/* * MIPS internal definitions and helpers * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #ifndef MIPS_INTERNAL_H #define MIPS_INTERNAL_H #include "exec/memattrs.h" #ifdef CONFIG_TCG #include "tcg/tcg-internal.h" #endif /* * MMU types, the first four entries have the same layout as the * CP0C0_MT field. */ enum mips_mmu_types { MMU_TYPE_NONE = 0, MMU_TYPE_R4000 = 1, /* Standard TLB */ MMU_TYPE_BAT = 2, /* Block Address Translation */ MMU_TYPE_FMT = 3, /* Fixed Mapping */ MMU_TYPE_DVF = 4, /* Dual VTLB and FTLB */ MMU_TYPE_R3000, MMU_TYPE_R6000, MMU_TYPE_R8000 }; struct mips_def_t { const char *name; int32_t CP0_PRid; int32_t CP0_Config0; int32_t CP0_Config1; int32_t CP0_Config2; int32_t CP0_Config3; int32_t CP0_Config4; int32_t CP0_Config4_rw_bitmask; int32_t CP0_Config5; int32_t CP0_Config5_rw_bitmask; int32_t CP0_Config6; int32_t CP0_Config6_rw_bitmask; int32_t CP0_Config7; int32_t CP0_Config7_rw_bitmask; target_ulong CP0_LLAddr_rw_bitmask; int CP0_LLAddr_shift; int32_t SYNCI_Step; int32_t CCRes; int32_t CP0_Status_rw_bitmask; int32_t CP0_TCStatus_rw_bitmask; int32_t CP0_SRSCtl; int32_t CP1_fcr0; int32_t CP1_fcr31_rw_bitmask; int32_t CP1_fcr31; int32_t MSAIR; int32_t SEGBITS; int32_t PABITS; int32_t CP0_SRSConf0_rw_bitmask; int32_t CP0_SRSConf0; int32_t CP0_SRSConf1_rw_bitmask; int32_t CP0_SRSConf1; int32_t CP0_SRSConf2_rw_bitmask; int32_t CP0_SRSConf2; int32_t CP0_SRSConf3_rw_bitmask; int32_t CP0_SRSConf3; int32_t CP0_SRSConf4_rw_bitmask; int32_t CP0_SRSConf4; int32_t CP0_PageGrain_rw_bitmask; int32_t CP0_PageGrain; target_ulong CP0_EBaseWG_rw_bitmask; uint64_t insn_flags; enum mips_mmu_types mmu_type; int32_t SAARP; }; extern const char regnames[32][4]; extern const char fregnames[32][4]; extern const struct mips_def_t mips_defs[]; extern const int mips_defs_number; bool mips_cpu_exec_interrupt(CPUState *cpu, int int_req); int mips_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); int mips_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); void mips_cpu_do_unaligned_access(CPUState *cpu, vaddr addr, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr); #define USEG_LIMIT ((target_ulong)(int32_t)0x7FFFFFFFUL) #define KSEG0_BASE ((target_ulong)(int32_t)0x80000000UL) #define KSEG1_BASE ((target_ulong)(int32_t)0xA0000000UL) #define KSEG2_BASE ((target_ulong)(int32_t)0xC0000000UL) #define KSEG3_BASE ((target_ulong)(int32_t)0xE0000000UL) #define KVM_KSEG0_BASE ((target_ulong)(int32_t)0x40000000UL) #define KVM_KSEG2_BASE ((target_ulong)(int32_t)0x60000000UL) #if !defined(CONFIG_USER_ONLY) enum { TLBRET_XI = -6, TLBRET_RI = -5, TLBRET_DIRTY = -4, TLBRET_INVALID = -3, TLBRET_NOMATCH = -2, TLBRET_BADADDR = -1, TLBRET_MATCH = 0 }; int get_physical_address(CPUMIPSState *env, hwaddr *physical, int *prot, target_ulong real_address, MMUAccessType access_type, int mmu_idx); hwaddr mips_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); typedef struct r4k_tlb_t r4k_tlb_t; struct r4k_tlb_t { target_ulong VPN; uint32_t PageMask; uint16_t ASID; uint32_t MMID; unsigned int G:1; unsigned int C0:3; unsigned int C1:3; unsigned int V0:1; unsigned int V1:1; unsigned int D0:1; unsigned int D1:1; unsigned int XI0:1; unsigned int XI1:1; unsigned int RI0:1; unsigned int RI1:1; unsigned int EHINV:1; uint64_t PFN[2]; }; struct CPUMIPSTLBContext { uint32_t nb_tlb; uint32_t tlb_in_use; int (*map_address)(struct CPUMIPSState *env, hwaddr *physical, int *prot, target_ulong address, MMUAccessType access_type); void (*helper_tlbwi)(struct CPUMIPSState *env); void (*helper_tlbwr)(struct CPUMIPSState *env); void (*helper_tlbp)(struct CPUMIPSState *env); void (*helper_tlbr)(struct CPUMIPSState *env); void (*helper_tlbinv)(struct CPUMIPSState *env); void (*helper_tlbinvf)(struct CPUMIPSState *env); union { struct { r4k_tlb_t tlb[MIPS_TLB_MAX]; } r4k; } mmu; }; void r4k_helper_tlbwi(CPUMIPSState *env); void