/* * x86 misc helpers * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/>. */ #include "qemu/osdep.h" #include "qemu/main-loop.h" #include "cpu.h" #include "exec/helper-proto.h" #include "exec/exec-all.h" #include "exec/cpu_ldst.h" #include "exec/address-spaces.h" void helper_outb(CPUX86State *env, uint32_t port, uint32_t data) { #ifdef CONFIG_USER_ONLY fprintf(stderr, "outb: port=0x%04x, data=%02x\n", port, data); #else address_space_stb(&address_space_io, port, data, cpu_get_mem_attrs(env), NULL); #endif } target_ulong helper_inb(CPUX86State *env, uint32_t port) { #ifdef CONFIG_USER_ONLY fprintf(stderr, "inb: port=0x%04x\n", port); return 0; #else return address_space_ldub(&address_space_io, port, cpu_get_mem_attrs(env), NULL); #endif } void helper_outw(CPUX86State *env, uint32_t port, uint32_t data) { #ifdef CONFIG_USER_ONLY fprintf(stderr, "outw: port=0x%04x, data=%04x\n", port, data); #else address_space_stw(&address_space_io, port, data, cpu_get_mem_attrs(env), NULL); #endif } target_ulong helper_inw(CPUX86State *env, uint32_t port) { #ifdef CONFIG_USER_ONLY fprintf(stderr, "inw: port=0x%04x\n", port); return 0; #else return address_space_lduw(&address_space_io, port, cpu_get_mem_attrs(env), NULL); #endif } void helper_outl(CPUX86State *env, uint32_t port, uint32_t data) { #ifdef CONFIG_USER_ONLY fprintf(stderr, "outw: port=0x%04x, data=%08x\n", port, data); #else address_space_stl(&address_space_io, port, data, cpu_get_mem_attrs(env), NULL); #endif } target_ulong helper_inl(CPUX86State *env, uint32_t port) { #ifdef CONFIG_USER_ONLY fprintf(stderr, "inl: port=0x%04x\n", port); return 0; #else return address_space_ldl(&address_space_io, port, cpu_get_mem_attrs(env), NULL); #endif } void helper_into(CPUX86State *env, int next_eip_addend) { int eflags; eflags = cpu_cc_compute_all(env, CC_OP); if (eflags & CC_O) { raise_interrupt(env, EXCP04_INTO, 1, 0, next_eip_addend); } } void helper_cpuid(CPUX86State *env) { uint32_t eax, ebx, ecx, edx; cpu_svm_check_intercept_param(env, SVM_EXIT_CPUID, 0, GETPC()); cpu_x86_cpuid(env, (uint32_t)env->regs[R_EAX], (uint32_t)env->regs[R_ECX], &eax, &ebx, &ecx, &edx); env->regs[R_EAX] = eax; env->regs[R_EBX] = ebx; env->regs[R_ECX] = ecx; env->regs[R_EDX] = edx; } #if defined(CONFIG_USER_ONLY) target_ulong helper_read_crN(CPUX86State *env, int reg) { return 0; } void helper_write_crN(CPUX86State *env, int reg, target_ulong t0) { } #else target_ulong helper_read_crN(CPUX86State *env, int reg) { target_ulong val; cpu_svm_check_intercept_param(env, SVM_EXIT_READ_CR0 + reg, 0, GETPC()); switch (reg) { default: val = env->cr[reg]; break; case 8: if (!(env->hflags2 & HF2_VINTR_MASK)) { val = cpu_get_apic_tpr(x86_env_get_cpu(env)->apic_state); } else { val = env->v_tpr; } break; } return val; } void helper_write_crN(CPUX86State *env, int reg, target_ulong t0) { cpu_svm_check_intercept_param(env, SVM_EXIT_WRITE_CR0 + reg, 0, GETPC()); switch (reg) { case 0: cpu_x86_update_cr0(env, t0); break; case 3: cpu_x86_update_cr3(env, t0); break; case 4: cpu_x86_update_cr4(env, t0); break; case 8: if (!