/*
* Copyright (C) 2016 Veertu Inc,
* Copyright (C) 2017 Veertu Inc,
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see .
*/
#pragma once
#include
#include
#include
#include
#include "qemu-common.h"
#include "x86_gen.h"
/* exceptions */
typedef enum x86_exception {
EXCEPTION_DE, /* divide error */
EXCEPTION_DB, /* debug fault */
EXCEPTION_NMI, /* non-maskable interrupt */
EXCEPTION_BP, /* breakpoint trap */
EXCEPTION_OF, /* overflow trap */
EXCEPTION_BR, /* boundary range exceeded fault */
EXCEPTION_UD, /* undefined opcode */
EXCEPTION_NM, /* device not available */
EXCEPTION_DF, /* double fault */
EXCEPTION_RSVD, /* not defined */
EXCEPTION_TS, /* invalid TSS fault */
EXCEPTION_NP, /* not present fault */
EXCEPTION_GP, /* general protection fault */
EXCEPTION_PF, /* page fault */
EXCEPTION_RSVD2, /* not defined */
} x86_exception;
/* general purpose regs */
typedef enum x86_reg_name {
REG_RAX = 0,
REG_RCX = 1,
REG_RDX = 2,
REG_RBX = 3,
REG_RSP = 4,
REG_RBP = 5,
REG_RSI = 6,
REG_RDI = 7,
REG_R8 = 8,
REG_R9 = 9,
REG_R10 = 10,
REG_R11 = 11,
REG_R12 = 12,
REG_R13 = 13,
REG_R14 = 14,
REG_R15 = 15,
} x86_reg_name;
/* segment regs */
typedef enum x86_reg_segment {
REG_SEG_ES = 0,
REG_SEG_CS = 1,
REG_SEG_SS = 2,
REG_SEG_DS = 3,
REG_SEG_FS = 4,
REG_SEG_GS = 5,
REG_SEG_LDTR = 6,
REG_SEG_TR = 7,
} x86_reg_segment;
typedef struct x86_register {
union {
struct {
uint64_t rrx; /* full 64 bit */
};
struct {
uint32_t erx; /* low 32 bit part */
uint32_t hi32_unused1;
};
struct {
uint16_t rx; /* low 16 bit part */
uint16_t hi16_unused1;
uint32_t hi32_unused2;
};
struct {
uint8_t lx; /* low 8 bit part */
uint8_t hx; /* high 8 bit */
uint16_t hi16_unused2;
uint32_t hi32_unused3;
};
};
} __attribute__ ((__packed__)) x86_register;
typedef enum x86_rflags {
RFLAGS_CF = (1L << 0),
RFLAGS_PF = (1L << 2),
RFLAGS_AF = (1L << 4),
RFLAGS_ZF = (1L << 6),
RFLAGS_SF = (1L << 7),
RFLAGS_TF = (1L << 8),
RFLAGS_IF = (1L << 9),
RFLAGS_DF = (1L << 10),
RFLAGS_OF = (1L << 11),
RFLAGS_IOPL = (3L << 12),
RFLAGS_NT = (1L << 14),
RFLAGS_RF = (1L << 16),
RFLAGS_VM = (1L << 17),
RFLAGS_AC = (1L << 18),
RFLAGS_VIF = (1L << 19),
RFLAGS_VIP = (1L << 20),
RFLAGS_ID = (1L << 21),
} x86_rflags;
/* rflags register */
typedef struct x86_reg_flags {
union {
struct {
uint64_t rflags;
};
struct {
uint32_t eflags;
uint32_t hi32_unused1;
};
struct {
uint32_t cf:1;
uint32_t unused1:1;
uint32_t pf:1;
uint32_t unused2:1;
uint32_t af:1;
uint32_t unused3:1;
uint32_t zf:1;
uint32_t sf:1;
uint32_t tf:1;
uint32_t ief:1;
uint32_t df:1;
uint32_t of:1;
uint32_t iopl:2;
uint32_t nt:1;
uint32_t unused4:1;
uint32_t rf:1;
uint32_t vm:1;
uint32_t ac:1;
uint32_t vif:1;
uint32_t vip:1;
uint32_t id:1;
uint32_t unused5:10;
uint32_t hi32_unused2;
};
};
} __attribute__ ((__packed__)) x86_reg_flags;
typedef enum x86_reg_efer {
EFER_SCE = (1L << 0),
EFER_LME = (1L << 8),
EFER_LMA = (1L << 10),
EFER_NXE = (1L << 11),
EFER_SVME = (1L << 12),
EFER_FXSR = (1L << 14),
} x86_reg_efer;
typedef struct x86_efer {
uint64_t efer;
} __attribute__ ((__packed__)) x86_efer;
typedef enum x86_reg_cr0 {
CR0_PE = (1L << 0),
CR0_MP = (1L << 1),
CR0_EM = (1L << 2),
CR0_TS = (1L << 3),
CR0_ET = (1L << 4),
CR0_NE = (1L << 5),
CR0_WP = (1L << 16),
CR0_AM = (1L << 18),
CR0_NW = (1L << 29),
CR0_CD = (1L << 30),
CR0_PG = (1L << 31),
} x86_reg_cr0;
typedef enum x86_reg_cr4 {