r4k_helper_tlbwr(CPUMIPSState *env); void r4k_helper_tlbp(CPUMIPSState *env); void r4k_helper_tlbr(CPUMIPSState *env); void r4k_helper_tlbinv(CPUMIPSState *env); void r4k_helper_tlbinvf(CPUMIPSState *env); void mips_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, vaddr addr, unsigned size, MMUAccessType access_type, int mmu_idx, MemTxAttrs attrs, MemTxResult response, uintptr_t retaddr); extern const VMStateDescription vmstate_mips_cpu; #endif /* !CONFIG_USER_ONLY */ #define cpu_signal_handler cpu_mips_signal_handler static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState *env) { return (env->CP0_Status & (1 << CP0St_IE)) && !(env->CP0_Status & (1 << CP0St_EXL)) && !(env->CP0_Status & (1 << CP0St_ERL)) && !(env->hflags & MIPS_HFLAG_DM) && /* * Note that the TCStatus IXMT field is initialized to zero, * and only MT capable cores can set it to one. So we don't * need to check for MT capabilities here. */ !(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_IXMT)); } /* Check if there is pending and not masked out interrupt */ static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState *env) { int32_t pending; int32_t status; bool r; pending = env->CP0_Cause & CP0Ca_IP_mask; status = env->CP0_Status & CP0Ca_IP_mask; if (env->CP0_Config3 & (1 << CP0C3_VEIC)) { /* * A MIPS configured with a vectorizing external interrupt controller * will feed a vector into the Cause pending lines. The core treats * the status lines as a vector level, not as individual masks. */ r = pending > status; } else { /* * A MIPS configured with compatibility or VInt (Vectored Interrupts) * treats the pending lines as individual interrupt lines, the status * lines are individual masks. */ r = (pending & status) != 0; } return r; } void mips_tcg_init(void); void msa_reset(CPUMIPSState *env); /* cp0_timer.c */ uint32_t cpu_mips_get_count(CPUMIPSState *env); void cpu_mips_store_count(CPUMIPSState *env, uint32_t value); void cpu_mips_store_compare(CPUMIPSState *env, uint32_t value); void cpu_mips_start_count(CPUMIPSState *env); void cpu_mips_stop_count(CPUMIPSState *env); static inline void mips_env_set_pc(CPUMIPSState *env, target_ulong value) { env->active_tc.PC = value & ~(target_ulong)1; if (value & 1) { env->hflags |= MIPS_HFLAG_M16; } else { env->hflags &= ~(MIPS_HFLAG_M16); } } static inline void restore_pamask(CPUMIPSState *env) { if (env->hflags & MIPS_HFLAG_ELPA) { env->PAMask = (1ULL << env->PABITS) - 1; } else { env->PAMask = PAMASK_BASE; } } static inline int mips_vpe_active(CPUMIPSState *env) { int active = 1; /* Check that the VPE is enabled. */ if (!(env->mvp->CP0_MVPControl & (1 << CP0MVPCo_EVP))) { active = 0; } /* Check that the VPE is activated. */ if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))) { active = 0; } /* * Now verify that there are active thread contexts in the VPE. * * This assumes the CPU model will internally reschedule threads * if the active one goes to sleep. If there are no threads available * the active one will be in a sleeping state, and we can turn off * the entire VPE. */ if (!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_A))) { /* TC is not activated. */ active = 0; } if (env->active_tc.CP0_TCHalt & 1) { /* TC is in halt state. */ active = 0; } return active; } static inline int mips_vp_active(CPUMIPSState *env) { CPUState *other_cs = first_cpu; /* Check if the VP disabled other VPs (which means the VP is enabled) */ if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) { return 1; } /* Check if the virtual processor is disabled due to a DVP */ CPU_FOREACH(other_cs) { MIPSCPU *other_cpu = MIPS_CPU(other_cs); if ((&other_cpu->env != env) && ((other_cpu->env.CP0_VPControl >> CP0VPCtl_DIS) & 1)) { return 0; } } return 1; } static inline void compute_hflags(CPUMIPSState *env) { env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 | MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU | MIPS_HFLAG_AWRAP | MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 | MIPS_HFLAG_DSP_R3 | MIPS_HFLAG_SBRI | MIPS_HFLAG_MSA | MIPS_HFLAG_FRE | MIPS_HFLAG_ELPA | MIPS_HFLAG_ERL); if (env->CP0_Status & (1 << CP0St_ERL)) { env->hflags |= MIPS_HFLAG_ERL; } if (!