(env->hflags2 & HF2_VINTR_MASK)) { qemu_mutex_lock_iothread(); cpu_set_apic_tpr(x86_env_get_cpu(env)->apic_state, t0); qemu_mutex_unlock_iothread(); } env->v_tpr = t0 & 0x0f; break; default: env->cr[reg] = t0; break; } } #endif void helper_lmsw(CPUX86State *env, target_ulong t0) { /* only 4 lower bits of CR0 are modified. PE cannot be set to zero if already set to one. */ t0 = (env->cr[0] & ~0xe) | (t0 & 0xf); helper_write_crN(env, 0, t0); } void helper_invlpg(CPUX86State *env, target_ulong addr) { X86CPU *cpu = x86_env_get_cpu(env); cpu_svm_check_intercept_param(env, SVM_EXIT_INVLPG, 0, GETPC()); tlb_flush_page(CPU(cpu), addr); } void helper_rdtsc(CPUX86State *env) { uint64_t val; if ((env->cr[4] & CR4_TSD_MASK) && ((env->hflags & HF_CPL_MASK) != 0)) { raise_exception_ra(env, EXCP0D_GPF, GETPC()); } cpu_svm_check_intercept_param(env, SVM_EXIT_RDTSC, 0, GETPC()); val = cpu_get_tsc(env) + env->tsc_offset; env->regs[R_EAX] = (uint32_t)(val); env->regs[R_EDX] = (uint32_t)(val >> 32); } void helper_rdtscp(CPUX86State *env) { helper_rdtsc(env); env->regs[R_ECX] = (uint32_t)(env->tsc_aux); } void helper_rdpmc(CPUX86State *env) { if ((env->cr[4] & CR4_PCE_MASK) && ((env->hflags & HF_CPL_MASK) != 0)) { raise_exception_ra(env, EXCP0D_GPF, GETPC()); } cpu_svm_check_intercept_param(env, SVM_EXIT_RDPMC, 0, GETPC()); /* currently unimplemented */ qemu_log_mask(LOG_UNIMP, "x86: unimplemented rdpmc\n"); raise_exception_err(env, EXCP06_ILLOP, 0); } #if defined(CONFIG_USER_ONLY) void helper_wrmsr(CPUX86State *env) { } void helper_rdmsr(CPUX86State *env) { } #else void helper_wrmsr(CPUX86State *env) { uint64_t val; cpu_svm_check_intercept_param(env, SVM_EXIT_MSR, 1, GETPC()); val = ((uint32_t)env->regs[R_EAX]) | ((uint64_t)((uint32_t)env->regs[R_EDX]) << 32); switch ((uint32_t)env->regs[R_ECX]) { case MSR_IA32_SYSENTER_CS: env->sysenter_cs = val & 0xffff; break; case MSR_IA32_SYSENTER_ESP: env->sysenter_esp = val; break; case MSR_IA32_SYSENTER_EIP: env->sysenter_eip = val; break; case MSR_IA32_APICBASE: cpu_set_apic_base(x86_env_get_cpu(env)->apic_state, val); break; case MSR_EFER: { uint64_t update_mask; update_mask = 0; if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_SYSCALL) { update_mask |= MSR_EFER_SCE; } if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM) { update_mask |= MSR_EFER_LME; } if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_FFXSR) { update_mask |= MSR_EFER_FFXSR; } if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_NX) { update_mask |= MSR_EFER_NXE; } if (env->features[FEAT_8000_0001_ECX] & CPUID_EXT3_SVM) { update_mask |= MSR_EFER_SVME; } if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_FFXSR) { update_mask |= MSR_EFER_FFXSR; } cpu_load_efer(env, (env->efer & ~update_mask) | (val & update_mask)); } break; case MSR_STAR: env->star = val; break; case MSR_PAT: env->pat = val; break; case MSR_VM_HSAVE_PA: env->vm_hsave = val; break; #ifdef TARGET_X86_64 case MSR_LSTAR: env->lstar = val; break; case MSR_CSTAR: env->cstar = val; break; case MSR_FMASK: env->fmask = val; break; case MSR_FSBASE: env->segs[R_FS].base = val; break; case MSR_GSBASE: env->segs[R_GS].base = val; break; case MSR_KERNELGSBASE: env->kernelgsbase = val; break; #endif case MSR_MTRRphysBase(0): case MSR_MTRRphysBase(1): case MSR_MTRRphysBase(2): case MSR_MTRRphysBase(3): case MSR_MTRRphysBase(4): case MSR_MTRRphysBase(5): case MSR_MTRRphysBase(6): case MSR_MTRRphysBase(7): env->mtrr_var[((uint32_t)env->regs[R_ECX] - MSR_MTRRphysBase(0)) / 2].base = val; break; case MSR_MTRRphysMask(0): case MSR_MTRRphysMask(1): case MSR_MTRRphysMask(2): case MSR_MTRRphysMask(3): case MSR_MTRRphysMask(4): case MSR_MTRRphysMask(5): case MSR_MTRRphysMask(6): case