/* * i386 helpers (without register variable usage) * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/exec-all.h" #include "sysemu/kvm.h" #include "kvm_i386.h" #ifndef CONFIG_USER_ONLY #include "sysemu/sysemu.h" #include "monitor/monitor.h" #include "hw/i386/apic_internal.h" #endif static void cpu_x86_version(CPUX86State *env, int *family, int *model) { int cpuver = env->cpuid_version; if (family == NULL || model == NULL) { return; } *family = (cpuver >> 8) & 0x0f; *model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0x0f); } /* Broadcast MCA signal for processor version 06H_EH and above */ int cpu_x86_support_mca_broadcast(CPUX86State *env) { int family = 0; int model = 0; cpu_x86_version(env, &family, &model); if ((family == 6 && model >= 14) || family > 6) { return 1; } return 0; } /***********************************************************/ /* x86 debug */ static const char *cc_op_str[CC_OP_NB] = { "DYNAMIC", "EFLAGS", "MULB", "MULW", "MULL", "MULQ", "ADDB", "ADDW", "ADDL", "ADDQ", "ADCB", "ADCW", "ADCL", "ADCQ", "SUBB", "SUBW", "SUBL", "SUBQ", "SBBB", "SBBW", "SBBL", "SBBQ", "LOGICB", "LOGICW", "LOGICL", "LOGICQ", "INCB", "INCW", "INCL", "INCQ", "DECB", "DECW", "DECL", "DECQ", "SHLB", "SHLW", "SHLL", "SHLQ", "SARB", "SARW", "SARL", "SARQ", "BMILGB", "BMILGW", "BMILGL", "BMILGQ", "ADCX", "ADOX", "ADCOX", "CLR", }; static void cpu_x86_dump_seg_cache(CPUX86State *env, FILE *f, fprintf_function cpu_fprintf, const char *name, struct SegmentCache *sc) { #ifdef TARGET_X86_64 if (env->hflags & HF_CS64_MASK) { cpu_fprintf(f, "%-3s=%04x %016" PRIx64 " %08x %08x", name, sc->selector, sc->base, sc->limit, sc->flags & 0x00ffff00); } else #endif { cpu_fprintf(f, "%-3s=%04x %08x %08x %08x", name, sc->selector, (uint32_t)sc->base, sc->limit, sc->flags & 0x00ffff00); } if (!(env->hflags & HF_PE_MASK) || !(sc->flags & DESC_P_MASK)) goto done; cpu_fprintf(f, " DPL=%d ", (sc->flags & DESC_DPL_MASK) >> DESC_DPL_SHIFT); if (sc->flags & DESC_S_MASK) { if (sc->flags & DESC_CS_MASK) { cpu_fprintf(f, (sc->flags & DESC_L_MASK) ? "CS64" : ((sc->flags & DESC_B_MASK) ? "CS32" : "CS16")); cpu_fprintf(f, " [%c%c", (sc->flags & DESC_C_MASK) ? 'C' : '-', (sc->flags & DESC_R_MASK) ? 'R' : '-'); } else { cpu_fprintf(f, (sc->flags & DESC_B_MASK || env->hflags & HF_LMA_MASK) ? "DS " : "DS16"); cpu_fprintf(f, " [%c%c", (sc->flags & DESC_E_MASK) ? 'E' : '-', (sc->flags & DESC_W_MASK) ? 'W' : '-'); } cpu_fprintf(f, "%c]", (sc->flags & DESC_A_MASK) ? 'A' : '-'); } else { static const char *sys_type_name[2][16] = { { /* 32 bit mode */ "Reserved", "TSS16-avl", "LDT", "TSS16-busy", "CallGate16", "TaskGate", "IntGate16", "TrapGate16", "Reserved", "TSS32-avl", "Reserved", "TSS32-busy", "CallGate32", "Reserved", "IntGate32", "TrapGate32" }, { /* 64 bit mode */ "", "Reserved", "LDT", "Reserved", "Reserved", "Reserved", "Reserved", "Reserved", "Reserved", "TSS64-avl", "Reserved", "TSS64-busy", "CallGate64", "Reserved", "IntGate64", "TrapGate64" } }; cpu_fprintf(f, "%s", sys_type_name[(env->hflags & HF_LMA_MASK) ? 