(env->CP0_Status & (1 << CP0St_EXL)) && !(env->CP0_Status & (1 << CP0St_ERL)) && !(env->hflags & MIPS_HFLAG_DM)) { env->hflags |= (env->CP0_Status >> CP0St_KSU) & MIPS_HFLAG_KSU; } #if defined(TARGET_MIPS64) if ((env->insn_flags & ISA_MIPS3) && (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) || (env->CP0_Status & (1 << CP0St_PX)) || (env->CP0_Status & (1 << CP0St_UX)))) { env->hflags |= MIPS_HFLAG_64; } if (!(env->insn_flags & ISA_MIPS3)) { env->hflags |= MIPS_HFLAG_AWRAP; } else if (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_UM) && !(env->CP0_Status & (1 << CP0St_UX))) { env->hflags |= MIPS_HFLAG_AWRAP; } else if (env->insn_flags & ISA_MIPS_R6) { /* Address wrapping for Supervisor and Kernel is specified in R6 */ if ((((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_SM) && !(env->CP0_Status & (1 << CP0St_SX))) || (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_KM) && !(env->CP0_Status & (1 << CP0St_KX)))) { env->hflags |= MIPS_HFLAG_AWRAP; } } #endif if (((env->CP0_Status & (1 << CP0St_CU0)) && !(env->insn_flags & ISA_MIPS_R6)) || !(env->hflags & MIPS_HFLAG_KSU)) { env->hflags |= MIPS_HFLAG_CP0; } if (env->CP0_Status & (1 << CP0St_CU1)) { env->hflags |= MIPS_HFLAG_FPU; } if (env->CP0_Status & (1 << CP0St_FR)) { env->hflags |= MIPS_HFLAG_F64; } if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_KM) && (env->CP0_Config5 & (1 << CP0C5_SBRI))) { env->hflags |= MIPS_HFLAG_SBRI; } if (env->insn_flags & ASE_DSP_R3) { /* * Our cpu supports DSP R3 ASE, so enable * access to DSP R3 resources. */ if (env->CP0_Status & (1 << CP0St_MX)) { env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 | MIPS_HFLAG_DSP_R3; } } else if (env->insn_flags & ASE_DSP_R2) { /* * Our cpu supports DSP R2 ASE, so enable * access to DSP R2 resources. */ if (env->CP0_Status & (1 << CP0St_MX)) { env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2; } } else if (env->insn_flags & ASE_DSP) { /* * Our cpu supports DSP ASE, so enable * access to DSP resources. */ if (env->CP0_Status & (1 << CP0St_MX)) { env->hflags |= MIPS_HFLAG_DSP; } } if (env->insn_flags & ISA_MIPS_R2) { if (env->active_fpu.fcr0 & (1 << FCR0_F64)) { env->hflags |= MIPS_HFLAG_COP1X; } } else if (env->insn_flags & ISA_MIPS_R1) { if (env->hflags & MIPS_HFLAG_64) { env->hflags |= MIPS_HFLAG_COP1X; } } else if (env->insn_flags & ISA_MIPS4) { /* * All supported MIPS IV CPUs use the XX (CU3) to enable * and disable the MIPS IV extensions to the MIPS III ISA. * Some other MIPS IV CPUs ignore the bit, so the check here * would be too restrictive for them. */ if (env->CP0_Status & (1U << CP0St_CU3)) { env->hflags |= MIPS_HFLAG_COP1X; } } if (ase_msa_available(env)) { if (env->CP0_Config5 & (1 << CP0C5_MSAEn)) { env->hflags |= MIPS_HFLAG_MSA; } } if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) { if (env->CP0_Config5 & (1 << CP0C5_FRE)) { env->hflags |= MIPS_HFLAG_FRE; } } if (env->CP0_Config3 & (1 << CP0C3_LPA)) { if (env->CP0_PageGrain & (1 << CP0PG_ELPA)) { env->hflags |= MIPS_HFLAG_ELPA; } } } void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc); void cpu_mips_store_status(CPUMIPSState *env, target_ulong val); void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val); const char *mips_exception_name(int32_t exception); void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env, uint32_t exception, int error_code, uintptr_t pc); static inline void QEMU_NORETURN do_raise_exception(CPUMIPSState *env, uint32_t exception, uintptr_t pc) { do_raise_exception_err(env, exception, 0, pc); } #endif