MSR_MTRRphysMask(7): env->mtrr_var[((uint32_t)env->regs[R_ECX] - MSR_MTRRphysMask(0)) / 2].mask = val; break; case MSR_MTRRfix64K_00000: env->mtrr_fixed[(uint32_t)env->regs[R_ECX] - MSR_MTRRfix64K_00000] = val; break; case MSR_MTRRfix16K_80000: case MSR_MTRRfix16K_A0000: env->mtrr_fixed[(uint32_t)env->regs[R_ECX] - MSR_MTRRfix16K_80000 + 1] = val; break; case MSR_MTRRfix4K_C0000: case MSR_MTRRfix4K_C8000: case MSR_MTRRfix4K_D0000: case MSR_MTRRfix4K_D8000: case MSR_MTRRfix4K_E0000: case MSR_MTRRfix4K_E8000: case MSR_MTRRfix4K_F0000: case MSR_MTRRfix4K_F8000: env->mtrr_fixed[(uint32_t)env->regs[R_ECX] - MSR_MTRRfix4K_C0000 + 3] = val; break; case MSR_MTRRdefType: env->mtrr_deftype = val; break; case MSR_MCG_STATUS: env->mcg_status = val; break; case MSR_MCG_CTL: if ((env->mcg_cap & MCG_CTL_P) && (val == 0 || val == ~(uint64_t)0)) { env->mcg_ctl = val; } break; case MSR_TSC_AUX: env->tsc_aux = val; break; case MSR_IA32_MISC_ENABLE: env->msr_ia32_misc_enable = val; break; case MSR_IA32_BNDCFGS: /* FIXME: #GP if reserved bits are set. */ /* FIXME: Extend highest implemented bit of linear address. */ env->msr_bndcfgs = val; cpu_sync_bndcs_hflags(env); break; default: if ((uint32_t)env->regs[R_ECX] >= MSR_MC0_CTL && (uint32_t)env->regs[R_ECX] < MSR_MC0_CTL + (4 * env->mcg_cap & 0xff)) { uint32_t offset = (uint32_t)env->regs[R_ECX] - MSR_MC0_CTL; if ((offset & 0x3) != 0 || (val == 0 || val == ~(uint64_t)0)) { env->mce_banks[offset] = val; } break; } /* XXX: exception? */ break; } } void helper_rdmsr(CPUX86State *env) { uint64_t val; cpu_svm_check_intercept_param(env, SVM_EXIT_MSR, 0, GETPC()); switch ((uint32_t)env->regs[R_ECX]) { case MSR_IA32_SYSENTER_CS: val = env->sysenter_cs; break; case MSR_IA32_SYSENTER_ESP: val = env->sysenter_esp; break; case MSR_IA32_SYSENTER_EIP: val = env->sysenter_eip; break; case MSR_IA32_APICBASE: val = cpu_get_apic_base(x86_env_get_cpu(env)->apic_state); break; case MSR_EFER: val = env->efer; break; case MSR_STAR: val = env->star; break; case MSR_PAT: val = env->pat; break; case MSR_VM_HSAVE_PA: val = env->vm_hsave; break; case MSR_IA32_PERF_STATUS: /* tsc_increment_by_tick */ val = 1000ULL; /* CPU multiplier */ val |= (((uint64_t)4ULL) << 40); break; #ifdef TARGET_X86_64 case MSR_LSTAR: val = env->lstar; break; case MSR_CSTAR: val = env->cstar; break; case MSR_FMASK: val = env->fmask; break; case MSR_FSBASE: val = env->segs[R_FS].base; break; case MSR_GSBASE: val = env->segs[R_GS].base; break; case MSR_KERNELGSBASE: val = env->kernelgsbase; break; case MSR_TSC_AUX: val = env->tsc_aux; break; #endif case MSR_MTRRphysBase(0): case MSR_MTRRphysBase(1): case MSR_MTRRphysBase(2): case MSR_MTRRphysBase(3): case MSR_MTRRphysBase(4): case MSR_MTRRphysBase(5): case MSR_MTRRphysBase(6): case MSR_MTRRphysBase(7): val = env->mtrr_var[((uint32_t)env->regs[R_ECX] - MSR_MTRRphysBase(0)) / 2].base; break; case MSR_MTRRphysMask(0): case MSR_MTRRphysMask(1): case MSR_MTRRphysMask(2): case MSR_MTRRphysMask(3): case MSR_MTRRphysMask(4): case MSR_MTRRphysMask(5): case MSR_MTRRphysMask(6): case MSR_MTRRphysMask(7): val = env->mtrr_var[((uint32_t)env->regs[R_ECX] - MSR_MTRRphysMask(0)) / 2].mask; break; case MSR_MTRRfix64K_00000: val = env->mtrr_fixed[0]; break; case MSR_MTRRfix16K_80000: case MSR_MTRRfix16K_A0000: val = env->mtrr_fixed[(uint32_t)env->regs[R_ECX] - MSR_MTRRfix16K_80000 + 1]; break; case MSR_MTRRfix4K_C0000: case MSR_MTRRfix4K_C8000: case MSR_MTRRfix4K_D0000: case MSR_MTRRfix4K_D8000: case MSR_MTRRfix4K_E0000: case MSR_MTRRfix4K_E8000: case MSR_MTRRfix4K_F0000: case MSR_MTRRfix4K_F8000: val = env->mtrr_fixed[(uint32_t)env->regs[R_ECX] - MSR_MTRRfix4K_C0000 + 3]; break; case MSR_MTRRdefType: val = env->mtrr_deftype; break; case MSR_MTRRcap: if (env->features[FEAT_1_EDX] & CPUID_MTRR) { val = MSR_MTRRcap_VCNT | MSR_MTRRcap_FIXRANGE_SUPPORT | MSR_MTRRcap_WC_SUPPORTED; } else { /* XXX: exception? */ val = 0; } break; case MSR_MCG_CAP: val = env->mcg_cap; break; case MSR_MCG_CTL: if (env->mcg_cap & MCG_CTL_P) { val = env->mcg_ctl; } else { val = 0; } break; case MSR_MCG_STATUS: val = env->mcg_status; break; case MSR_IA32_MISC_ENABLE: val = env->msr_ia32_misc_enable; break; case MSR_IA32_BNDCFGS: val = env->msr_bndcfgs; break; default: if ((uint32_t)env->regs[R_ECX] >= MSR_MC0_CTL && (uint32_t)env->regs[R_ECX] < MSR_MC0_CTL + (4 * env->mcg_cap & 0xff)) { uint32_t offset = (uint32_t)env->regs[R_ECX] - MSR_MC0_CTL; val = env->mce_banks[offset]; break; } /* XXX: exception? */ val = 0; break; } env->regs[R_EAX] = (uint32_t)(val); env->regs[R_EDX] = (uint32_t)(val >> 32); } #endif static void do_pause(X86CPU *cpu) { CPUState *cs = CPU(cpu); /* Just let another CPU run. */ cs->exception_index = EXCP_INTERRUPT; cpu_loop_exit(cs); } static void do_hlt(X86CPU *cpu) { CPUState *cs = CPU(cpu); CPUX86State *env = &cpu->env; env->hflags &= ~HF_INHIBIT_IRQ_MASK; /* needed if sti is just before */ cs->halted = 1; cs->exception_index = EXCP_HLT; cpu_loop_exit(cs); } void helper_hlt(CPUX86State *env, int next_eip_addend) { X86CPU *cpu = x86_env_get_cpu(env); cpu_svm_check_intercept_param(env, SVM_EXIT_HLT, 0, GETPC()); env->eip += next_eip_addend; do_hlt(cpu); } void helper_monitor(CPUX86State *env, target_ulong ptr) { if ((uint32_t)env->regs[R_ECX] != 0) { raise_exception_ra(env, EXCP0D_GPF, GETPC()); } /* XXX: store address? */ cpu_svm_check_intercept_param(env, SVM_EXIT_MONITOR, 0, GETPC()); } void helper_mwait(CPUX86State *env, int next_eip_addend) { CPUState *cs; X86CPU *cpu; if ((uint32_t)env->regs[R_ECX] != 0) { raise_exception_ra(env, EXCP0D_GPF, GETPC()); } cpu_svm_check_intercept_param(env, SVM_EXIT_MWAIT, 0, GETPC()); env->eip += next_eip_addend; cpu = x86_env_get_cpu(env); cs = CPU(cpu); /* XXX: not complete but not completely erroneous */ if (cs->cpu_index != 0 || CPU_NEXT(cs) != NULL) { do_pause(cpu); } else { do_hlt(cpu); } } void helper_pause(CPUX86State *env, int next_eip_addend) { X86CPU *cpu = x86_env_get_cpu(env); cpu_svm_check_intercept_param(env, SVM_EXIT_PAUSE, 0, GETPC()); env->eip += next_eip_addend; do_pause(cpu); } void helper_debug(CPUX86State *env) { CPUState *cs = CPU(x86_env_get_cpu(env)); cs->exception_index = EXCP_DEBUG; cpu_loop_exit(cs); } uint64_t helper_rdpkru(CPUX86State *env, uint32_t ecx) { if ((env->cr[4] & CR4_PKE_MASK) == 0) { raise_exception_err_ra(env, EXCP06_ILLOP, 0, GETPC()); } if (ecx != 0) { raise_exception_err_ra(env, EXCP0D_GPF, 0, GETPC()); } return env->pkru; } void helper_wrpkru(CPUX86State *env, uint32_t ecx, uint64_t val) { CPUState *cs = CPU(x86_env_get_cpu(env)); if ((env->cr[4] & CR4_PKE_MASK) == 0) { raise_exception_err_ra(env, EXCP06_ILLOP, 0, GETPC()); } if (ecx != 0 || (val & 0xFFFFFFFF00000000ull)) { raise_exception_err_ra(env, EXCP0D_GPF, 0, GETPC()); } env->pkru = val; tlb_flush(cs); }