1 : 0] [(sc->flags & DESC_TYPE_MASK) >> DESC_TYPE_SHIFT]); } done: cpu_fprintf(f, "\n"); } #ifndef CONFIG_USER_ONLY /* ARRAY_SIZE check is not required because * DeliveryMode(dm) has a size of 3 bit. */ static inline const char *dm2str(uint32_t dm) { static const char *str[] = { "Fixed", "...", "SMI", "...", "NMI", "INIT", "...", "ExtINT" }; return str[dm]; } static void dump_apic_lvt(FILE *f, fprintf_function cpu_fprintf, const char *name, uint32_t lvt, bool is_timer) { uint32_t dm = (lvt & APIC_LVT_DELIV_MOD) >> APIC_LVT_DELIV_MOD_SHIFT; cpu_fprintf(f, "%s\t 0x%08x %s %-5s %-6s %-7s %-12s %-6s", name, lvt, lvt & APIC_LVT_INT_POLARITY ? "active-lo" : "active-hi", lvt & APIC_LVT_LEVEL_TRIGGER ? "level" : "edge", lvt & APIC_LVT_MASKED ? "masked" : "", lvt & APIC_LVT_DELIV_STS ? "pending" : "", !is_timer ? "" : lvt & APIC_LVT_TIMER_PERIODIC ? "periodic" : lvt & APIC_LVT_TIMER_TSCDEADLINE ? "tsc-deadline" : "one-shot", dm2str(dm)); if (dm != APIC_DM_NMI) { cpu_fprintf(f, " (vec %u)\n", lvt & APIC_VECTOR_MASK); } else { cpu_fprintf(f, "\n"); } } /* ARRAY_SIZE check is not required because * destination shorthand has a size of 2 bit. */ static inline const char *shorthand2str(uint32_t shorthand) { const char *str[] = { "no-shorthand", "self", "all-self", "all" }; return str[shorthand]; } static inline uint8_t divider_conf(uint32_t divide_conf) { uint8_t divide_val = ((divide_conf & 0x8) >> 1) | (divide_conf & 0x3); return divide_val == 7 ? 1 : 2 << divide_val; } static inline void mask2str(char *str, uint32_t val, uint8_t size) { while (size--) { *str++ = (val >> size) & 1 ? '1' : '0'; } *str = 0; } #define MAX_LOGICAL_APIC_ID_MASK_SIZE 16 static void dump_apic_icr(FILE *f, fprintf_function cpu_fprintf, APICCommonState *s, CPUX86State *env) { uint32_t icr = s->icr[0], icr2 = s->icr[1]; uint8_t dest_shorthand = \ (icr & APIC_ICR_DEST_SHORT) >> APIC_ICR_DEST_SHORT_SHIFT; bool logical_mod = icr & APIC_ICR_DEST_MOD; char apic_id_str[MAX_LOGICAL_APIC_ID_MASK_SIZE + 1]; uint32_t dest_field; bool x2apic; cpu_fprintf(f, "ICR\t 0x%08x %s %s %s %s\n", icr, logical_mod ? "logical" : "physical", icr & APIC_ICR_TRIGGER_MOD ? "level" : "edge", icr & APIC_ICR_LEVEL ? "assert" : "de-assert", shorthand2str(dest_shorthand)); cpu_fprintf(f, "ICR2\t 0x%08x", icr2); if (dest_shorthand != 0) { cpu_fprintf(f, "\n"); return; } x2apic = env->features[FEAT_1_ECX] & CPUID_EXT_X2APIC; dest_field = x2apic ? icr2 : icr2 >> APIC_ICR_DEST_SHIFT; if (!logical_mod) { if (x2apic) { cpu_fprintf(f, " cpu %u (X2APIC ID)\n", dest_field); } else { cpu_fprintf(f, " cpu %u (APIC ID)\n", dest_field & APIC_LOGDEST_XAPIC_ID); } return; } if (s->dest_mode == 0xf) { /* flat mode */ mask2str(apic_id_str, icr2 >> APIC_ICR_DEST_SHIFT, 8); cpu_fprintf(f, " mask %s (APIC ID)\n", apic_id_str); } else if (s->dest_mode == 0) { /* cluster mode */ if (x2apic) { mask2str(apic_id_str, dest_field & APIC_LOGDEST_X2APIC_ID, 16); cpu_fprintf(f, " cluster %u mask %s (X2APIC ID)\n", dest_field >> APIC_LOGDEST_X2APIC_SHIFT, apic_id_str); } else { mask2str(apic_id_str, dest_field & APIC_LOGDEST_XAPIC_ID, 4); cpu_fprintf(f, " cluster %u mask %s (APIC ID)\n", dest_field >> APIC_LOGDEST_XAPIC_SHIFT, apic_id_str); } } } static void dump_apic_interrupt(FILE *f, fprintf_function cpu_fprintf, const char *name, uint32_t *ireg_tab, uint32_t *tmr_tab) { int i, empty = true; cpu_fprintf(f, "%s\t ", name); for (i = 0; i < 256; i++) { if (apic_get_bit(ireg_tab, i)) { cpu_fprintf(f, "%u%s ", i, apic_get_bit(tmr_tab, i) ? "(level)" : ""); empty = false; } } cpu_fprintf(f, "%s\n", empty ? "(none)" : ""); } void x86_cpu_dump_local_apic_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf, int flags) { X86CPU *cpu = X86_CPU(cs); APICCommonState *s = APIC_COMMON(cpu->apic_state); uint32_t *lvt = s->lvt; cpu_fprintf(f, "dumping local APIC state for CPU %-2u\n\n", CPU(cpu)->cpu_index); dump_apic_lvt(f, cpu_fprintf, "LVT0", lvt[APIC_LVT_LINT0], false); dump_apic_lvt(f, cpu_fprintf, "LVT1", lvt[APIC_LVT_LINT1], false); dump_apic_lvt(f, cpu_fprintf, "LVTPC", lvt[APIC_LVT_PERFORM], false); dump_apic_lvt(f, cpu_fprintf, "LVTERR", lvt[APIC_LVT_ERROR], false); dump_apic_lvt(f, cpu_fprintf, "LVTTHMR", lvt[APIC_LVT_THERMAL], false); dump_apic_lvt(f, cpu_fprintf, "LVTT", lvt[APIC_LVT_TIMER], true); cpu_fprintf(f, "Timer\t DCR=0x%x (divide by %u) initial_count = %u\n", s->divide_conf & APIC_DCR_MASK, divider_conf(s->divide_conf), s->initial_count); cpu_fprintf(f, "SPIV\t 0x%08x APIC %s, focus=%s, spurious vec %u\n", s->spurious_vec, s->spurious_vec & APIC_SPURIO_ENABLED ? "enabled" : "disabled", s->spurious_vec & APIC_SPURIO_FOCUS ? "on" : "off", s->spurious_vec & APIC_VECTOR_MASK); dump_apic_icr(f, cpu_fprintf, s, &cpu->env); cpu_fprintf(f, "ESR\t 0x%08x\n", s->esr); dump_apic_interrupt(f, cpu_fprintf, "ISR", s->isr, s->tmr); dump_apic_interrupt(f, cpu_fprintf, "IRR", s->irr, s->tmr); cpu_fprintf(f, "\nAPR 0x%02x TPR 0x%02x DFR 0x%02x LDR 0x%02x", s->arb_id, s->tpr, s->dest_mode, s->log_dest); if (s->dest_mode == 0) { cpu_fprintf(f, "(cluster %u: id %u)", s->log_dest >> APIC_LOGDEST_XAPIC_SHIFT, s->log_dest & APIC_LOGDEST_XAPIC_ID); } cpu_fprintf(f, " PPR 0x%02x\n", apic_get_ppr(s)); } #else void x86_cpu_dump_local_apic_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf, int flags) { } #endif /* !CONFIG_USER_ONLY */ #define DUMP_CODE_BYTES_TOTAL 50 #define DUMP_CODE_BYTES_BACKWARD 20 void x86_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf, int flags) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; int eflags, i, nb; char cc_op_name[32]; static const char *seg_name[6] = { "ES", "CS", "SS", "DS", "FS", "GS" }; eflags = cpu_compute_eflags(env); #ifdef TARGET_X86_64 if (env->hflags & HF_CS64_MASK) { cpu_fprintf(f, "RAX=%016" PRIx64 " RBX=%016" PRIx64 " RCX=%016" PRIx64 " RDX=%016" PRIx64 "\n" "RSI=%016" PRIx64 " RDI=%016" PRIx64 " RBP=%016" PRIx64 " RSP=%016" PRIx64 "\n" "R8 =%016" PRIx64 " R9 =%016" PRIx64 " R10=%016" PRIx64 " R11=%016" PRIx64 "\n" "R12=%016" PRIx64 " R13=%016" PRIx64 " R14=%016" PRIx64 " R15=%016" PRIx64 "\n" "RIP=%016" PRIx64 " RFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n", env->regs[R_EAX], env->regs[R_EBX], env->regs[R_ECX], env->regs[R_EDX], env->regs[R_ESI], env->regs[R_EDI], env->regs[R_EBP], env->regs[R_ESP], env->regs[8], env->regs[9], env->regs[10], env->regs[11], env->regs[12], env->regs[13], env->regs[14], env->regs[15], env->eip, eflags, eflags & DF_MASK ? 'D' : '-', eflags & CC_O ? 'O' : '-', eflags & CC_S ? 'S' : '-', eflags & CC_Z ? 'Z' : '-', eflags & CC_A ? 'A' : '-', eflags & CC_P ? 'P' : '-', eflags & CC_C ? 'C' : '-', env->hflags & HF_CPL_MASK, (env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1, (env->a20_mask >> 20) & 1, (env->hflags >> HF_SMM_SHIFT) & 1, cs->halted); } else #endif { cpu_fprintf(f, "EAX=%08x EBX=%08x ECX=%08x EDX=%08x\n" "ESI=%08x EDI=%08x EBP=%08x ESP=%08x\n" "EIP=%08x EFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n", (uint32_t)env->regs[R_EAX], (uint32_t)env->regs[R_EBX], (uint32_t)env->regs[R_ECX], (uint32_t)env->regs[R_EDX], (uint32_t)env->regs[R_ESI], (uint32_t)env->regs[R_EDI], (uint32_t)env->regs[R_EBP], (uint32_t)env->regs[R_ESP], (uint32_t)env->eip, eflags, eflags & DF_MASK ? 'D' : '-', eflags & CC_O ? 'O' : '-', eflags & CC_S ? 'S' : '-', eflags & CC_Z ? 'Z' : '-', eflags & CC_A ? 'A' : '-', eflags & CC_P ? 'P' : '-', eflags & CC_C ? 'C' : '-', env->hflags & HF_CPL_MASK, (env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1, (env->a20_mask >> 20) & 1, (env->hflags >> HF_SMM_SHIFT) & 1, cs->halted); } for(i = 0; i < 6; i++) { cpu_x86_dump_seg_cache(env, f, cpu_fprintf, seg_name[i], &env->segs[i]); } cpu_x86_dump_seg_cache(env, f, cpu_fprintf, "LDT", &env->ldt); cpu_x86_dump_seg_cache(env, f, cpu_fprintf, "TR", &env->tr); #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) { cpu_fprintf(f, "GDT= %016" PRIx64 " %08x\n", env->gdt.base, env->gdt.limit); cpu_fprintf(f, "IDT= %016" PRIx64 " %08x\n", env->idt.base, env->idt.limit); cpu_fprintf(f, "CR0=%08x CR2=%016" PRIx64 " CR3=%016" PRIx64 " CR4=%08x\n", (uint32_t)env->cr[0], env->cr[2], env->cr[3], (uint32_t)env->cr[4]); for(i = 0; i < 4; i++) cpu_fprintf(f, "DR%d=%016" PRIx64 " ", i, env->dr[i]); cpu_fprintf(f, "\nDR6=%016" PRIx64 " DR7=%016" PRIx64 "\n", env->dr[6], env->dr[7]); } else #endif { cpu_fprintf(f, "GDT= %08x %08x\n", (uint32_t)env->gdt.base, env->gdt.limit); cpu_fprintf(f, "IDT= %08x %08x\n", (uint32_t)env->idt.base, env->idt.limit); cpu_fprintf(f, "CR0=%08x CR2=%08x CR3=%08x