/* * QEMU KVM support * * Copyright (C) 2006-2008 Qumranet Technologies * Copyright IBM, Corp. 2008 * * Authors: * Anthony Liguori * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * */ #include "qemu/osdep.h" #include "qapi/error.h" #include #include #include #include "standard-headers/asm-x86/kvm_para.h" #include "cpu.h" #include "sysemu/sysemu.h" #include "sysemu/hw_accel.h" #include "sysemu/kvm_int.h" #include "sysemu/runstate.h" #include "kvm_i386.h" #include "hyperv.h" #include "hyperv-proto.h" #include "exec/gdbstub.h" #include "qemu/host-utils.h" #include "qemu/main-loop.h" #include "qemu/config-file.h" #include "qemu/error-report.h" #include "hw/i386/x86.h" #include "hw/i386/apic.h" #include "hw/i386/apic_internal.h" #include "hw/i386/apic-msidef.h" #include "hw/i386/intel_iommu.h" #include "hw/i386/x86-iommu.h" #include "hw/i386/e820_memory_layout.h" #include "hw/pci/pci.h" #include "hw/pci/msi.h" #include "hw/pci/msix.h" #include "migration/blocker.h" #include "exec/memattrs.h" #include "trace.h" //#define DEBUG_KVM #ifdef DEBUG_KVM #define DPRINTF(fmt, ...) \ do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) \ do { } while (0) #endif /* From arch/x86/kvm/lapic.h */ #define KVM_APIC_BUS_CYCLE_NS 1 #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS) #define MSR_KVM_WALL_CLOCK 0x11 #define MSR_KVM_SYSTEM_TIME 0x12 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus * 255 kvm_msr_entry structs */ #define MSR_BUF_SIZE 4096 static void kvm_init_msrs(X86CPU *cpu); const KVMCapabilityInfo kvm_arch_required_capabilities[] = { KVM_CAP_INFO(SET_TSS_ADDR), KVM_CAP_INFO(EXT_CPUID), KVM_CAP_INFO(MP_STATE), KVM_CAP_LAST_INFO }; static bool has_msr_star; static bool has_msr_hsave_pa; static bool has_msr_tsc_aux; static bool has_msr_tsc_adjust; static bool has_msr_tsc_deadline; static bool has_msr_feature_control; static bool has_msr_misc_enable; static bool has_msr_smbase; static bool has_msr_bndcfgs; static int lm_capable_kernel; static bool has_msr_hv_hypercall; static bool has_msr_hv_crash; static bool has_msr_hv_reset; static bool has_msr_hv_vpindex; static bool hv_vpindex_settable; static bool has_msr_hv_runtime; static bool has_msr_hv_synic; static bool has_msr_hv_stimer; static bool has_msr_hv_frequencies; static bool has_msr_hv_reenlightenment; static bool has_msr_xss; static bool has_msr_umwait; static bool has_msr_spec_ctrl; static bool has_msr_tsx_ctrl; static bool has_msr_virt_ssbd; static bool has_msr_smi_count; static bool has_msr_arch_capabs; static bool has_msr_core_capabs; static bool has_msr_vmx_vmfunc; static bool has_msr_ucode_rev; static bool has_msr_vmx_procbased_ctls2; static bool has_msr_perf_capabs; static uint32_t has_architectural_pmu_version; static uint32_t num_architectural_pmu_gp_counters; static uint32_t num_architectural_pmu_fixed_counters; static int has_xsave; static int has_xcrs; static int has_pit_state2; static int has_exception_payload; static bool has_msr_mcg_ext_ctl; static struct kvm_cpuid2 *cpuid_cache; static struct kvm_msr_list *kvm_feature_msrs; int kvm_has_pit_state2(void) { return has_pit_state2; } bool kvm_has_smm(void) { return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM); } bool kvm_has_adjust_clock_stable(void) { int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); return (ret == KVM_CLOCK_TSC_STABLE); } bool kvm_has_exception_payload(void) { return has_exception_payload; } bool kvm_allows_irq0_override(void) { return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing(); } static bool kvm_x2apic_api_set_flags(uint64_t flags) { KVMState *s = KVM_STATE(current_accel()); return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags); } #define MEMORIZE(fn, _result) \ ({ \ static bool _memorized; \ \ if (_memorized) { \ return _result; \ } \ _memorized = true; \ _result = fn; \ }) static bool has_x2apic_api; bool kvm_has_x2apic_api(void) { return has_x2apic_api; } bool kvm_enable_x2apic(void) { return MEMORIZE( kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS | KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK), has_x2apic_api); } bool kvm_hv_vpindex_settable(void) { return hv_vpindex_settable; } static int kvm_get_tsc(CPUState *cs) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; struct { struct kvm_msrs info; struct kvm_msr_entry entries[1]; } msr_data = {}; int ret; if (env->tsc_valid) { return 0; } memset(&msr_data, 0, sizeof(msr_data)); msr_data.info.nmsrs = 1; msr_data.entries[0].index = MSR_IA32_TSC; env->tsc_valid = !runstate_is_running(); ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); if (ret < 0) { return ret; } assert(ret == 1); env->tsc = msr_data.entries[0].data; return 0; } static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg) { kvm_get_tsc(cpu); } void kvm_synchronize_all_tsc(void) { CPUState *cpu; if (kvm_enabled()) { CPU_FOREACH(cpu) { run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL); } } } static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) { struct kvm_cpuid2 *cpuid; int r, size; size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); cpuid = g_malloc0(size); cpuid->nent = max; r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); if (r == 0 && cpuid->nent >= max) { r = -E2BIG; } if (r < 0) { if (r == -E2BIG) { g_free(cpuid); return NULL; } else { fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", strerror(-r)); exit(1); } } return cpuid; } /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough * for all entries. */ static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) { struct kvm_cpuid2 *cpuid; int max = 1; if (cpuid_cache != NULL) { return cpuid_cache; } while ((cpuid = try_get_cpuid(s, max)) == NULL) { max *= 2; } cpuid_cache = cpuid; return cpuid; } static const struct kvm_para_features { int cap; int feature; } para_features[] = { { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF }, { KVM_CAP_ASYNC_PF_INT, KVM_FEATURE_ASYNC_PF_INT }, }; static int get_para_features(KVMState *s) { int i, features = 0; for (i = 0; i < ARRAY_SIZE(para_features); i++) { if (kvm_check_extension(s, para_features[i].cap)) { features |= (1 << para_features[i].feature); } } return features; } static bool host_tsx_broken(void) { int family, model, stepping;\ char vendor[CPUID_VENDOR_SZ + 1]; host_vendor_fms(vendor, &family, &model, &stepping); /* Check if we are running on a Haswell host known to have broken TSX */ return !strcmp(vendor, CPUID_VENDOR_INTEL) && (family == 6) && ((model == 63 && stepping < 4) || model == 60 || model == 69 || model == 70); } /* Returns the value for a specific register on the cpuid entry */ static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) { uint32_t ret = 0; switch (reg) { case R_EAX: ret = entry->eax; break; case R_EBX: ret = entry->ebx; break; case R_ECX: ret = entry->ecx; break; case R_EDX: ret = entry->edx; break; } return ret; } /* Find matching entry for function/index on kvm_cpuid2 struct */ static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, uint32_t function, uint32_t index) { int i; for (i = 0; i < cpuid->nent; ++i) { if (cpuid->entries[i].function == function && cpuid->entries[i].index == index) { return &cpuid->entries[i]; } } /* not found: */ return NULL; } uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, uint32_t index, int reg) { struct kvm_cpuid2 *cpuid; uint32_t ret = 0; uint32_t cpuid_1_edx; bool found = false; cpuid = get_supported_cpuid(s); struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); if (entry) { found = true; ret = cpuid_entry_get_reg(entry, reg); } /* Fixups for the data returned by KVM, below */ if (function == 1 && reg == R_EDX) { /* KVM before 2.6.30 misreports the following features */ ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; } else if (function == 1 && reg == R_ECX) { /* We can set the hypervisor flag, even if KVM does not return it on * GET_SUPPORTED_CPUID */ ret |= CPUID_EXT_HYPERVISOR; /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, * and the irqchip is in the kernel. */ if (kvm_irqchip_in_kernel() && kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { ret |= CPUID_EXT_TSC_DEADLINE_TIMER; } /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled * without the in-kernel irqchip */ if (!kvm_irqchip_in_kernel()) { ret &= ~CPUID_EXT_X2APIC; } if (enable_cpu_pm) { int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS); if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) { ret |= CPUID_EXT_MONITOR; } } } else if (function == 6 && reg == R_EAX) { ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ } else if (function == 7 && index == 0 && reg == R_EBX) { if (host_tsx_broken()) { ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE); } } else if (function == 7 && index == 0 && reg == R_EDX) { /* * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts. * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is * returned by KVM_GET_MSR_INDEX_LIST. */ if (!has_msr_arch_capabs) { ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES; } } else if (function == 0x80000001 && reg == R_ECX) { /* * It's safe to enable TOPOEXT even if it's not returned by * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows * us to keep CPU models including TOPOEXT runnable on older kernels. */ ret |= CPUID_EXT3_TOPOEXT; } else if (function == 0x80000001 && reg == R_EDX) { /* On Intel, kvm returns cpuid according to the Intel spec, * so add missing bits according to the AMD spec: */ cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) { /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't * be enabled without the in-kernel irqchip */ if (!kvm_irqchip_in_kernel()) { ret &= ~(1U << KVM_FEATURE_PV_UNHALT); } } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) { ret |= 1U << KVM_HINTS_REALTIME; found = 1; } /* fallback for older kernels */ if ((function == KVM_CPUID_FEATURES) && !found) { ret = get_para_features(s); } return ret; } uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index) { struct { struct kvm_msrs info; struct kvm_msr_entry entries[1]; } msr_data = {}; uint64_t value; uint32_t ret, can_be_one, must_be_one; if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */ return 0; } /* Check if requested MSR is supported feature MSR */ int i; for (i = 0; i < kvm_feature_msrs->nmsrs; i++) if (kvm_feature_msrs->indices[i] == index) { break; } if (i == kvm_feature_msrs->nmsrs) { return 0; /* if the feature MSR is not supported, simply return 0 */ } msr_data.info.nmsrs = 1; msr_data.entries[0].index = index; ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data); if (ret != 1) { error_report("KVM get MSR (index=0x%x) feature failed, %s", index, strerror(-ret)); exit(1); } value = msr_data.entries[0].data; switch (index) { case MSR_IA32_VMX_PROCBASED_CTLS2: if (!has_msr_vmx_procbased_ctls2) { /* KVM forgot to add these bits for some time, do this ourselves. */ if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) & CPUID_XSAVE_XSAVES) { value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32; } if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) & CPUID_EXT_RDRAND) { value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32; } if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & CPUID_7_0_EBX_INVPCID) { value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32; } if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & CPUID_7_0_EBX_RDSEED) { value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32; } if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) & CPUID_EXT2_RDTSCP) { value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32; } } /* fall through */ case MSR_IA32_VMX_TRUE_PINBASED_CTLS: case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: case MSR_IA32_VMX_TRUE_ENTRY_CTLS: case MSR_IA32_VMX_TRUE_EXIT_CTLS: /* * Return true for bits that can be one, but do not have to be one. * The SDM tells us which bits could have a "must be one" setting, * so we can do the opposite transformation in make_vmx_msr_value. */ must_be_one = (uint32_t)value; can_be_one = (uint32_t)(value >> 32); return can_be_one & ~must_be_one; default: return value; } } static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, int *max_banks) { int r; r = kvm_check_extension(s, KVM_CAP_MCE); if (r > 0) { *max_banks = r; return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); } return -ENOSYS; } static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) { CPUState *cs = CPU(cpu); CPUX86State *env = &cpu->env; uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; uint64_t mcg_status = MCG_STATUS_MCIP; int flags = 0; if (code == BUS_MCEERR_AR) { status |= MCI_STATUS_AR | 0x134; mcg_status |= MCG_STATUS_EIPV; } else { status |= 0xc0; mcg_status |= MCG_STATUS_RIPV; } flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0; /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the * guest kernel back into env->mcg_ext_ctl. */ cpu_synchronize_state(cs); if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) { mcg_status |= MCG_STATUS_LMCE; flags = 0; } cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, (MCM_ADDR_PHYS << 6) | 0xc, flags); } static void hardware_memory_error(void *host_addr) { error_report("QEMU got Hardware memory error at addr %p", host_addr); exit(1); } void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) { X86CPU *cpu = X86_CPU(c); CPUX86State *env = &cpu->env; ram_addr_t ram_addr; hwaddr paddr; /* If we get an action required MCE, it has been injected by KVM * while the VM was running. An action optional MCE instead should * be coming from the main thread, which qemu_init_sigbus identifies * as the "early kill" thread. */ assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); if ((env->mcg_cap & MCG_SER_P) && addr) { ram_addr = qemu_ram_addr_from_host(addr); if (ram_addr != RAM_ADDR_INVALID && kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { kvm_hwpoison_page_add(ram_addr); kvm_mce_inject(cpu, paddr, code); /* * Use different logging severity based on error type. * If there is additional MCE reporting on the hypervisor, QEMU VA * could be another source to identify the PA and MCE details. */ if (code == BUS_MCEERR_AR) { error_report("Guest MCE Memory Error at QEMU addr %p and " "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", addr, paddr, "BUS_MCEERR_AR"); } else { warn_report("Guest MCE Memory Error at QEMU addr %p and " "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", addr, paddr, "BUS_MCEERR_AO"); } return; } if (code == BUS_MCEERR_AO) { warn_report("Hardware memory error at addr %p of type %s " "for memory used by QEMU itself instead of guest system!", addr, "BUS_MCEERR_AO"); } } if (code == BUS_MCEERR_AR) { hardware_memory_error(addr); } /* Hope we are lucky for AO MCE */ } static void kvm_reset_exception(CPUX86State *env) { env->exception_nr = -1; env->exception_pending = 0; env->exception_injected = 0; env->exception_has_payload = false; env->exception_payload = 0; } static void kvm_queue_exception(CPUX86State *env, int32_t exception_nr, uint8_t exception_has_payload, uint64_t exception_payload) { assert(env->exception_nr == -1); assert(!env->exception_pending); assert(!env->exception_injected); assert(!env->exception_has_payload); env->exception_nr = exception_nr; if (has_exception_payload) { env->exception_pending = 1; env->exception_has_payload = exception_has_payload; env->exception_payload = exception_payload; } else { env->exception_injected = 1; if (exception_nr == EXCP01_DB) { assert(exception_has_payload); env->dr[6] = exception_payload; } else if (exception_nr == EXCP0E_PAGE) { assert(exception_has_payload); env->cr[2] = exception_payload; } else { assert(!exception_has_payload); } } } static int kvm_inject_mce_oldstyle(X86CPU *cpu) { CPUX86State *env = &cpu->env; if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) { unsigned int bank, bank_num = env->mcg_cap & 0xff; struct kvm_x86_mce mce; kvm_reset_exception(env); /* * There must be at least one bank in use if an MCE is pending. * Find it and use its values for the event injection. */ for (bank = 0; bank < bank_num; bank++) { if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { break; } } assert(bank < bank_num); mce.bank = bank; mce.status = env->mce_banks[bank * 4 + 1]; mce.mcg_status = env->mcg_status; mce.addr = env->mce_banks[bank * 4 + 2]; mce.misc = env->mce_banks[bank * 4 + 3]; return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); } return 0; } static void cpu_update_state(void *opaque, int running, RunState state) { CPUX86State *env = opaque; if (running) { env->tsc_valid = false; } } unsigned long kvm_arch_vcpu_id(CPUState *cs) { X86CPU *cpu = X86_CPU(cs); return cpu->apic_id; } #ifndef KVM_CPUID_SIGNATURE_NEXT #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 #endif static bool hyperv_enabled(X86CPU *cpu) { CPUState *cs = CPU(cpu); return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 && ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) || cpu->hyperv_features || cpu->hyperv_passthrough); } /* * Check whether target_freq is within conservative * ntp correctable bounds (250ppm) of freq */ static inline bool freq_within_bounds(int freq, int target_freq) { int max_freq = freq + (freq * 250 / 1000000); int min_freq = freq - (freq * 250 / 1000000); if (target_freq >= min_freq && target_freq <= max_freq) { return true; } return false; } static int kvm_arch_set_tsc_khz(CPUState *cs) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; int r, cur_freq; bool set_ioctl = false; if (!env->tsc_khz) { return 0; } cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP; /* * If TSC scaling is supported, attempt to set TSC frequency. */ if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) { set_ioctl = true; } /* * If desired TSC frequency is within bounds of NTP correction, * attempt to set TSC frequency. */ if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) { set_ioctl = true; } r = set_ioctl ? kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : -ENOTSUP; if (r < 0) { /* When KVM_SET_TSC_KHZ fails, it's an error only if the current * TSC frequency doesn't match the one we want. */ cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP; if (cur_freq <= 0 || cur_freq != env->tsc_khz) { warn_report("TSC frequency mismatch between " "VM (%" PRId64 " kHz) and host (%d kHz), " "and TSC scaling unavailable", env->tsc_khz, cur_freq); return r; } } return 0; } static bool tsc_is_stable_and_known(CPUX86State *env) { if (!env->tsc_khz) { return false; } return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) || env->user_tsc_khz; } static struct { const char *desc; struct { uint32_t fw; uint32_t bits; } flags[2]; uint64_t dependencies; } kvm_hyperv_properties[] = { [HYPERV_FEAT_RELAXED] = { .desc = "relaxed timing (hv-relaxed)", .flags = { {.fw = FEAT_HYPERV_EAX, .bits = HV_HYPERCALL_AVAILABLE}, {.fw = FEAT_HV_RECOMM_EAX, .bits = HV_RELAXED_TIMING_RECOMMENDED} } }, [HYPERV_FEAT_VAPIC] = { .desc = "virtual APIC (hv-vapic)", .flags = { {.fw = FEAT_HYPERV_EAX, .bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE}, {.fw = FEAT_HV_RECOMM_EAX, .bits = HV_APIC_ACCESS_RECOMMENDED} } }, [HYPERV_FEAT_TIME] = { .desc = "clocksources (hv-time)", .flags = { {.fw = FEAT_HYPERV_EAX, .bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE} } }, [HYPERV_FEAT_CRASH] = { .desc = "crash MSRs (hv-crash)", .flags = { {.fw = FEAT_HYPERV_EDX, .bits = HV_GUEST_CRASH_MSR_AVAILABLE} } }, [HYPERV_FEAT_RESET] = { .desc = "reset MSR (hv-reset)", .flags = { {.fw = FEAT_HYPERV_EAX, .bits = HV_RESET_AVAILABLE} } }, [HYPERV_FEAT_VPINDEX] = { .desc = "VP_INDEX MSR (hv-vpindex)", .flags = { {.fw = FEAT_HYPERV_EAX, .bits = HV_VP_INDEX_AVAILABLE} } }, [HYPERV_FEAT_RUNTIME] = { .desc = "VP_RUNTIME MSR (hv-runtime)", .flags = { {.fw = FEAT_HYPERV_EAX, .bits = HV_VP_RUNTIME_AVAILABLE} } }, [HYPERV_FEAT_SYNIC] = { .desc = "synthetic interrupt controller (hv-synic)", .flags = { {.fw = FEAT_HYPERV_EAX, .bits = HV_SYNIC_AVAILABLE} } }, [HYPERV_FEAT_STIMER] = { .desc = "synthetic timers (hv-stimer)", .flags = { {.fw = FEAT_HYPERV_EAX, .bits = HV_SYNTIMERS_AVAILABLE} }, .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME) }, [HYPERV_FEAT_FREQUENCIES] = { .desc = "frequency MSRs (hv-frequencies)", .flags = { {.fw = FEAT_HYPERV_EAX, .bits = HV_ACCESS_FREQUENCY_MSRS}, {.fw = FEAT_HYPERV_EDX, .bits = HV_FREQUENCY_MSRS_AVAILABLE} } }, [HYPERV_FEAT_REENLIGHTENMENT] = { .desc = "reenlightenment MSRs (hv-reenlightenment)", .flags = { {.fw = FEAT_HYPERV_EAX, .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL} } }, [HYPERV_FEAT_TLBFLUSH] = { .desc = "paravirtualized TLB flush (hv-tlbflush)", .flags = { {.fw = FEAT_HV_RECOMM_EAX, .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED | HV_EX_PROCESSOR_MASKS_RECOMMENDED} }, .dependencies = BIT(HYPERV_FEAT_VPINDEX) }, [HYPERV_FEAT_EVMCS] = { .desc = "enlightened VMCS (hv-evmcs)", .flags = { {.fw = FEAT_HV_RECOMM_EAX, .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED} }, .dependencies = BIT(HYPERV_FEAT_VAPIC) }, [HYPERV_FEAT_IPI] = { .desc = "paravirtualized IPI (hv-ipi)", .flags = { {.fw = FEAT_HV_RECOMM_EAX, .bits = HV_CLUSTER_IPI_RECOMMENDED | HV_EX_PROCESSOR_MASKS_RECOMMENDED} }, .dependencies = BIT(HYPERV_FEAT_VPINDEX) }, [HYPERV_FEAT_STIMER_DIRECT] = { .desc = "direct mode synthetic timers (hv-stimer-direct)", .flags = { {.fw = FEAT_HYPERV_EDX, .bits = HV_STIMER_DIRECT_MODE_AVAILABLE} }, .dependencies = BIT(HYPERV_FEAT_STIMER) }, }; static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max) { struct kvm_cpuid2 *cpuid; int r, size; size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); cpuid = g_malloc0(size); cpuid->nent = max; r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid); if (r == 0 && cpuid->nent >= max) { r = -E2BIG; } if (r < 0) { if (r == -E2BIG) { g_free(cpuid); return NULL; } else { fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n", strerror(-r)); exit(1); } } return cpuid; } /* * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough * for all entries. */ static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs) { struct kvm_cpuid2 *cpuid; int max = 7; /* 0x40000000..0x40000005, 0x4000000A */ /* * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with * -E2BIG, however, it doesn't report back the right size. Keep increasing * it and re-trying until we succeed. */ while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) { max++; } return cpuid; } /* * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature * leaves from KVM_CAP_HYPERV* and present MSRs data. */ static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs) { X86CPU *cpu = X86_CPU(cs); struct kvm_cpuid2 *cpuid; struct kvm_cpuid_entry2 *entry_feat, *entry_recomm; /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */ cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries)); cpuid->nent = 2; /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */ entry_feat = &cpuid->entries[0]; entry_feat->function = HV_CPUID_FEATURES; entry_recomm = &cpuid->entries[1]; entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO; entry_recomm->ebx = cpu->hyperv_spinlock_attempts; if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) { entry_feat->eax |= HV_HYPERCALL_AVAILABLE; entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE; entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED; entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED; } if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE; entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE; } if (has_msr_hv_frequencies) { entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS; entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE; } if (has_msr_hv_crash) { entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE; } if (has_msr_hv_reenlightenment) { entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL; } if (has_msr_hv_reset) { entry_feat->eax |= HV_RESET_AVAILABLE; } if (has_msr_hv_vpindex) { entry_feat->eax |= HV_VP_INDEX_AVAILABLE; } if (has_msr_hv_runtime) { entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE; } if (has_msr_hv_synic) { unsigned int cap = cpu->hyperv_synic_kvm_only ? KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; if (kvm_check_extension(cs->kvm_state, cap) > 0) { entry_feat->eax |= HV_SYNIC_AVAILABLE; } } if (has_msr_hv_stimer) { entry_feat->eax |= HV_SYNTIMERS_AVAILABLE; } if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TLBFLUSH) > 0) { entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED; entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; } if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; } if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_SEND_IPI) > 0) { entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED; entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; } return cpuid; } static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r) { struct kvm_cpuid_entry2 *entry; uint32_t func; int reg; switch (fw) { case FEAT_HYPERV_EAX: reg = R_EAX; func = HV_CPUID_FEATURES; break; case FEAT_HYPERV_EDX: reg = R_EDX; func = HV_CPUID_FEATURES; break; case FEAT_HV_RECOMM_EAX: reg = R_EAX; func = HV_CPUID_ENLIGHTMENT_INFO; break; default: return -EINVAL; } entry = cpuid_find_entry(cpuid, func, 0); if (!entry) { return -ENOENT; } switch (reg) { case R_EAX: *r = entry->eax; break; case R_EDX: *r = entry->edx; break; default: return -EINVAL; } return 0; } static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid, int feature) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; uint32_t r, fw, bits; uint64_t deps; int i, dep_feat; if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) { return 0; } deps = kvm_hyperv_properties[feature].dependencies; while (deps) { dep_feat = ctz64(deps); if (!