CR4_VME = (1L << 0),
CR4_PVI = (1L << 1),
CR4_TSD = (1L << 2),
CR4_DE = (1L << 3),
CR4_PSE = (1L << 4),
CR4_PAE = (1L << 5),
CR4_MSE = (1L << 6),
CR4_PGE = (1L << 7),
CR4_PCE = (1L << 8),
CR4_OSFXSR = (1L << 9),
CR4_OSXMMEXCPT = (1L << 10),
CR4_VMXE = (1L << 13),
CR4_SMXE = (1L << 14),
CR4_FSGSBASE = (1L << 16),
CR4_PCIDE = (1L << 17),
CR4_OSXSAVE = (1L << 18),
CR4_SMEP = (1L << 20),
} x86_reg_cr4;
/* 16 bit Task State Segment */
typedef struct x86_tss_segment16 {
uint16_t link;
uint16_t sp0;
uint16_t ss0;
uint32_t sp1;
uint16_t ss1;
uint32_t sp2;
uint16_t ss2;
uint16_t ip;
uint16_t flags;
uint16_t ax;
uint16_t cx;
uint16_t dx;
uint16_t bx;
uint16_t sp;
uint16_t bp;
uint16_t si;
uint16_t di;
uint16_t es;
uint16_t cs;
uint16_t ss;
uint16_t ds;
uint16_t ldtr;
} __attribute__((packed)) x86_tss_segment16;
/* 32 bit Task State Segment */
typedef struct x86_tss_segment32 {
uint32_t prev_tss;
uint32_t esp0;
uint32_t ss0;
uint32_t esp1;
uint32_t ss1;
uint32_t esp2;
uint32_t ss2;
uint32_t cr3;
uint32_t eip;
uint32_t eflags;
uint32_t eax;
uint32_t ecx;
uint32_t edx;
uint32_t ebx;
uint32_t esp;
uint32_t ebp;
uint32_t esi;
uint32_t edi;
uint32_t es;
uint32_t cs;
uint32_t ss;
uint32_t ds;
uint32_t fs;
uint32_t gs;
uint32_t ldt;
uint16_t trap;
uint16_t iomap_base;
} __attribute__ ((__packed__)) x86_tss_segment32;
/* 64 bit Task State Segment */
typedef struct x86_tss_segment64 {
uint32_t unused;
uint64_t rsp0;
uint64_t rsp1;
uint64_t rsp2;
uint64_t unused1;
uint64_t ist1;
uint64_t ist2;
uint64_t ist3;
uint64_t ist4;
uint64_t ist5;
uint64_t ist6;
uint64_t ist7;
uint64_t unused2;
uint16_t unused3;
uint16_t iomap_base;
} __attribute__ ((__packed__)) x86_tss_segment64;
/* segment descriptors */
typedef struct x86_segment_descriptor {
uint64_t limit0:16;
uint64_t base0:16;
uint64_t base1:8;
uint64_t type:4;
uint64_t s:1;
uint64_t dpl:2;
uint64_t p:1;
uint64_t limit1:4;
uint64_t avl:1;
uint64_t l:1;
uint64_t db:1;
uint64_t g:1;
uint64_t base2:8;
} __attribute__ ((__packed__)) x86_segment_descriptor;
static inline uint32_t x86_segment_base(x86_segment_descriptor *desc)
{
return (uint32_t)((desc->base2 << 24) | (desc->base1 << 16) | desc->base0);
}
static inline void x86_set_segment_base(x86_segment_descriptor *desc,
uint32_t base)
{
desc->base2 = base >> 24;
desc->base1 = (base >> 16) & 0xff;
desc->base0 = base & 0xffff;
}
static inline uint32_t x86_segment_limit(x86_segment_descriptor *desc)
{
uint32_t limit = (uint32_t)((desc->limit1 << 16) | desc->limit0);
if (desc->g) {
return (limit << 12) | 0xfff;
}
return limit;
}
static inline void x86_set_segment_limit(x86_segment_descriptor *desc,
uint32_t limit)
{
desc->limit0 = limit & 0xffff;
desc->limit1 = limit >> 16;
}
typedef struct x86_call_gate {
uint64_t offset0:16;
uint64_t selector:16;
uint64_t param_count:4;
uint64_t reserved:3;
uint64_t type:4;
uint64_t dpl:1;
uint64_t p:1;
uint64_t offset1:16;
} __attribute__ ((__packed__)) x86_call_gate;
static inline uint32_t x86_call_gate_offset(x86_call_gate *gate)
{
return (uint32_t)((gate->offset1 << 16) | gate->offset0);
}
#define LDT_SEL 0
#define GDT_SEL 1
typedef struct x68_segment_selector {
union {
uint16_t sel;
struct {
uint16_t rpl:3;
uint16_t ti:1;
uint16_t index:12;
};
};
} __attribute__ ((__packed__)) x68_segment_selector;
typedef struct lazy_flags {
addr_t result;
addr_t auxbits;
} lazy_flags;
