to put CP0_PRID (%d)\n", __func__, err); ret = err; } err = kvm_mips_change_one_reg(cs, KVM_REG_MIPS_CP0_CONFIG, &env->CP0_Config0, KVM_REG_MIPS_CP0_CONFIG_MASK); if (err < 0) { DPRINTF("%s: Failed to change CP0_CONFIG (%d)\n", __func__, err); ret = err; } err = kvm_mips_change_one_reg(cs, KVM_REG_MIPS_CP0_CONFIG1, &env->CP0_Config1, KVM_REG_MIPS_CP0_CONFIG1_MASK); if (err < 0) { DPRINTF("%s: Failed to change CP0_CONFIG1 (%d)\n", __func__, err); ret = err; } err = kvm_mips_change_one_reg(cs, KVM_REG_MIPS_CP0_CONFIG2, &env->CP0_Config2, KVM_REG_MIPS_CP0_CONFIG2_MASK); if (err < 0) { DPRINTF("%s: Failed to change CP0_CONFIG2 (%d)\n", __func__, err); ret = err; } err = kvm_mips_change_one_reg(cs, KVM_REG_MIPS_CP0_CONFIG3, &env->CP0_Config3, KVM_REG_MIPS_CP0_CONFIG3_MASK); if (err < 0) { DPRINTF("%s: Failed to change CP0_CONFIG3 (%d)\n", __func__, err); ret = err; } err = kvm_mips_change_one_reg(cs, KVM_REG_MIPS_CP0_CONFIG4, &env->CP0_Config4, KVM_REG_MIPS_CP0_CONFIG4_MASK); if (err < 0) { DPRINTF("%s: Failed to change CP0_CONFIG4 (%d)\n", __func__, err); ret = err; } err = kvm_mips_change_one_reg(cs, KVM_REG_MIPS_CP0_CONFIG5, &env->CP0_Config5, KVM_REG_MIPS_CP0_CONFIG5_MASK); if (err < 0) { DPRINTF("%s: Failed to change CP0_CONFIG5 (%d)\n", __func__, err); ret = err; } err = kvm_mips_put_one_ulreg(cs, KVM_REG_MIPS_CP0_ERROREPC, &env->CP0_ErrorEPC); if (err < 0) { DPRINTF("%s: Failed to put CP0_ERROREPC (%d)\n", __func__, err); ret = err; } return ret; } static int kvm_mips_get_cp0_registers(CPUState *cs) { MIPSCPU *cpu = MIPS_CPU(cs); CPUMIPSState *env = &cpu->env; int err, ret = 0; err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_CP0_INDEX, &env->CP0_Index); if (err < 0) { DPRINTF("%s: Failed to get CP0_INDEX (%d)\n", __func__, err); ret = err; } err = kvm_mips_get_one_ulreg(cs, KVM_REG_MIPS_CP0_CONTEXT, &env->CP0_Context); if (err < 0) { DPRINTF("%s: Failed to get CP0_CONTEXT (%d)\n", __func__, err); ret = err; } err = kvm_mips_get_one_ulreg(cs, KVM_REG_MIPS_CP0_USERLOCAL, &env->active_tc.CP0_UserLocal); if (err < 0) { DPRINTF("%s: Failed to get CP0_USERLOCAL (%d)\n", __func__, err); ret = err; } err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_CP0_PAGEMASK, &env->CP0_PageMask); if (err < 0) { DPRINTF("%s: Failed to get CP0_PAGEMASK (%d)\n", __func__, err); ret = err; } err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_CP0_WIRED, &env->CP0_Wired); if (err < 0) { DPRINTF("%s: Failed to get CP0_WIRED (%d)\n", __func__, err); ret = err; } err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_CP0_HWRENA, &env->CP0_HWREna); if (err < 0) { DPRINTF("%s: Failed to get CP0_HWRENA (%d)\n", __func__, err); ret = err; } err = kvm_mips_get_one_ulreg(cs, KVM_REG_MIPS_CP0_BADVADDR, &env->CP0_BadVAddr); if (err < 0) { DPRINTF("%s: Failed to get CP0_BADVADDR (%d)\n", __func__, err); ret = err; } err = kvm_mips_get_one_ulreg(cs, KVM_REG_MIPS_CP0_ENTRYHI, &env->CP0_EntryHi); if (err < 0) { DPRINTF("%s: Failed to get CP0_ENTRYHI (%d)\n", __func__, err); ret = err; } err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_CP0_COMPARE, &env->CP0_Compare); if (err < 0) { DPRINTF("%s: Failed to get CP0_COMPARE (%d)\n", __func__, err); ret = err; } err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_CP0_STATUS, &env->CP0_Status); if (err < 0) { DPRINTF("%s: Failed to get CP0_STATUS (%d)\n", __func__, err); ret = err; } /* If VM clock stopped then state was already saved when it was stopped */ if (runstate_is_running()) { err = kvm_mips_save_count(cs); if (err < 0) { ret = err; } } err = kvm_mips_get_one_ulreg(cs, KVM_REG_MIPS_CP0_EPC, &env->CP0_EPC); if (err < 0) { DPRINTF("%s: Failed to get CP0_EPC (%d)\n", __func__, err); ret = err; } err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_CP0_PRID, &env->CP0_PRid); if (err < 0) { DPRINTF("%s: Failed to get CP0_PRID (%d)\n", __func__, err); ret = err; } err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_CP0_CONFIG, &env->CP0_Config0); if (err < 0) { DPRINTF("%s: Failed to get CP0_CONFIG (%d)\n", __func__, err); ret = err; } err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_CP0_CONFIG1, &env->CP0_Config1); if (err < 0) { DPRINTF("%s: Failed to get CP0_CONFIG1 (%d)\n", __func__, err); ret = err; } err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_CP0_CONFIG2, &env->CP0_Config2); if (err < 0) { DPRINTF("%s: Failed to get CP0_CONFIG2 (%d)\n", __func__, err); ret = err; } err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_CP0_CONFIG3, &env->CP0_Config3); if (err < 0) { DPRINTF("%s: Failed to get CP0_CONFIG3 (%d)\n", __func__, err); ret = err; } err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_CP0_CONFIG4, &env->CP0_Config4); if (err < 0) { DPRINTF("%s: Failed to get CP0_CONFIG4 (%d)\n", __func__, err); ret = err; } err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_CP0_CONFIG5, &env->CP0_Config5); if (err < 0) { DPRINTF("%s: Failed to get CP0_CONFIG5 (%d)\n", __func__, err); ret = err; } err = kvm_mips_get_one_ulreg(cs, KVM_REG_MIPS_CP0_ERROREPC, &env->CP0_ErrorEPC); if (err < 0) { DPRINTF("%s: Failed to get CP0_ERROREPC (%d)\n", __func__, err); ret = err; } return ret; } int kvm_arch_put_registers(CPUState *cs, int level) { MIPSCPU *cpu = MIPS_CPU(cs); CPUMIPSState *env = &cpu->env; struct kvm_regs regs; int ret; int i; /* Set the registers based on QEMU's view of things */ for (i = 0; i < 32; i++) { regs.gpr[i] = (int64_t)(target_long)env->active_tc.gpr[i]; } regs.hi = (int64_t)(target_long)env->active_tc.HI[0]; regs.lo = (int64_t)(target_long)env->active_tc.LO[0]; regs.pc = (int64_t)(target_long)env->active_tc.PC; ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s); if (ret < 0) { return ret; } ret = kvm_mips_put_cp0_registers(cs, level); if (ret < 0) { return ret; } ret = kvm_mips_put_fpu_registers(cs, level); if (ret < 0) { return ret; } return ret; } int kvm_arch_get_registers(CPUState *cs) { MIPSCPU *cpu = MIPS_CPU(cs); CPUMIPSState *env = &cpu->env; int ret = 0; struct kvm_regs regs; int i; /* Get the current register set as KVM seems it */ ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); if (ret < 0) { return ret; } for (i = 0; i < 32; i++) { env->active_tc.gpr[i] = regs.gpr[i]; } env->active_tc.HI[0] = regs.hi; env->active_tc.LO[0] = regs.lo; env->active_tc.PC = regs.pc; kvm_mips_get_cp0_registers(cs); kvm_mips_get_fpu_registers(cs); return ret; } int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, uint64_t address, uint32_t data, PCIDevice *dev) { return 0; } int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, int vector, PCIDevice *dev) { return 0; } int kvm_arch_release_virq_post(int virq) { return 0; } int kvm_arch_msi_data_to_gsi(uint32_t data) { abort(); }