(hyperv_feat_enabled(cpu, dep_feat))) { fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n", kvm_hyperv_properties[feature].desc, kvm_hyperv_properties[dep_feat].desc); return 1; } deps &= ~(1ull << dep_feat); } for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) { fw = kvm_hyperv_properties[feature].flags[i].fw; bits = kvm_hyperv_properties[feature].flags[i].bits; if (!fw) { continue; } if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) { if (hyperv_feat_enabled(cpu, feature)) { fprintf(stderr, "Hyper-V %s is not supported by kernel\n", kvm_hyperv_properties[feature].desc); return 1; } else { return 0; } } env->features[fw] |= bits; } if (cpu->hyperv_passthrough) { cpu->hyperv_features |= BIT(feature); } return 0; } /* * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in * case of success, errno < 0 in case of failure and 0 when no Hyper-V * extentions are enabled. */ static int hyperv_handle_properties(CPUState *cs, struct kvm_cpuid_entry2 *cpuid_ent) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; struct kvm_cpuid2 *cpuid; struct kvm_cpuid_entry2 *c; uint32_t signature[3]; uint32_t cpuid_i = 0; int r; if (!hyperv_enabled(cpu)) return 0; if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) || cpu->hyperv_passthrough) { uint16_t evmcs_version; r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0, (uintptr_t)&evmcs_version); if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) { fprintf(stderr, "Hyper-V %s is not supported by kernel\n", kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc); return -ENOSYS; } if (!r) { env->features[FEAT_HV_RECOMM_EAX] |= HV_ENLIGHTENED_VMCS_RECOMMENDED; env->features[FEAT_HV_NESTED_EAX] = evmcs_version; } } if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) { cpuid = get_supported_hv_cpuid(cs); } else { cpuid = get_supported_hv_cpuid_legacy(cs); } if (cpu->hyperv_passthrough) { memcpy(cpuid_ent, &cpuid->entries[0], cpuid->nent * sizeof(cpuid->entries[0])); c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0); if (c) { env->features[FEAT_HYPERV_EAX] = c->eax; env->features[FEAT_HYPERV_EBX] = c->ebx; env->features[FEAT_HYPERV_EDX] = c->eax; } c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0); if (c) { env->features[FEAT_HV_RECOMM_EAX] = c->eax; /* hv-spinlocks may have been overriden */ if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) { c->ebx = cpu->hyperv_spinlock_attempts; } } c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0); if (c) { env->features[FEAT_HV_NESTED_EAX] = c->eax; } } if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) { env->features[FEAT_HV_RECOMM_EAX] |= HV_NO_NONARCH_CORESHARING; } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) { c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0); if (c) { env->features[FEAT_HV_RECOMM_EAX] |= c->eax & HV_NO_NONARCH_CORESHARING; } } /* Features */ r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED); r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC); r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME); r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH); r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET); r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX); r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME); r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC); r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER); r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES); r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT); r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH); r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS); r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI); r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT); /* Additional dependencies not covered by kvm_hyperv_properties[] */ if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && !cpu->hyperv_synic_kvm_only && !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) { fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n", kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc, kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc); r |= 1; } /* Not exposed by KVM but needed to make CPU hotplug in Windows work */ env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; if (r) { r = -ENOSYS; goto free; } if (cpu->hyperv_passthrough) { /* We already copied all feature words from KVM as is */ r = cpuid->nent; goto free; } c = &cpuid_ent[cpuid_i++]; c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS; if (!cpu->hyperv_vendor_id) { memcpy(signature, "Microsoft Hv", 12); } else { size_t len = strlen(cpu->hyperv_vendor_id); if (len > 12) { error_report("hv-vendor-id truncated to 12 characters"); len = 12; } memset(signature, 0, 12); memcpy(signature, cpu->hyperv_vendor_id, len); } c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ? HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS; c->ebx = signature[0]; c->ecx = signature[1]; c->edx = signature[2]; c = &cpuid_ent[cpuid_i++]; c->function = HV_CPUID_INTERFACE; memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12); c->eax = signature[0]; c->ebx = 0; c->ecx = 0; c->edx = 0; c = &cpuid_ent[cpuid_i++]; c->function = HV_CPUID_VERSION; c->eax = 0x00001bbc; c->ebx = 0x00060001; c = &cpuid_ent[cpuid_i++]; c->function = HV_CPUID_FEATURES; c->eax = env->features[FEAT_HYPERV_EAX]; c->ebx = env->features[FEAT_HYPERV_EBX]; c->edx = env->features[FEAT_HYPERV_EDX]; c = &cpuid_ent[cpuid_i++]; c->function = HV_CPUID_ENLIGHTMENT_INFO; c->eax = env->features[FEAT_HV_RECOMM_EAX]; c->ebx = cpu->hyperv_spinlock_attempts; c = &cpuid_ent[cpuid_i++]; c->function = HV_CPUID_IMPLEMENT_LIMITS; c->eax = cpu->hv_max_vps; c->ebx = 0x40; if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { __u32 function; /* Create zeroed 0x40000006..0x40000009 leaves */ for (function = HV_CPUID_IMPLEMENT_LIMITS + 1; function < HV_CPUID_NESTED_FEATURES; function++) { c = &cpuid_ent[cpuid_i++]; c->function = function; } c = &cpuid_ent[cpuid_i++]; c->function = HV_CPUID_NESTED_FEATURES; c->eax = env->features[FEAT_HV_NESTED_EAX]; } r = cpuid_i; free: g_free(cpuid); return r; } static Error *hv_passthrough_mig_blocker; static Error *hv_no_nonarch_cs_mig_blocker; static int hyperv_init_vcpu(X86CPU *cpu) { CPUState *cs = CPU(cpu); Error *local_err = NULL; int ret; if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) { error_setg(&hv_passthrough_mig_blocker, "'hv-passthrough' CPU flag prevents migration, use explicit" " set of hv-* flags instead"); ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err); if (local_err) { error_report_err(local_err); error_free(hv_passthrough_mig_blocker); return ret; } } if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO && hv_no_nonarch_cs_mig_blocker == NULL) { error_setg(&hv_no_nonarch_cs_mig_blocker, "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration" " use explicit 'hv-no-nonarch-coresharing=on' instead (but" " make sure SMT is disabled and/or that vCPUs are properly" " pinned)"); ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err); if (local_err) { error_report_err(local_err); error_free(hv_no_nonarch_cs_mig_blocker); return ret; } } if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) { /* * the kernel doesn't support setting vp_index; assert that its value * is in sync */ struct { struct kvm_msrs info; struct kvm_msr_entry entries[1]; } msr_data = { .info.nmsrs = 1, .entries[0].index = HV_X64_MSR_VP_INDEX, }; ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data); if (ret < 0) { return ret; } assert(ret == 1); if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) { error_report("kernel's vp_index != QEMU's vp_index"); return -ENXIO; } } if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { uint32_t synic_cap = cpu->hyperv_synic_kvm_only ? KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; ret = kvm_vcpu_enable_cap(cs, synic_cap, 0); if (ret < 0) { error_report("failed to turn on HyperV SynIC in KVM: %s", strerror(-ret)); return ret; } if (!cpu->hyperv_synic_kvm_only) { ret = hyperv_x86_synic_add(cpu); if (ret < 0) { error_report("failed to create HyperV SynIC: %s", strerror(-ret)); return ret; } } } return 0; } static Error *invtsc_mig_blocker; #define KVM_MAX_CPUID_ENTRIES 100 int kvm_arch_init_vcpu(CPUState *cs) { struct { struct kvm_cpuid2 cpuid; struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; } cpuid_data; /* * The kernel defines these structs with padding fields so there * should be no extra padding in our cpuid_data struct. */ QEMU_BUILD_BUG_ON(sizeof(cpuid_data) != sizeof(struct kvm_cpuid2) + sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES); X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; uint32_t limit, i, j, cpuid_i; uint32_t unused; struct kvm_cpuid_entry2 *c; uint32_t signature[3]; int kvm_base = KVM_CPUID_SIGNATURE; int max_nested_state_len; int r; Error *local_err = NULL; memset(&cpuid_data, 0, sizeof(cpuid_data)); cpuid_i = 0; r = kvm_arch_set_tsc_khz(cs); if (r < 0) { return r; } /* vcpu's TSC frequency is either specified by user, or following * the value used by KVM if the former is not present. In the * latter case, we query it from KVM and record in env->tsc_khz, * so that vcpu's TSC frequency can be migrated later via this field. */ if (!env->tsc_khz) { r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP; if (r > 0) { env->tsc_khz = r; } } env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY; /* Paravirtualization CPUIDs */ r = hyperv_handle_properties(cs, cpuid_data.entries); if (r < 0) { return r; } else if (r > 0) { cpuid_i = r; kvm_base = KVM_CPUID_SIGNATURE_NEXT; has_msr_hv_hypercall = true; } if (cpu->expose_kvm) { memcpy(signature, "KVMKVMKVM\0\0\0", 12); c = &cpuid_data.entries[cpuid_i++]; c->function = KVM_CPUID_SIGNATURE | kvm_base; c->eax = KVM_CPUID_FEATURES | kvm_base; c->ebx = signature[0]; c->ecx = signature[1]; c->edx = signature[2]; c = &cpuid_data.entries[cpuid_i++]; c->function = KVM_CPUID_FEATURES | kvm_base; c->eax = env->features[FEAT_KVM]; c->edx = env->features[FEAT_KVM_HINTS]; } cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); for (i = 0; i <= limit; i++) { if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { fprintf(stderr, "unsupported level value: 0x%x\n", limit); abort(); } c = &cpuid_data.entries[cpuid_i++]; switch (i) { case 2: { /* Keep reading function 2 till all the input is received */ int times; c->function = i; c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | KVM_CPUID_FLAG_STATE_READ_NEXT; cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); times = c->eax & 0xff; for (j = 1; j < times; ++j) { if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { fprintf(stderr, "cpuid_data is full, no space for " "cpuid(eax:2):eax & 0xf = 0x%x\n", times); abort(); } c = &cpuid_data.entries[cpuid_i++]; c->function = i; c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); } break; } case 0x1f: if (env->nr_dies < 2) { break; } /* fallthrough */ case 4: case 0xb: case 0xd: for (j = 0; ; j++) { if (i == 0xd && j == 64) { break; } if (i == 0x1f && j == 64) { break; } c->function = i; c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; c->index = j; cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); if (i == 4 && c->eax == 0) { break; } if (i == 0xb && !(c->ecx & 0xff00)) { break; } if (i == 0x1f && !(c->ecx & 0xff00)) { break; } if (i == 0xd && c->eax == 0) { continue; } if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { fprintf(stderr, "cpuid_data is full, no space for " "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); abort(); } c = &cpuid_data.entries[cpuid_i++]; } break; case 0x7: case 0x14: { uint32_t times; c->function = i; c->index = 0; c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); times = c->eax; for (j = 1; j <= times; ++j) { if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { fprintf(stderr, "cpuid_data is full, no space for " "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); abort(); } c = &cpuid_data.entries[cpuid_i++]; c->function = i; c->index = j; c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); } break; } default: c->function = i; c->flags = 0; cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); if (!c->eax && !c->ebx && !c->ecx && !c->edx) { /* * KVM already returns all zeroes if a CPUID entry is missing, * so we can omit it and avoid hitting KVM's 80-entry limit. */ cpuid_i--; } break; } } if (limit >= 0x0a) { uint32_t eax, edx; cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx); has_architectural_pmu_version = eax & 0xff; if (has_architectural_pmu_version > 0) { num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8; /* Shouldn't be more than 32, since that's the number of bits * available in EBX to tell us _which_ counters are available. * Play it safe. */ if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) { num_architectural_pmu_gp_counters = MAX_GP_COUNTERS; } if (has_architectural_pmu_version > 1) { num_architectural_pmu_fixed_counters = edx & 0x1f; if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) { num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS; } } } } cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); for (i = 0x80000000; i <= limit; i++) { if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); abort(); } c = &cpuid_data.entries[cpuid_i++]; switch (i) { case 0x8000001d: /* Query for all AMD cache information leaves */ for (j = 0; ; j++) { c->function = i; c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; c->index = j; cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); if (c->eax == 0) { break; } if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { fprintf(stderr, "cpuid_data is full, no space for " "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); abort(); } c = &cpuid_data.entries[cpuid_i++]; } break; default: c->function = i; c->flags = 0; cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); if (!c->eax && !c->ebx && !c->ecx && !c->edx) { /* * KVM already returns all zeroes if a CPUID entry is missing, * so we can omit it and avoid hitting KVM's 80-entry limit. */ cpuid_i--; } break; } } /* Call Centaur's CPUID instructions they are supported. */ if (env->cpuid_xlevel2 > 0) { cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); for (i = 0xC0000000; i <= limit; i++) { if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); abort(); } c = &cpuid_data.entries[cpuid_i++]; c->function = i; c->flags = 0; cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); } } cpuid_data.cpuid.nent = cpuid_i; if (((env->cpuid_version >> 8)&0xF) >= 6 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == (CPUID_MCE | CPUID_MCA) && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { uint64_t mcg_cap, unsupported_caps; int banks; int ret; ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); if (ret < 0) { fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); return ret; } if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); return -ENOTSUP; } unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); if (unsupported_caps) { if (unsupported_caps & MCG_LMCE_P) { error_report("kvm: LMCE not supported"); return -ENOTSUP; } warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64, unsupported_caps); } env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); if (ret < 0) { fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); return ret; } } cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env); c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); if (c) { has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || !!(c->ecx & CPUID_EXT_SMX); } if (env->mcg_cap & MCG_LMCE_P) { has_msr_mcg_ext_ctl = has_msr_feature_control = true; } if (!env->user_tsc_khz) { if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) && invtsc_mig_blocker == NULL) { error_setg(&invtsc_mig_blocker, "State blocked by non-migratable CPU device" " (invtsc flag)"); r = migrate_add_blocker(invtsc_mig_blocker, &local_err); if (local_err) { error_report_err(local_err); error_free(invtsc_mig_blocker); return r; } } } if (cpu->vmware_cpuid_freq /* Guests depend on 0x40000000 to detect this feature, so only expose * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */ && cpu->expose_kvm && kvm_base == KVM_CPUID_SIGNATURE /* TSC clock must be stable and known for this feature. */ && tsc_is_stable_and_known(env)) { c = &cpuid_data.entries[cpuid_i++]; c->function = KVM_CPUID_SIGNATURE | 0x10; c->eax = env->tsc_khz; c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */ c->ecx = c->edx = 0; c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0); c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10); } cpuid_data.cpuid.nent = cpuid_i; cpuid_data.cpuid.padding = 0; r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); if (r) { goto fail; } if (has_xsave) { env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave)); memset(env->xsave_buf, 0, sizeof(struct kvm_xsave)); } max_nested_state_len = kvm_max_nested_state_length(); if (max_nested_state_len > 0) { assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data)); if (cpu_has_vmx(env) || cpu_has_svm(env)) { struct kvm_vmx_nested_state_hdr *vmx_hdr; env->nested_state = g_malloc0(max_nested_state_len); env->nested_state->size = max_nested_state_len; env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX; if (cpu_has_vmx(env)) { vmx_hdr = &env->nested_state->hdr.vmx; vmx_hdr->vmxon_pa = -1ull; vmx_hdr->vmcs12_pa = -1ull; } } } cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { has_msr_tsc_aux = false; } kvm_init_msrs(cpu); r = hyperv_init_vcpu(cpu); if (r) { goto fail; } return 0; fail: migrate_del_blocker(invtsc_mig_blocker); return r; } int kvm_arch_destroy_vcpu(CPUState *cs) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; if (cpu->kvm_msr_buf) { g_free(cpu->kvm_msr_buf); cpu->kvm_msr_buf = NULL; } if (env->nested_state) { g_free(env->nested_state); env->nested_state = NULL; } qemu_del_vm_change_state_handler(cpu->vmsentry); return 0; } void kvm_arch_reset_vcpu(X86CPU *cpu) { CPUX86State *env = &cpu->env; env->xcr0 = 1; if (kvm_irqchip_in_kernel()) { env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : KVM_MP_STATE_UNINITIALIZED; } else { env->mp_state = KVM_MP_STATE_RUNNABLE; } if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { int i; for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) { env->msr_hv_synic_sint[i] = HV_SINT_MASKED; } hyperv_x86_synic_reset(cpu); } /* enabled by default */ env->poll_control_msr = 1; } void kvm_arch_do_init_vcpu(X86CPU *cpu) { CPUX86State *env = &cpu->env; /* APs get directly into wait-for-SIPI state. */ if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { env->mp_state = KVM_MP_STATE_INIT_RECEIVED; } } static int kvm_get_supported_feature_msrs(KVMState *s) { int ret = 0; if (kvm_feature_msrs != NULL) { return 0; } if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) { return 0; } struct kvm_msr_list msr_list; msr_list.nmsrs = 0; ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list); if (ret < 0 && ret != -E2BIG) { error_report("Fetch KVM feature MSR list failed: %s", strerror(-ret)); return ret; } assert(msr_list.nmsrs > 0); kvm_feature_msrs = (struct kvm_msr_list *) \ g_malloc0(sizeof(msr_list) + msr_list.nmsrs * sizeof(msr_list.indices[0])); kvm_feature_msrs->nmsrs = msr_list.nmsrs; ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs); if (ret < 0) { error_report("Fetch KVM feature MSR list failed: %s", strerror(-ret)); g_free(kvm_feature_msrs); kvm_feature_msrs = NULL; return ret; } return 0; } static int kvm_get_supported_msrs(KVMState *s) { int ret = 0; struct kvm_msr_list msr_list, *kvm_msr_list; /* * Obtain MSR list from KVM. These are the MSRs that we must * save/restore. */ msr_list.nmsrs = 0; ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); if (ret < 0 && ret != -E2BIG) { return ret; } /* * Old kernel modules had a bug and could write beyond the provided * memory. Allocate at least a safe amount of 1K. */ kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + msr_list.nmsrs * sizeof(msr_list.indices[0]))); kvm_msr_list->nmsrs = msr_list.nmsrs; ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); if (ret >= 0) { int i; for (i = 0; i < kvm_msr_list->nmsrs; i++) { switch (kvm_msr_list->indices[i]) { case MSR_STAR: has_msr_star = true; break; case MSR_VM_HSAVE_PA: has_msr_hsave_pa = true; break; case MSR_TSC_AUX: has_msr_tsc_aux = true; break; case MSR_TSC_ADJUST: has_msr_tsc_adjust = true; break; case MSR_IA32_TSCDEADLINE: has_msr_tsc_deadline = true; break; case MSR_IA32_SMBASE: has_msr_smbase = true; break; case MSR_SMI_COUNT: has_msr_smi_count = true; break; case MSR_IA32_MISC_ENABLE: has_msr_misc_enable = true; break; case MSR_IA32_BNDCFGS: has_msr_bndcfgs = true; break; case MSR_IA32_XSS: has_msr_xss = true; break; case MSR_IA32_UMWAIT_CONTROL: has_msr_umwait = true; break; case HV_X64_MSR_CRASH_CTL: has_msr_hv_crash = true; break; case HV_X64_MSR_RESET: has_msr_hv_reset = true; break; case HV_X64_MSR_VP_INDEX: has_msr_hv_vpindex = true; break; case HV_X64_MSR_VP_RUNTIME: has_msr_hv_runtime = true; break; case HV_X64_MSR_SCONTROL: has_msr_hv_synic = true; break; case HV_X64_MSR_STIMER0_CONFIG: has_msr_hv_stimer = true; break; case HV_X64_MSR_TSC_FREQUENCY: has_msr_hv_frequencies = true; break; case HV_X64_MSR_REENLIGHTENMENT_CONTROL: has_msr_hv_reenlightenment = true; break; case MSR_IA32_SPEC_CTRL: has_msr_spec_ctrl = true; break; case MSR_IA32_TSX_CTRL: has_msr_tsx_ctrl = true; break; case MSR_VIRT_SSBD: has_msr_virt_ssbd = true; break; case MSR_IA32_ARCH_CAPABILITIES: has_msr_arch_capabs = true; break; case MSR_IA32_CORE_CAPABILITY: has_msr_core_capabs = true; break; case MSR_IA32_PERF_CAPABILITIES: has_msr_perf_capabs = true; break; case MSR_IA32_VMX_VMFUNC: has_msr_vmx_vmfunc = true; break; case MSR_IA32_UCODE_REV: has_msr_ucode_rev = true; break; case MSR_IA32_VMX_PROCBASED_CTLS2: has_msr_vmx_procbased_ctls2 = true; break; } } } g_free(kvm_msr_list); return ret; } static Notifier smram_machine_done; static KVMMemoryListener smram_listener; static AddressSpace smram_address_space; static MemoryRegion smram_as_root; static MemoryRegion smram_as_mem; static void register_smram_listener(Notifier *n, void *unused) { MemoryRegion *smram = (MemoryRegion *) object_resolve_path("/machine/smram", NULL); /* Outer container... */ memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); memory_region_set_enabled(&smram_as_root, true); /* ... with two regions inside: normal system memory with low * priority, and... */ memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", get_system_memory(), 0, ~0ull); memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); memory_region_set_enabled(&smram_as_mem, true); if (smram) { /* ... SMRAM with higher priority */ memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); memory_region_set_enabled(smram, true); } address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); kvm_memory_listener_register(kvm_state, &smram_listener, &smram_address_space, 1); } int kvm_arch_init(MachineState *ms, KVMState *s) { uint64_t identity_base = 0xfffbc000; uint64_t shadow_mem; int ret; struct utsname utsname; has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE); has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX); has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD); if (has_exception_payload) { ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true); if (ret < 0) { error_report("kvm: Failed to enable exception payload cap: %s", strerror(-ret)); return ret; } } ret = kvm_get_supported_msrs(s); if (ret < 0) { return ret; } kvm_get_supported_feature_msrs(s); uname(&utsname); lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; /* * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. * In order to use vm86 mode, an EPT identity map and a TSS are needed. * Since these must be part of guest physical memory, we need to allocate * them, both by setting their start addresses in the kernel and by * creating a corresponding e820 entry. We need 4 pages before the BIOS. * * Older KVM versions may not support setting the identity map base. In * that case we need to stick with the default, i.e. a 256K maximum BIOS * size. */ if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { /* Allows up to 16M BIOSes. */ identity_base = 0xfeffc000; ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); if (ret < 0) { return ret; } } /* Set TSS base one page after EPT identity map. */ ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); if (ret < 0) { return ret; } /* Tell fw_cfg to notify the BIOS to reserve the range. */ ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); if (ret < 0) { fprintf(stderr, "e820_add_entry() table is full\n"); return ret; } shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort); if (shadow_mem != -1) { shadow_mem /= 4096; ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); if (ret < 0) { return ret; } } if (kvm_check_extension(s, KVM_CAP_X86_SMM) && object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) && x86_machine_is_smm_enabled(X86_MACHINE(ms))) { smram_machine_done.notify = register_smram_listener; qemu_add_machine_init_done_notifier(&smram_machine_done); } if (enable_cpu_pm) { int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS); int ret; /* Work around for kernel header with a typo. TODO: fix header and drop. */ #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT) #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL #endif if (disable_exits) { disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT | KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | KVM_X86_DISABLE_EXITS_CSTATE); } ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0, disable_exits); if (ret < 0) { error_report("kvm: guest stopping CPU not supported: %s", strerror(-ret)); } } return 0; } static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) { lhs->selector = rhs->selector; lhs->base = rhs->base; lhs->limit = rhs->limit; lhs->type = 3; lhs->present = 1; lhs->dpl = 3; lhs->db = 0; lhs->s = 1; lhs->l = 0; lhs->g = 0; lhs->avl = 0; lhs->unusable = 0; } static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) { unsigned flags = rhs->flags; lhs->selector = rhs->selector; lhs->base = rhs->base; lhs->limit = rhs->limit; lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; lhs->present = (flags & DESC_P_MASK) != 0; lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; lhs->db = (flags >> DESC_B_SHIFT) & 1; lhs->s = (flags & DESC_S_MASK) != 0; lhs->l = (flags >> DESC_L_SHIFT) & 1; lhs->g = (flags & DESC_G_MASK) != 0; lhs->avl = (flags & DESC_AVL_MASK) != 0; lhs->unusable = !lhs->present; lhs->padding = 0; } static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) { lhs->selector = rhs->selector; lhs->base = rhs->base; lhs->limit = rhs->limit; lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | ((rhs->present && !rhs->unusable) * DESC_P_MASK) | (rhs->dpl << DESC_DPL_SHIFT) | (rhs->db << DESC_B_SHIFT) | (rhs->s * DESC_S_MASK) | (rhs->l << DESC_L_SHIFT) | (rhs->g * DESC_G_MASK) | (rhs->avl * DESC_AVL_MASK); } static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) { if (set) { *kvm_reg = *qemu_reg; } else { *qemu_reg = *kvm_reg; } } static int kvm_getput_regs(X86CPU *cpu, int set) { CPUX86State *env = &cpu->env; struct kvm_regs regs; int ret = 0; if (!set) { ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); if (ret < 0) { return ret; } } kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); #ifdef TARGET_X86_64 kvm_getput_reg(®s.r8, &env->regs[8], set); kvm_getput_reg(®s.r9, &env->regs[9], set); kvm_getput_reg(®s.r10, &env->regs[10], set); kvm_getput_reg(®s.r11, &env->regs[11], set); kvm_getput_reg(®s.r12, &env->regs[12], set); kvm_getput_reg(®s.r13, &env->regs[13], set); kvm_getput_reg(®s.r14, &env->regs[14], set); kvm_getput_reg(®s.r15, &env->regs[15], set); #endif kvm_getput_reg(®s.rflags, &env->eflags, set); kvm_getput_reg(®s.rip, &env->eip, set); if (set) { ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); } return ret; } static int kvm_put_fpu(X86CPU *cpu) { CPUX86State *env = &cpu->env; struct kvm_fpu fpu; int i; memset(&fpu, 0, sizeof fpu); fpu.fsw = env->fpus & ~(7 << 11); fpu.fsw |= (env->fpstt & 7) << 11; fpu.fcw = env->fpuc; fpu.last_opcode = env->fpop; fpu.last_ip = env->fpip; fpu.last_dp = env->fpdp; for (i = 0; i < 8; ++i) { fpu.ftwx |= (!env->fptags[i]) << i; } memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); for (i = 0; i < CPU_NB_REGS; i++) { stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0)); stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1)); } fpu.mxcsr = env->mxcsr; return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); } #define XSAVE_FCW_FSW 0 #define XSAVE_FTW_FOP 1 #define XSAVE_CWD_RIP 2 #define XSAVE_CWD_RDP 4 #define XSAVE_MXCSR 6 #define XSAVE_ST_SPACE 8 #define XSAVE_XMM_SPACE 40 #define XSAVE_XSTATE_BV 128 #define XSAVE_YMMH_SPACE 144 #define XSAVE_BNDREGS 240 #define XSAVE_BNDCSR 256 #define XSAVE_OPMASK 272 #define XSAVE_ZMM_Hi256 288 #define XSAVE_Hi16_ZMM 416 #define XSAVE_PKRU 672 #define XSAVE_BYTE_OFFSET(word_offset) \ ((word_offset) * sizeof_field(struct