/* Definition of hvf_x86_state is here */
struct HVFX86EmulatorState {
int interruptable;
uint64_t fetch_rip;
uint64_t rip;
struct x86_register regs[16];
struct x86_reg_flags rflags;
struct lazy_flags lflags;
struct x86_efer efer;
uint8_t mmio_buf[4096];
};
/* useful register access macros */
#define RIP(cpu) (cpu->hvf_emul->rip)
#define EIP(cpu) ((uint32_t)cpu->hvf_emul->rip)
#define RFLAGS(cpu) (cpu->hvf_emul->rflags.rflags)
#define EFLAGS(cpu) (cpu->hvf_emul->rflags.eflags)
#define RRX(cpu, reg) (cpu->hvf_emul->regs[reg].rrx)
#define RAX(cpu) RRX(cpu, REG_RAX)
#define RCX(cpu) RRX(cpu, REG_RCX)
#define RDX(cpu) RRX(cpu, REG_RDX)
#define RBX(cpu) RRX(cpu, REG_RBX)
#define RSP(cpu) RRX(cpu, REG_RSP)
#define RBP(cpu) RRX(cpu, REG_RBP)
#define RSI(cpu) RRX(cpu, REG_RSI)
#define RDI(cpu) RRX(cpu, REG_RDI)
#define R8(cpu) RRX(cpu, REG_R8)
#define R9(cpu) RRX(cpu, REG_R9)
#define R10(cpu) RRX(cpu, REG_R10)
#define R11(cpu) RRX(cpu, REG_R11)
#define R12(cpu) RRX(cpu, REG_R12)
#define R13(cpu) RRX(cpu, REG_R13)
#define R14(cpu) RRX(cpu, REG_R14)
#define R15(cpu) RRX(cpu, REG_R15)
#define ERX(cpu, reg) (cpu->hvf_emul->regs[reg].erx)
#define EAX(cpu) ERX(cpu, REG_RAX)
#define ECX(cpu) ERX(cpu, REG_RCX)
#define EDX(cpu) ERX(cpu, REG_RDX)
#define EBX(cpu) ERX(cpu, REG_RBX)
#define ESP(cpu) ERX(cpu, REG_RSP)
#define EBP(cpu) ERX(cpu, REG_RBP)
#define ESI(cpu) ERX(cpu, REG_RSI)
#define EDI(cpu) ERX(cpu, REG_RDI)
#define RX(cpu, reg) (cpu->hvf_emul->regs[reg].rx)
#define AX(cpu) RX(cpu, REG_RAX)
#define CX(cpu) RX(cpu, REG_RCX)
#define DX(cpu) RX(cpu, REG_RDX)
#define BP(cpu) RX(cpu, REG_RBP)
#define SP(cpu) RX(cpu, REG_RSP)
#define BX(cpu) RX(cpu, REG_RBX)
#define SI(cpu) RX(cpu, REG_RSI)
#define DI(cpu) RX(cpu, REG_RDI)
#define RL(cpu, reg) (cpu->hvf_emul->regs[reg].lx)
#define AL(cpu) RL(cpu, REG_RAX)
#define CL(cpu) RL(cpu, REG_RCX)
#define DL(cpu) RL(cpu, REG_RDX)
#define BL(cpu) RL(cpu, REG_RBX)
#define RH(cpu, reg) (cpu->hvf_emul->regs[reg].hx)
#define AH(cpu) RH(cpu, REG_RAX)
#define CH(cpu) RH(cpu, REG_RCX)
#define DH(cpu) RH(cpu, REG_RDX)
#define BH(cpu) RH(cpu, REG_RBX)
/* deal with GDT/LDT descriptors in memory */
bool x86_read_segment_descriptor(struct CPUState *cpu,
struct x86_segment_descriptor *desc,
x68_segment_selector sel);
bool x86_write_segment_descriptor(struct CPUState *cpu,
struct x86_segment_descriptor *desc,
x68_segment_selector sel);
bool x86_read_call_gate(struct CPUState *cpu, struct x86_call_gate *idt_desc,
int gate);
/* helpers */
bool x86_is_protected(struct CPUState *cpu);
bool x86_is_real(struct CPUState *cpu);
bool x86_is_v8086(struct CPUState *cpu);
bool x86_is_long_mode(struct CPUState *cpu);
bool x86_is_long64_mode(struct CPUState *cpu);
bool x86_is_paging_mode(struct CPUState *cpu);
bool x86_is_pae_enabled(struct CPUState *cpu);
addr_t linear_addr(struct CPUState *cpu, addr_t addr, x86_reg_segment seg);
addr_t linear_addr_size(struct CPUState *cpu, addr_t addr, int size,
x86_reg_segment seg);
addr_t linear_rip(struct CPUState *cpu, addr_t rip);
static inline uint64_t rdtscp(void)
{
uint64_t tsc;
__asm__ __volatile__("rdtscp; " /* serializing read of tsc */
"shl $32,%%rdx; " /* shift higher 32 bits stored in rdx up */
"or %%rdx,%%rax" /* and or onto rax */
: "=a"(tsc) /* output to tsc variable */
:
: "%rcx", "%rdx"); /* rcx and rdx are clobbered */
return tsc;
}