kvm_xsave, region[0])) #define ASSERT_OFFSET(word_offset, field) \ QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \ offsetof(X86XSaveArea, field)) ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw); ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw); ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip); ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp); ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr); ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs); ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs); ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv); ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state); ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state); ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state); ASSERT_OFFSET(XSAVE_OPMASK, opmask_state); ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state); ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state); ASSERT_OFFSET(XSAVE_PKRU, pkru_state); static int kvm_put_xsave(X86CPU *cpu) { CPUX86State *env = &cpu->env; X86XSaveArea *xsave = env->xsave_buf; if (!has_xsave) { return kvm_put_fpu(cpu); } x86_cpu_xsave_all_areas(cpu, xsave); return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); } static int kvm_put_xcrs(X86CPU *cpu) { CPUX86State *env = &cpu->env; struct kvm_xcrs xcrs = {}; if (!has_xcrs) { return 0; } xcrs.nr_xcrs = 1; xcrs.flags = 0; xcrs.xcrs[0].xcr = 0; xcrs.xcrs[0].value = env->xcr0; return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); } static int kvm_put_sregs(X86CPU *cpu) { CPUX86State *env = &cpu->env; struct kvm_sregs sregs; memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); if (env->interrupt_injected >= 0) { sregs.interrupt_bitmap[env->interrupt_injected / 64] |= (uint64_t)1 << (env->interrupt_injected % 64); } if ((env->eflags & VM_MASK)) { set_v8086_seg(&sregs.cs, &env->segs[R_CS]); set_v8086_seg(&sregs.ds, &env->segs[R_DS]); set_v8086_seg(&sregs.es, &env->segs[R_ES]); set_v8086_seg(&sregs.fs, &env->segs[R_FS]); set_v8086_seg(&sregs.gs, &env->segs[R_GS]); set_v8086_seg(&sregs.ss, &env->segs[R_SS]); } else { set_seg(&sregs.cs, &env->segs[R_CS]); set_seg(&sregs.ds, &env->segs[R_DS]); set_seg(&sregs.es, &env->segs[R_ES]); set_seg(&sregs.fs, &env->segs[R_FS]); set_seg(&sregs.gs, &env->segs[R_GS]); set_seg(&sregs.ss, &env->segs[R_SS]); } set_seg(&sregs.tr, &env->tr); set_seg(&sregs.ldt, &env->ldt); sregs.idt.limit = env->idt.limit; sregs.idt.base = env->idt.base; memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); sregs.gdt.limit = env->gdt.limit; sregs.gdt.base = env->gdt.base; memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); sregs.cr0 = env->cr[0]; sregs.cr2 = env->cr[2]; sregs.cr3 = env->cr[3]; sregs.cr4 = env->cr[4]; sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); sregs.apic_base = cpu_get_apic_base(cpu->apic_state); sregs.efer = env->efer; return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); } static void kvm_msr_buf_reset(X86CPU *cpu) { memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); } static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) { struct kvm_msrs *msrs = cpu->kvm_msr_buf; void *limit = ((void *)msrs) + MSR_BUF_SIZE; struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; assert((void *)(entry + 1) <= limit); entry->index = index; entry->reserved = 0; entry->data = value; msrs->nmsrs++; } static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value) { kvm_msr_buf_reset(cpu); kvm_msr_entry_add(cpu, index, value); return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); } void kvm_put_apicbase(X86CPU *cpu, uint64_t value) { int ret; ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value); assert(ret == 1); } static int kvm_put_tscdeadline_msr(X86CPU *cpu) { CPUX86State *env = &cpu->env; int ret; if (!has_msr_tsc_deadline) { return 0; } ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); if (ret < 0) { return ret; } assert(ret == 1); return 0; } /* * Provide a separate write service for the feature control MSR in order to * kick the VCPU out of VMXON or even guest mode on reset. This has to be done * before writing any other state because forcibly leaving nested mode * invalidates the VCPU state. */ static int kvm_put_msr_feature_control(X86CPU *cpu) { int ret; if (!has_msr_feature_control) { return 0; } ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL, cpu->env.msr_ia32_feature_control); if (ret < 0) { return ret; } assert(ret == 1); return 0; } static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features) { uint32_t default1, can_be_one, can_be_zero; uint32_t must_be_one; switch (index) { case MSR_IA32_VMX_TRUE_PINBASED_CTLS: default1 = 0x00000016; break; case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: default1 = 0x0401e172; break; case MSR_IA32_VMX_TRUE_ENTRY_CTLS: default1 = 0x000011ff; break; case MSR_IA32_VMX_TRUE_EXIT_CTLS: default1 = 0x00036dff; break; case MSR_IA32_VMX_PROCBASED_CTLS2: default1 = 0; break; default: abort(); } /* If a feature bit is set, the control can be either set or clear. * Otherwise the value is limited to either 0 or 1 by default1. */ can_be_one = features | default1; can_be_zero = features | ~default1; must_be_one = ~can_be_zero; /* * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one). * Bit 32:63 -> 1 if the control bit can be one. */ return must_be_one | (((uint64_t)can_be_one) << 32); } #define VMCS12_MAX_FIELD_INDEX (0x17) static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f) { uint64_t kvm_vmx_basic = kvm_arch_get_supported_msr_feature(kvm_state, MSR_IA32_VMX_BASIC); if (!kvm_vmx_basic) { /* If the kernel doesn't support VMX feature (kvm_intel.nested=0), * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail. */ return; } uint64_t kvm_vmx_misc = kvm_arch_get_supported_msr_feature(kvm_state, MSR_IA32_VMX_MISC); uint64_t kvm_vmx_ept_vpid = kvm_arch_get_supported_msr_feature(kvm_state, MSR_IA32_VMX_EPT_VPID_CAP); /* * If the guest is 64-bit, a value of 1 is allowed for the host address * space size vmexit control. */ uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0; /* * Bits 0-30, 32-44 and 50-53 come from the host. KVM should * not change them for backwards compatibility. */ uint64_t fixed_vmx_basic = kvm_vmx_basic & (MSR_VMX_BASIC_VMCS_REVISION_MASK | MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK | MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK); /* * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can * change in the future but are always zero for now, clear them to be * future proof. Bits 32-63 in theory could change, though KVM does * not support dual-monitor treatment and probably never will; mask * them out as well. */ uint64_t fixed_vmx_misc = kvm_vmx_misc & (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK | MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK); /* * EPT memory types should not change either, so we do not bother * adding features for them. */ uint64_t fixed_vmx_ept_mask = (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ? MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0); uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask; kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS, make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS, f[FEAT_VMX_PROCBASED_CTLS])); kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS, make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS, f[FEAT_VMX_PINBASED_CTLS])); kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS, make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS, f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit); kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS, make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS, f[FEAT_VMX_ENTRY_CTLS])); kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2, make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2, f[FEAT_VMX_SECONDARY_CTLS])); kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP, f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid); kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC, f[FEAT_VMX_BASIC] | fixed_vmx_basic); kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC, f[FEAT_VMX_MISC] | fixed_vmx_misc); if (has_msr_vmx_vmfunc) { kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]); } /* * Just to be safe, write these with constant values. The CRn_FIXED1 * MSRs are generated by KVM based on the vCPU's CPUID. */ kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0, CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK); kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0, CR4_VMXE_MASK); kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, VMCS12_MAX_FIELD_INDEX << 1); } static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f) { uint64_t kvm_perf_cap = kvm_arch_get_supported_msr_feature(kvm_state, MSR_IA32_PERF_CAPABILITIES); if (kvm_perf_cap) { kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES, kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]); } } static int kvm_buf_set_msrs(X86CPU *cpu) { int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); if (ret < 0) { return ret; } if (ret < cpu->kvm_msr_buf->nmsrs) { struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64, (uint32_t)e->index, (uint64_t)e->data); } assert(ret == cpu->kvm_msr_buf->nmsrs); return 0; } static void kvm_init_msrs(X86CPU *cpu) { CPUX86State *env = &cpu->env; kvm_msr_buf_reset(cpu); if (has_msr_arch_capabs) { kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES, env->features[FEAT_ARCH_CAPABILITIES]); } if (has_msr_core_capabs) { kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY, env->features[FEAT_CORE_CAPABILITY]); } if (has_msr_perf_capabs && cpu->enable_pmu) { kvm_msr_entry_add_perf(cpu, env->features); } if (has_msr_ucode_rev) { kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev); } /* * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but * all kernels with MSR features should have them. */ if (kvm_feature_msrs && cpu_has_vmx(env)) { kvm_msr_entry_add_vmx(cpu, env->features); } assert(kvm_buf_set_msrs(cpu) == 0); } static int kvm_put_msrs(X86CPU *cpu, int level) { CPUX86State *env = &cpu->env; int i; kvm_msr_buf_reset(cpu); kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); kvm_msr_entry_add(cpu, MSR_PAT, env->pat); if (has_msr_star) { kvm_msr_entry_add(cpu, MSR_STAR, env->star); } if (has_msr_hsave_pa) { kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); } if (has_msr_tsc_aux) { kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); } if (has_msr_tsc_adjust) { kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); } if (has_msr_misc_enable) { kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, env->msr_ia32_misc_enable); } if (has_msr_smbase) { kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); } if (has_msr_smi_count) { kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count); } if (has_msr_bndcfgs) { kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); } if (has_msr_xss) { kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); } if (has_msr_umwait) { kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait); } if (has_msr_spec_ctrl) { kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl); } if (has_msr_tsx_ctrl) { kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl); } if (has_msr_virt_ssbd) { kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd); } #ifdef TARGET_X86_64 if (lm_capable_kernel) { kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); } #endif /* * The following MSRs have side effects on the guest or are too heavy * for normal writeback. Limit them to reset or full state updates. */ if (level >= KVM_PUT_RESET_STATE) { kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) { kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr); } if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); } if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); } if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); } if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr); } if (has_architectural_pmu_version > 0) { if (has_architectural_pmu_version > 1) { /* Stop the counter. */ kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); } /* Set the counter values. */ for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, env->msr_fixed_counters[i]); } for (i = 0; i < num_architectural_pmu_gp_counters; i++) { kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, env->msr_gp_counters[i]); kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, env->msr_gp_evtsel[i]); } if (has_architectural_pmu_version > 1) { kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, env->msr_global_status); kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, env->msr_global_ovf_ctrl); /* Now start the PMU. */ kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, env->msr_fixed_ctr_ctrl); kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, env->msr_global_ctrl); } } /* * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add, * only sync them to KVM on the first cpu */ if (current_cpu == first_cpu) { if (has_msr_hv_hypercall) { kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, env->msr_hv_guest_os_id); kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, env->msr_hv_hypercall); } if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, env->msr_hv_tsc); } if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, env->msr_hv_reenlightenment_control); kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, env->msr_hv_tsc_emulation_control); kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, env->msr_hv_tsc_emulation_status); } } if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, env->msr_hv_vapic); } if (has_msr_hv_crash) { int j; for (j = 0; j < HV_CRASH_PARAMS; j++) kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, env->msr_hv_crash_params[j]); kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY); } if (has_msr_hv_runtime) { kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); } if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && hv_vpindex_settable) { kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX, hyperv_vp_index(CPU(cpu))); } if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { int j; kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION); kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, env->msr_hv_synic_control); kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, env->msr_hv_synic_evt_page); kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, env->msr_hv_synic_msg_page); for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, env->msr_hv_synic_sint[j]); } } if (has_msr_hv_stimer) { int j; for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, env->msr_hv_stimer_config[j]); } for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, env->msr_hv_stimer_count[j]); } } if (env->features[FEAT_1_EDX] & CPUID_MTRR) { uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits); kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); for (i = 0; i < MSR_MTRRcap_VCNT; i++) { /* The CPU GPs if we write to a bit above the physical limit of * the host CPU (and KVM emulates that) */ uint64_t mask = env->mtrr_var[i].mask; mask &= phys_mask; kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), env->mtrr_var[i].base); kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask); } } if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { int addr_num = kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7; kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, env->msr_rtit_ctrl); kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, env->msr_rtit_status); kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, env->msr_rtit_output_base); kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, env->msr_rtit_output_mask); kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, env->msr_rtit_cr3_match); for (i = 0; i < addr_num; i++) { kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, env->msr_rtit_addrs[i]); } } /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see * kvm_put_msr_feature_control. */ } if (env->mcg_cap) { int i; kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); if (has_msr_mcg_ext_ctl) { kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); } for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); } } return kvm_buf_set_msrs(cpu); } static int kvm_get_fpu(X86CPU *cpu) { CPUX86State *env = &cpu->env; struct kvm_fpu fpu; int i, ret; ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); if (ret < 0) { return ret; } env->fpstt = (fpu.fsw >> 11) & 7; env->fpus = fpu.fsw; env->fpuc = fpu.fcw; env->fpop = fpu.last_opcode; env->fpip = fpu.last_ip; env->fpdp = fpu.last_dp; for (i = 0; i < 8; ++i) { env->fptags[i] = !((fpu.ftwx >> i) & 1); } memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); for (i = 0; i < CPU_NB_REGS; i++) { env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]); env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]); } env->mxcsr = fpu.mxcsr; return 0; } static int kvm_get_xsave(X86CPU *cpu) { CPUX86State *env = &cpu->env; X86XSaveArea *xsave = env->xsave_buf; int ret; if (!has_xsave) { return kvm_get_fpu(cpu); } ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave); if (ret < 0) { return ret; } x86_cpu_xrstor_all_areas(cpu, xsave); return 0; } static int kvm_get_xcrs(X86CPU *cpu) { CPUX86State *env = &cpu->env; int i, ret; struct kvm_xcrs xcrs; if (!has_xcrs) { return 0; } ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); if (ret < 0) { return ret; } for (i = 0; i < xcrs.nr_xcrs; i++) { /* Only support xcr0 now */ if (xcrs.xcrs[i].xcr == 0) { env->xcr0 = xcrs.xcrs[i].value; break; } } return 0; } static int kvm_get_sregs(X86CPU *cpu) { CPUX86State *env = &cpu->env; struct kvm_sregs sregs; int bit, i, ret; ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); if (ret < 0) { return ret; } /* There can only be one pending IRQ set in the bitmap at a time, so try to find it and save its number instead (-1 for none). */ env->interrupt_injected = -1; for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { if (sregs.interrupt_bitmap[i]) { bit = ctz64(sregs.interrupt_bitmap[i]); env->interrupt_injected = i * 64 + bit; break; } } get_seg(&env->segs[R_CS], &sregs.cs); get_seg(&env->segs[R_DS], &sregs.ds); get_seg(&env->segs[R_ES], &sregs.es); get_seg(&env->segs[R_FS], &sregs.fs); get_seg(&env->segs[R_GS], &sregs.gs); get_seg(&env->segs[R_SS], &sregs.ss); get_seg(&env->tr, &sregs.tr); get_seg(&env->ldt, &sregs.ldt); env->idt.limit = sregs.idt.limit; env->idt.base = sregs.idt.base; env->gdt.limit = sregs.gdt.limit; env->gdt.base = sregs.gdt.base; env->cr[0] = sregs.cr0; env->cr[2] = sregs.cr2; env->cr[3] = sregs.cr3; env->cr[4] = sregs.cr4; env->efer = sregs.efer; /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ x86_update_hflags(env); return 0; } static int kvm_get_msrs(X86CPU *cpu) { CPUX86State *env = &cpu->env; struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; int ret, i; uint64_t mtrr_top_bits; kvm_msr_buf_reset(cpu); kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); kvm_msr_entry_add(cpu, MSR_PAT, 0); if (has_msr_star) { kvm_msr_entry_add(cpu, MSR_STAR, 0); } if (has_msr_hsave_pa) { kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); } if (has_msr_tsc_aux) { kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); } if (has_msr_tsc_adjust) { kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); } if (has_msr_tsc_deadline) { kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); } if (has_msr_misc_enable) { kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); } if (has_msr_smbase) { kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); } if (has_msr_smi_count) { kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0); } if (has_msr_feature_control) { kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); } if (has_msr_bndcfgs) { kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); } if (has_msr_xss) { kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); } if (has_msr_umwait) { kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0); } if (has_msr_spec_ctrl) { kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0); } if (has_msr_tsx_ctrl) { kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0); } if (has_msr_virt_ssbd) { kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0); } if (!env->tsc_valid) { kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); env->tsc_valid = !runstate_is_running(); } #ifdef TARGET_X86_64 if (lm_capable_kernel) { kvm_msr_entry_add(cpu, MSR_CSTAR, 0); kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); kvm_msr_entry_add(cpu, MSR_FMASK, 0); kvm_msr_entry_add(cpu, MSR_LSTAR, 0); } #endif kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) { kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0); } if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); } if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); } if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); } if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1); } if (has_architectural_pmu_version > 0) { if (has_architectural_pmu_version > 1) { kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); } for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); } for (i = 0; i < num_architectural_pmu_gp_counters; i++) { kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); } } if (env->mcg_cap) { kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); if (has_msr_mcg_ext_ctl) { kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0); } for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); } } if (has_msr_hv_hypercall) { kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); } if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); } if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); } if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0); kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0); kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0); } if (has_msr_hv_crash) { int j; for (j = 0; j < HV_CRASH_PARAMS; j++) { kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); } } if (has_msr_hv_runtime) { kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); } if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { uint32_t msr; kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { kvm_msr_entry_add(cpu, msr, 0); } } if (has_msr_hv_stimer) { uint32_t msr; for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; msr++) { kvm_msr_entry_add(cpu, msr, 0); } } if (env->features[FEAT_1_EDX] & CPUID_MTRR) { kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); for (i = 0; i < MSR_MTRRcap_VCNT; i++) { kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); } } if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { int addr_num = kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7; kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0); kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0); kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0); kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0); kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0); for (i = 0; i < addr_num; i++) { kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0); } } ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); if (ret < 0) { return ret; } if (ret < cpu->kvm_msr_buf->nmsrs) { struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; error_report("error: failed to get MSR 0x%" PRIx32, (uint32_t)e->index); } assert(ret == cpu->kvm_msr_buf->nmsrs); /* * MTRR masks: Each mask consists of 5 parts * a 10..0: must be zero * b 11 : valid bit * c n-1.12: actual mask bits * d 51..n: reserved must be zero * e 63.52: reserved must be zero * * 'n' is the number of physical bits supported by the CPU and is * apparently always <= 52. We know our 'n' but don't know what * the destinations 'n' is; it might be smaller, in which case * it masks (c) on loading. It might be larger, in which case * we fill 'd' so that d..c is consistent irrespetive of the 'n' * we're migrating to. */ if (cpu->fill_mtrr_mask) { QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52); assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS); mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits); } else { mtrr_top_bits = 0; } for (i = 0; i < ret; i++) { uint32_t index = msrs[i].index; switch (index) { case MSR_IA32_SYSENTER_CS: env->sysenter_cs = msrs[i].data; break; case MSR_IA32_SYSENTER_ESP: env->sysenter_esp = msrs[i].data; break; case MSR_IA32_SYSENTER_EIP: env->sysenter_eip = msrs[i].data; break; case MSR_PAT: env->pat = msrs[i].data; break; case MSR_STAR: env->star = msrs[i].data; break; #ifdef TARGET_X86_64 case MSR_CSTAR: env->cstar = msrs[i].data; break; case MSR_KERNELGSBASE: env->kernelgsbase = msrs[i].data; break; case MSR_FMASK: env->fmask = msrs[i].data; break; case MSR_LSTAR: env->lstar = msrs[i].data; break; #endif case MSR_IA32_TSC: env->tsc = msrs[i].data; break; case MSR_TSC_AUX: env->tsc_aux = msrs[i].data; break; case MSR_TSC_ADJUST: env->tsc_adjust = msrs[i].data; break; case MSR_IA32_TSCDEADLINE: env->tsc_deadline = msrs[i].data; break; case MSR_VM_HSAVE_PA: env->vm_hsave = msrs[i].data; break; case MSR_KVM_SYSTEM_TIME: env->system_time_msr = msrs[i].data; break; case MSR_KVM_WALL_CLOCK: env->wall_clock_msr = msrs[i].data; break; case MSR_MCG_STATUS: env->mcg_status = msrs[i].data; break; case MSR_MCG_CTL: env->mcg_ctl = msrs[i].data; break; case MSR_MCG_EXT_CTL: env->mcg_ext_ctl = msrs[i].data; break; case MSR_IA32_MISC_ENABLE: env->msr_ia32_misc_enable = msrs[i].data; break; case MSR_IA32_SMBASE: env->smbase = msrs[i].data; break; case MSR_SMI_COUNT: env->msr_smi_count = msrs[i].data; break; case MSR_IA32_FEATURE_CONTROL: env->msr_ia32_feature_control = msrs[i].data; break; case MSR_IA32_BNDCFGS: env->msr_bndcfgs = msrs[i].data; break; case MSR_IA32_XSS: env->xss = msrs[i].data; break; case MSR_IA32_UMWAIT_CONTROL: env->umwait = msrs[i].data; break; default: if (msrs[i].index >= MSR_MC0_CTL && msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; } break; case MSR_KVM_ASYNC_PF_EN: env->async_pf_en_msr = msrs[i].data; break; case MSR_KVM_ASYNC_PF_INT: env->async_pf_int_msr = msrs[i].data; break; case MSR_KVM_PV_EOI_EN: env->pv_eoi_en_msr = msrs[i].data; break; case MSR_KVM_STEAL_TIME: env->steal_time_msr = msrs[i].data; break; case MSR_KVM_POLL_CONTROL: { env->poll_control_msr = msrs[i].data; break; } case MSR_CORE_PERF_FIXED_CTR_CTRL: env->msr_fixed_ctr_ctrl = msrs[i].data; break; case MSR_CORE_PERF_GLOBAL_CTRL: env->msr_global_ctrl = msrs[i].data; break; case MSR_CORE_PERF_GLOBAL_STATUS: env->msr_global_status = msrs[i].data; break; case MSR_CORE_PERF_GLOBAL_OVF_CTRL: env->msr_global_ovf_ctrl = msrs[i].data; break; case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; break; case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; break; case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; break; case HV_X64_MSR_HYPERCALL: env->msr_hv_hypercall = msrs[i].data; break; case HV_X64_MSR_GUEST_OS_ID: env->msr_hv_guest_os_id = msrs[i].data; break; case HV_X64_MSR_APIC_ASSIST_PAGE: env->msr_hv_vapic = msrs[i].data; break; case HV_X64_MSR_REFERENCE_TSC: env->msr_hv_tsc = msrs[i].data; break; case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; break; case HV_X64_MSR_VP_RUNTIME: env->msr_hv_runtime = msrs[i].data; break; case HV_X64_MSR_SCONTROL: env->msr_hv_synic_control = msrs[i].data; break; case HV_X64_MSR_SIEFP: env->msr_hv_synic_evt_page = msrs[i].data; break; case HV_X64_MSR_SIMP: env->msr_hv_synic_msg_page = msrs[i].data; break; case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; break; case HV_X64_MSR_STIMER0_CONFIG: case HV_X64_MSR_STIMER1_CONFIG: case HV_X64_MSR_STIMER2_CONFIG: case HV_X64_MSR_STIMER3_CONFIG: env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = msrs[i].data; break; case HV_X64_MSR_STIMER0_COUNT: case HV_X64_MSR_STIMER1_COUNT: case HV_X64_MSR_STIMER2_COUNT: case HV_X64_MSR_STIMER3_COUNT: env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = msrs[i].data; break; case HV_X64_MSR_REENLIGHTENMENT_CONTROL: env->msr_hv_reenlightenment_control = msrs[i].data; break; case HV_X64_MSR_TSC_EMULATION_CONTROL: env->msr_hv_tsc_emulation_control = msrs[i].data; break; case HV_X64_MSR_TSC_EMULATION_STATUS: env->msr_hv_tsc_emulation_status = msrs[i].data; break; case MSR_MTRRdefType: env->mtrr_deftype = msrs[i].data; break; case MSR_MTRRfix64K_00000: env->mtrr_fixed[0] = msrs[i].data; break; case MSR_MTRRfix16K_80000: env->mtrr_fixed[1] = msrs[i].data; break; case MSR_MTRRfix16K_A0000: env->mtrr_fixed[2] = msrs[i].data; break; case MSR_MTRRfix4K_C0000: env->mtrr_fixed[3] = msrs[i].data; break; case MSR_MTRRfix4K_C8000: env->mtrr_fixed[4] = msrs[i].data; break; case MSR_MTRRfix4K_D0000: env->mtrr_fixed[5] = msrs[i].data; break; case MSR_MTRRfix4K_D8000: env->mtrr_fixed[6] = msrs[i].data; break; case MSR_MTRRfix4K_E0000: env->mtrr_fixed[7] = msrs[i].data; break; case MSR_MTRRfix4K_E8000: env->mtrr_fixed[8] = msrs[i].data; break; case MSR_MTRRfix4K_F0000: env->mtrr_fixed[9] = msrs[i].data; break; case MSR_MTRRfix4K_F8000: env->mtrr_fixed[10] = msrs[i].data; break; case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): if (index & 1) { env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data | mtrr_top_bits; } else { env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; } break; case MSR_IA32_SPEC_CTRL: env->spec_ctrl = msrs[i].data; break; case MSR_IA32_TSX_CTRL: env->tsx_ctrl = msrs[i].data; break; case MSR_VIRT_SSBD: env->virt_ssbd = msrs[i].data; break; case MSR_IA32_RTIT_CTL: env->msr_rtit_ctrl = msrs[i].data; break; case MSR_IA32_RTIT_STATUS: env->msr_rtit_status = msrs[i].data; break; case MSR_IA32_RTIT_OUTPUT_BASE: env->msr_rtit_output_base = msrs[i].data; break; case MSR_IA32_RTIT_OUTPUT_MASK: env->msr_rtit_output_mask = msrs[i].data; break; case MSR_IA32_RTIT_CR3_MATCH: env->msr_rtit_cr3_match = msrs[i].data; break; case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data; break; } } return 0; } static int kvm_put_mp_state(X86CPU *cpu) { struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); } static int kvm_get_mp_state(X86CPU *cpu) { CPUState *cs = CPU(cpu); CPUX86State *env = &cpu->env; struct kvm_mp_state mp_state; int ret; ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); if (ret < 0) { return ret; } env->mp_state = mp_state.mp_state; if (kvm_irqchip_in_kernel()) { cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); } return 0; } static int kvm_get_apic(X86CPU *cpu) { DeviceState *apic = cpu->apic_state; struct kvm_lapic_state kapic; int ret; if (apic && kvm_irqchip_in_kernel()) { ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); if (ret < 0) { return ret; } kvm_get_apic_state(apic, &kapic); } return 0; } static int kvm_put_vcpu_events(X86CPU *cpu, int level) { CPUState *cs = CPU(cpu); CPUX86State *env = &cpu->env; struct kvm_vcpu_events events = {}; if (!kvm_has_vcpu_events()) { return 0; } events.flags = 0; if (has_exception_payload) { events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD; events.exception.pending = env->exception_pending; events.exception_has_payload = env->exception_has_payload; events.exception_payload = env->exception_payload; } events.exception.nr = env->exception_nr; events.exception.injected = env->exception_injected; events.exception.has_error_code = env->has_error_code; events.exception.error_code = env->error_code; events.interrupt.injected = (env->interrupt_injected >= 0); events.interrupt.nr = env->interrupt_injected; events.interrupt.soft = env->soft_interrupt; events.nmi.injected = env->nmi_injected; events.nmi.pending = env->nmi_pending; events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); events.sipi_vector = env->sipi_vector; if (has_msr_smbase) { events.smi.smm = !!(env->hflags & HF_SMM_MASK); events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); if (kvm_irqchip_in_kernel()) { /* As soon as these are moved to the kernel, remove them * from cs->interrupt_request. */ events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); } else { /* Keep these in cs->interrupt_request. */ events.smi.pending = 0; events.smi.latched_init = 0; } /* Stop SMI delivery on old machine types to avoid a reboot * on an inward migration of an old VM. */ if (!cpu->kvm_no_smi_migration) { events.flags |= KVM_VCPUEVENT_VALID_SMM; } } if (level >= KVM_PUT_RESET_STATE) { events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING; if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR; } } return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); } static int kvm_get_vcpu_events(X86CPU *cpu) { CPUX86State *env = &cpu->env; struct kvm_vcpu_events events; int ret; if (!kvm_has_vcpu_events()) { return 0; } memset(&events, 0, sizeof(events)); ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); if (ret < 0) { return ret; } if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) { env->exception_pending = events.exception.pending; env->exception_has_payload = events.exception_has_payload; env->exception_payload = events.exception_payload; } else { env->exception_pending = 0; env->exception_has_payload = false; } env->exception_injected = events.exception.injected; env->exception_nr = (env->exception_pending || env->exception_injected) ? events.exception.nr : -1; env->has_error_code = events.exception.has_error_code; env->error_code = events.exception.error_code; env->interrupt_injected = events.interrupt.injected ? events.interrupt.nr : -1; env->soft_interrupt = events.interrupt.soft; env->nmi_injected = events.nmi.injected; env->nmi_pending = events.nmi.pending; if (events.nmi.masked) { env->hflags2 |= HF2_NMI_MASK; } else { env->hflags2 &= ~HF2_NMI_MASK; } if (events.flags & KVM_VCPUEVENT_VALID_SMM) { if (events.smi.smm) { env->hflags |= HF_SMM_MASK; } else { env->hflags &= ~HF_SMM_MASK; } if (events.smi.pending) { cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); } else { cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); } if (events.smi.smm_inside_nmi) { env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; } else { env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; } if (events.smi.latched_init) { cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); } else { cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); } } env->sipi_vector = events.sipi_vector; return 0; } static int kvm_guest_debug_workarounds(X86CPU *cpu) { CPUState *cs = CPU(cpu); CPUX86State *env = &cpu->env; int ret = 0; unsigned long reinject_trap = 0; if (!kvm_has_vcpu_events()) { if (env->exception_nr == EXCP01_DB) { reinject_trap = KVM_GUESTDBG_INJECT_DB; } else if (env->exception_injected == EXCP03_INT3) { reinject_trap = KVM_GUESTDBG_INJECT_BP; } kvm_reset_exception(env); } /* * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF * injected via SET_GUEST_DEBUG while updating GP regs. Work around this * by updating the debug state once again if single-stepping is on. * Another reason to call kvm_update_guest_debug here is a pending debug * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to * reinject them via SET_GUEST_DEBUG. */ if (reinject_trap || (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { ret = kvm_update_guest_debug(cs, reinject_trap); } return ret; } static int kvm_put_debugregs(X86CPU *cpu) { CPUX86State *env = &cpu->env; struct kvm_debugregs dbgregs; int i; if (!kvm_has_debugregs()) { return 0; } memset(&dbgregs, 0, sizeof(dbgregs)); for (i = 0; i < 4; i++) { dbgregs.db[i] = env->dr[i]; } dbgregs.dr6 = env->dr[6]; dbgregs.dr7 = env->dr[7]; dbgregs.flags = 0; return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); } static int kvm_get_debugregs(X86CPU *cpu) { CPUX86State *env = &cpu->env; struct kvm_debugregs dbgregs; int i, ret; if (!kvm_has_debugregs()) { return 0; } ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); if (ret < 0) { return ret; } for (i = 0; i < 4; i++) { env->dr[i] = dbgregs.db[i]; } env->dr[4] = env->dr[6] = dbgregs.dr6; env->dr[5] = env->dr[7] = dbgregs.dr7; return 0; } static int kvm_put_nested_state(X86CPU *cpu) { CPUX86State *env = &cpu->env; int max_nested_state_len = kvm_max_nested_state_length(); if (!env->nested_state) { return 0; } /* * Copy flags that are affected by reset from env->hflags and env->hflags2. */ if (env->hflags & HF_GUEST_MASK) { env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE; } else { env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE; } /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */ if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) { env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET; } else { env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET; } assert(env->nested_state->size <= max_nested_state_len); return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state); } static int kvm_get_nested_state(X86CPU *cpu) { CPUX86State *env = &cpu->env; int max_nested_state_len = kvm_max_nested_state_length(); int ret; if (!env->nested_state) { return 0; } /* * It is possible that migration restored a smaller size into * nested_state->hdr.size than what our kernel support. * We preserve migration origin nested_state->hdr.size for * call to KVM_SET_NESTED_STATE but wish that our next call * to KVM_GET_NESTED_STATE will use max size our kernel support. */ env->nested_state->size = max_nested_state_len; ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state); if (ret < 0) { return ret; } /* * Copy flags that are affected by reset to env->hflags and env->hflags2. */ if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) { env->hflags |= HF_GUEST_MASK; } else { env->hflags &= ~HF_GUEST_MASK; } /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */ if (cpu_has_svm(env)) { if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) { env->hflags2 |= HF2_GIF_MASK; } else { env->hflags2 &= ~HF2_GIF_MASK; } } return ret; } int kvm_arch_put_registers(CPUState *cpu, int level) { X86CPU *x86_cpu = X86_CPU(cpu); int ret; assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); /* must be before kvm_put_nested_state so that EFER.SVME is set */ ret = kvm_put_sregs(x86_cpu); if (ret < 0) { return ret; } if (level >= KVM_PUT_RESET_STATE) { ret = kvm_put_nested_state(x86_cpu); if (ret < 0) { return ret; } ret = kvm_put_msr_feature_control(x86_cpu); if (ret < 0) { return ret; } } if (level == KVM_PUT_FULL_STATE) { /* We don't check for kvm_arch_set_tsc_khz() errors here, * because TSC frequency mismatch shouldn't abort migration, * unless the user explicitly asked for a more strict TSC * setting (e.g. using an explicit "tsc-freq" option). */ kvm_arch_set_tsc_khz(cpu); } ret = kvm_getput_regs(x86_cpu, 1); if (ret < 0) { return ret; } ret = kvm_put_xsave(x86_cpu); if (ret < 0) { return ret; } ret = kvm_put_xcrs(x86_cpu); if (ret < 0) { return ret; } /* must be before kvm_put_msrs */ ret = kvm_inject_mce_oldstyle(x86_cpu); if (ret < 0) { return ret; } ret = kvm_put_msrs(x86_cpu, level); if (ret < 0) { return ret; } ret = kvm_put_vcpu_events(x86_cpu, level); if (ret < 0) { return ret; } if (level >= KVM_PUT_RESET_STATE) { ret = kvm_put_mp_state(x86_cpu); if (ret < 0) { return ret; } } ret = kvm_put_tscdeadline_msr(x86_cpu); if (ret < 0) { return ret; } ret = kvm_put_debugregs(x86_cpu); if (ret < 0) { return ret; } /* must be last */ ret = kvm_guest_debug_workarounds(x86_cpu); if (ret < 0) { return ret; } return 0; } int kvm_arch_get_registers(CPUState *cs) { X86CPU *cpu = X86_CPU(cs); int ret; assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); ret = kvm_get_vcpu_events(cpu); if (ret < 0) { goto out; } /* * KVM_GET_MPSTATE can modify CS and RIP, call it before * KVM_GET_REGS and KVM_GET_SREGS. */ ret = kvm_get_mp_state(cpu); if (ret < 0) { goto out; } ret = kvm_getput_regs(cpu, 0); if (ret < 0) { goto out; } ret = kvm_get_xsave(cpu); if (ret < 0) { goto out; } ret = kvm_get_xcrs(cpu); if (ret < 0) { goto out; } ret = kvm_get_sregs(cpu); if (ret < 0) { goto out; } ret = kvm_get_msrs(cpu); if (ret < 0) { goto out; } ret = kvm_get_apic(cpu); if (ret < 0) { goto out; } ret = kvm_get_debugregs(cpu); if (ret < 0) { goto out; } ret = kvm_get_nested_state(cpu); if (ret < 0) { goto out; } ret = 0; out: cpu_sync_bndcs_hflags(&cpu->env); return ret; } void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) { X86CPU *x86_cpu = X86_CPU(cpu); CPUX86State *env = &x86_cpu->env; int ret; /* Inject NMI */ if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { qemu_mutex_lock_iothread(); cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; qemu_mutex_unlock_iothread(); DPRINTF("injected NMI\n"); ret = kvm_vcpu_ioctl(cpu, KVM_NMI); if (ret < 0) { fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", strerror(-ret)); } } if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { qemu_mutex_lock_iothread(); cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; qemu_mutex_unlock_iothread(); DPRINTF("injected SMI\n"); ret = kvm_vcpu_ioctl(cpu, KVM_SMI); if (ret < 0) { fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", strerror(-ret)); } } } if (!kvm_pic_in_kernel()) { qemu_mutex_lock_iothread(); } /* Force the VCPU out of its inner loop to process any INIT requests * or (for userspace APIC, but it is cheap to combine the checks here) * pending TPR access reports. */ if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && !(env->hflags & HF_SMM_MASK)) { cpu->exit_request = 1; } if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { cpu->exit_request = 1; } } if (!kvm_pic_in_kernel()) { /* Try to inject an interrupt if the guest can accept it */ if (run->ready_for_interrupt_injection && (cpu->interrupt_request & CPU_INTERRUPT_HARD) && (env->eflags & IF_MASK)) { int irq; cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; irq = cpu_get_pic_interrupt(env); if (irq >= 0) { struct kvm_interrupt intr; intr.irq = irq; DPRINTF("injected interrupt %d\n", irq); ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); if (ret < 0) { fprintf(stderr, "KVM: injection failed, interrupt lost (%s)\n", strerror(-ret)); } } } /* If we have an interrupt but the guest is not ready to receive an * interrupt, request an interrupt window exit. This will * cause a return to userspace as soon as the guest is ready to * receive interrupts. */ if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { run->request_interrupt_window = 1; } else { run->request_interrupt_window = 0; } DPRINTF("setting tpr\n"); run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); qemu_mutex_unlock_iothread(); } } MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) { X86CPU *x86_cpu = X86_CPU(cpu); CPUX86State *env = &x86_cpu->env; if (run->flags & KVM_RUN_X86_SMM) { env->hflags |= HF_SMM_MASK; } else { env->hflags &= ~HF_SMM_MASK; } if (run->if_flag) { env->eflags |= IF_MASK; } else { env->eflags &= ~IF_MASK; } /* We need to protect the apic state against concurrent accesses from * different threads in case the userspace irqchip is used. */ if (!kvm_irqchip_in_kernel()) { qemu_mutex_lock_iothread(); } cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); if (!kvm_irqchip_in_kernel()) { qemu_mutex_unlock_iothread(); } return cpu_get_mem_attrs(env); } int kvm_arch_process_async_events(CPUState *cs) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; if (cs->interrupt_request & CPU_INTERRUPT_MCE) { /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ assert(env->mcg_cap); cs->interrupt_request &= ~CPU_INTERRUPT_MCE; kvm_cpu_synchronize_state(cs); if (env->exception_nr == EXCP08_DBLE) { /* this means triple fault */ qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); cs->exit_request = 1; return 0; } kvm_queue_exception(env, EXCP12_MCHK, 0, 0); env->has_error_code = 0; cs->halted = 0; if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { env->mp_state = KVM_MP_STATE_RUNNABLE; } } if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && !(env->hflags & HF_SMM_MASK)) { kvm_cpu_synchronize_state(cs); do_cpu_init(cpu); } if (kvm_irqchip_in_kernel()) { return 0; } if (cs->interrupt_request & CPU_INTERRUPT_POLL) { cs->interrupt_request &= ~CPU_INTERRUPT_POLL; apic_poll_irq(cpu->apic_state); } if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && (env->eflags & IF_MASK)) || (cs->interrupt_request & CPU_INTERRUPT_NMI)) { cs->halted = 0; } if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { kvm_cpu_synchronize_state(cs); do_cpu_sipi(cpu); } if (cs->interrupt_request & CPU_INTERRUPT_TPR) { cs->interrupt_request &= ~CPU_INTERRUPT_TPR; kvm_cpu_synchronize_state(cs); apic_handle_tpr_access_report(cpu->apic_state, env->eip, env->tpr_access_type); } return cs->halted; } static int kvm_handle_halt(X86CPU *cpu) { CPUState *cs = CPU(cpu); CPUX86State *env = &cpu->env; if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && (env->eflags & IF_MASK)) && !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { cs->halted = 1; return EXCP_HLT; } return 0; } static int kvm_handle_tpr_access(X86CPU *cpu) { CPUState *cs = CPU(cpu); struct kvm_run *run = cs->kvm_run; apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, run->tpr_access.is_write ? TPR_ACCESS_WRITE : TPR_ACCESS_READ); return 1; } int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) { static const uint8_t int3 = 0xcc; if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { return -EINVAL; } return 0; } int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) { uint8_t int3; if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc || cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { return -EINVAL; } return 0; } static struct { target_ulong addr; int len; int type; } hw_breakpoint[4]; static int nb_hw_breakpoint; static int find_hw_breakpoint(target_ulong addr, int len, int type) { int n; for (n = 0; n < nb_hw_breakpoint; n++) { if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && (hw_breakpoint[n].len == len || len == -1)) { return n; } } return -1; } int kvm_arch_insert_hw_breakpoint(target_ulong addr, target_ulong len, int type) { switch (type) { case GDB_BREAKPOINT_HW: len = 1; break; case GDB_WATCHPOINT_WRITE: case GDB_WATCHPOINT_ACCESS: switch (len) { case 1: break; case 2: case 4: case 8: if (addr & (len - 1)) { return -EINVAL; } break; default: return -EINVAL; } break; default: return -ENOSYS; } if (nb_hw_breakpoint == 4) { return -ENOBUFS; } if (find_hw_breakpoint(addr, len, type) >= 0) { return -EEXIST; } hw_breakpoint[nb_hw_breakpoint].addr = addr; hw_breakpoint[nb_hw_breakpoint].len = len; hw_breakpoint[nb_hw_breakpoint].type = type; nb_hw_breakpoint++; return 0; } int kvm_arch_remove_hw_breakpoint(target_ulong addr, target_ulong len, int type) { int n; n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); if (n < 0) { return -ENOENT; } nb_hw_breakpoint--; hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; return 0; } void kvm_arch_remove_all_hw_breakpoints(void) { nb_hw_breakpoint = 0; } static CPUWatchpoint hw_watchpoint; static int kvm_handle_debug(X86CPU *cpu, struct kvm_debug_exit_arch *arch_info) { CPUState *cs = CPU(cpu); CPUX86State *env = &cpu->env; int ret = 0; int n; if (arch_info->exception == EXCP01_DB) { if (arch_info->dr6 & DR6_BS) { if (cs->singlestep_enabled) { ret = EXCP_DEBUG; } } else { for (n = 0; n < 4; n++) { if (arch_info->dr6 & (1 << n)) { switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { case 0x0: ret = EXCP_DEBUG; break; case 0x1: ret = EXCP_DEBUG; cs->watchpoint_hit = &hw_watchpoint; hw_watchpoint.vaddr = hw_breakpoint[n].addr; hw_watchpoint.flags = BP_MEM_WRITE; break; case 0x3: ret = EXCP_DEBUG; cs->watchpoint_hit = &hw_watchpoint; hw_watchpoint.vaddr = hw_breakpoint[n].addr; hw_watchpoint.flags = BP_MEM_ACCESS; break; } } } } } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { ret = EXCP_DEBUG; } if (ret == 0) { cpu_synchronize_state(cs); assert(env->exception_nr == -1); /* pass to guest */ kvm_queue_exception(env, arch_info->exception, arch_info->exception == EXCP01_DB, arch_info->dr6); env->has_error_code = 0; } return ret; } void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) { const uint8_t type_code[] = { [GDB_BREAKPOINT_HW] = 0x0, [GDB_WATCHPOINT_WRITE] = 0x1, [GDB_WATCHPOINT_ACCESS] = 0x3 }; const uint8_t len_code[] = { [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 }; int n; if (kvm_sw_breakpoints_active(cpu)) { dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; } if (nb_hw_breakpoint > 0) { dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; dbg->arch.debugreg[7] = 0x0600; for (n = 0; n < nb_hw_breakpoint; n++) { dbg->arch.debugreg[n] = hw_breakpoint[n].addr; dbg->arch.debugreg[7] |= (2 << (n * 2)) | (type_code[hw_breakpoint[n].type] << (16 + n*4)) | ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); } } } static bool host_supports_vmx(void) { uint32_t ecx, unused; host_cpuid(1, 0, &unused, &unused, &ecx, &unused); return ecx & CPUID_EXT_VMX; } #define VMX_INVALID_GUEST_STATE 0x80000021 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) { X86CPU *cpu = X86_CPU(cs); uint64_t code; int ret; switch (run->exit_reason) { case KVM_EXIT_HLT: DPRINTF("handle_hlt\n"); qemu_mutex_lock_iothread(); ret = kvm_handle_halt(cpu); qemu_mutex_unlock_iothread(); break; case KVM_EXIT_SET_TPR: ret = 0; break; case KVM_EXIT_TPR_ACCESS: qemu_mutex_lock_iothread(); ret = kvm_handle_tpr_access(cpu); qemu_mutex_unlock_iothread(); break; case KVM_EXIT_FAIL_ENTRY: code = run->fail_entry.hardware_entry_failure_reason; fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", code); if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { fprintf(stderr, "\nIf you're running a guest on an Intel machine without " "unrestricted mode\n" "support, the failure can be most likely due to the guest " "entering an invalid\n" "state for Intel VT. For example, the guest maybe running " "in big real mode\n" "which is not supported on less recent Intel processors." "\n\n"); } ret = -1; break; case KVM_EXIT_EXCEPTION: fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", run->ex.exception, run->ex.error_code); ret = -1; break; case KVM_EXIT_DEBUG: DPRINTF("kvm_exit_debug\n"); qemu_mutex_lock_iothread(); ret = kvm_handle_debug(cpu, &run->debug.arch); qemu_mutex_unlock_iothread(); break; case KVM_EXIT_HYPERV: ret = kvm_hv_handle_exit(cpu, &run->hyperv); break; case KVM_EXIT_IOAPIC_EOI: ioapic_eoi_broadcast(run->eoi.vector); ret = 0; break; default: fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); ret = -1; break; } return ret; } bool kvm_arch_stop_on_emulation_error(CPUState *cs) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; kvm_cpu_synchronize_state(cs); return !(env->cr[0] & CR0_PE_MASK) || ((env->segs[R_CS].selector & 3) != 3); } void kvm_arch_init_irq_routing(KVMState *s) { if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { /* If kernel can't do irq routing, interrupt source * override 0->2 cannot be set up as required by HPET. * So we have to disable it. */ no_hpet = 1; } /* We know at this point that we're using the in-kernel * irqchip, so we can use irqfds, and on x86 we know * we can use msi via irqfd and GSI routing. */ kvm_msi_via_irqfd_allowed = true; kvm_gsi_routing_allowed = true; if (kvm_irqchip_is_split()) { int i; /* If the ioapic is in QEMU and the lapics are in KVM, reserve MSI routes for signaling interrupts to the local apics. */ for (i = 0; i < IOAPIC_NUM_PINS; i++) { if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) { error_report("Could not enable split IRQ mode."); exit(1); } } } } int kvm_arch_irqchip_create(KVMState *s) { int ret; if (kvm_kernel_irqchip_split()) { ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); if (ret) { error_report("Could not enable split irqchip mode: %s", strerror(-ret)); exit(1); } else { DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); kvm_split_irqchip = true; return 1; } } else { return 0; } } int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, uint64_t address, uint32_t data, PCIDevice *dev) { X86IOMMUState *iommu = x86_iommu_get_default(); if (iommu) { int ret; MSIMessage src, dst; X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu); if (!class->int_remap) { return 0; } src.address = route->u.msi.address_hi; src.address <<= VTD_MSI_ADDR_HI_SHIFT; src.address |= route->u.msi.address_lo; src.data = route->u.msi.data; ret = class->int_remap(iommu, &src, &dst, dev ? \ pci_requester_id(dev) : \ X86_IOMMU_SID_INVALID); if (ret) { trace_kvm_x86_fixup_msi_error(route->gsi); return 1; } route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT; route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK; route->u.msi.data = dst.data; } return 0; } typedef struct MSIRouteEntry MSIRouteEntry; struct MSIRouteEntry { PCIDevice *dev; /* Device pointer */ int vector; /* MSI/MSIX vector index */ int virq; /* Virtual IRQ index */ QLIST_ENTRY(MSIRouteEntry) list; }; /* List of used GSI routes */ static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \ QLIST_HEAD_INITIALIZER(msi_route_list); static void kvm_update_msi_routes_all(void *private, bool global, uint32_t index, uint32_t mask) { int cnt = 0, vector; MSIRouteEntry *entry; MSIMessage msg; PCIDevice *dev; /* TODO: explicit route update */ QLIST_FOREACH(entry, &msi_route_list, list) { cnt++; vector = entry->vector; dev = entry->dev; if (msix_enabled(dev) && !msix_is_masked(dev, vector)) { msg = msix_get_message(dev, vector); } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) { msg = msi_get_message(dev, vector); } else { /* * Either MSI/MSIX is disabled for the device, or the * specific message was masked out. Skip this one. */ continue; } kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev); } kvm_irqchip_commit_routes(kvm_state); trace_kvm_x86_update_msi_routes(cnt); } int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, int vector, PCIDevice *dev) { static bool notify_list_inited = false; MSIRouteEntry *entry; if (!dev) { /* These are (possibly) IOAPIC routes only used for split * kernel irqchip mode, while what we are housekeeping are * PCI devices only. */ return 0; } entry = g_new0(MSIRouteEntry, 1); entry->dev = dev; entry->vector = vector; entry->virq = route->gsi; QLIST_INSERT_HEAD(&msi_route_list, entry, list); trace_kvm_x86_add_msi_route(route->gsi); if (!notify_list_inited) { /* For the first time we do add route, add ourselves into * IOMMU's IEC notify list if needed. */ X86IOMMUState *iommu = x86_iommu_get_default(); if (iommu) { x86_iommu_iec_register_notifier(iommu, kvm_update_msi_routes_all, NULL); } notify_list_inited = true; } return 0; } int kvm_arch_release_virq_post(int virq) { MSIRouteEntry *entry, *next; QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) { if (entry->virq == virq) { trace_kvm_x86_remove_msi_route(virq); QLIST_REMOVE(entry, list); g_free(entry); break; } } return 0; } int kvm_arch_msi_data_to_gsi(uint32_t data) { abort(); } bool kvm_has_waitpkg(void) { return has_msr_umwait; }