CR4=%08x\n", (uint32_t)env->cr[0], (uint32_t)env->cr[2], (uint32_t)env->cr[3], (uint32_t)env->cr[4]); for(i = 0; i < 4; i++) { cpu_fprintf(f, "DR%d=" TARGET_FMT_lx " ", i, env->dr[i]); } cpu_fprintf(f, "\nDR6=" TARGET_FMT_lx " DR7=" TARGET_FMT_lx "\n", env->dr[6], env->dr[7]); } if (flags & CPU_DUMP_CCOP) { if ((unsigned)env->cc_op < CC_OP_NB) snprintf(cc_op_name, sizeof(cc_op_name), "%s", cc_op_str[env->cc_op]); else snprintf(cc_op_name, sizeof(cc_op_name), "[%d]", env->cc_op); #ifdef TARGET_X86_64 if (env->hflags & HF_CS64_MASK) { cpu_fprintf(f, "CCS=%016" PRIx64 " CCD=%016" PRIx64 " CCO=%-8s\n", env->cc_src, env->cc_dst, cc_op_name); } else #endif { cpu_fprintf(f, "CCS=%08x CCD=%08x CCO=%-8s\n", (uint32_t)env->cc_src, (uint32_t)env->cc_dst, cc_op_name); } } cpu_fprintf(f, "EFER=%016" PRIx64 "\n", env->efer); if (flags & CPU_DUMP_FPU) { int fptag; fptag = 0; for(i = 0; i < 8; i++) { fptag |= ((!env->fptags[i]) << i); } cpu_fprintf(f, "FCW=%04x FSW=%04x [ST=%d] FTW=%02x MXCSR=%08x\n", env->fpuc, (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11, env->fpstt, fptag, env->mxcsr); for(i=0;i<8;i++) { CPU_LDoubleU u; u.d = env->fpregs[i].d; cpu_fprintf(f, "FPR%d=%016" PRIx64 " %04x", i, u.l.lower, u.l.upper); if ((i & 1) == 1) cpu_fprintf(f, "\n"); else cpu_fprintf(f, " "); } if (env->hflags & HF_CS64_MASK) nb = 16; else nb = 8; for(i=0;ixmm_regs[i].ZMM_L(3), env->xmm_regs[i].ZMM_L(2), env->xmm_regs[i].ZMM_L(1), env->xmm_regs[i].ZMM_L(0)); if ((i & 1) == 1) cpu_fprintf(f, "\n"); else cpu_fprintf(f, " "); } } if (flags & CPU_DUMP_CODE) { target_ulong base = env->segs[R_CS].base + env->eip; target_ulong offs = MIN(env->eip, DUMP_CODE_BYTES_BACKWARD); uint8_t code; char codestr[3]; cpu_fprintf(f, "Code="); for (i = 0; i < DUMP_CODE_BYTES_TOTAL; i++) { if (cpu_memory_rw_debug(cs, base - offs + i, &code, 1, 0) == 0) { snprintf(codestr, sizeof(codestr), "%02x", code); } else { snprintf(codestr, sizeof(codestr), "??"); } cpu_fprintf(f, "%s%s%s%s", i > 0 ? " " : "", i == offs ? "<" : "", codestr, i == offs ? ">" : ""); } cpu_fprintf(f, "\n"); } } /***********************************************************/ /* x86 mmu */ /* XXX: add PGE support */ void x86_cpu_set_a20(X86CPU *cpu, int a20_state) { CPUX86State *env = &cpu->env; a20_state = (a20_state != 0); if (a20_state != ((env->a20_mask >> 20) & 1)) { CPUState *cs = CPU(cpu); qemu_log_mask(CPU_LOG_MMU, "A20 update: a20=%d\n", a20_state); /* if the cpu is currently executing code, we must unlink it and all the potentially executing TB */ cpu_interrupt(cs, CPU_INTERRUPT_EXITTB); /* when a20 is changed, all the MMU mappings are invalid, so we must flush everything */ tlb_flush(cs); env->a20_mask = ~(1 << 20) | (a20_state << 20); } } void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0) { X86CPU *cpu = x86_env_get_cpu(env); int pe_state; qemu_log_mask(CPU_LOG_MMU, "CR0 update: CR0=0x%08x\n", new_cr0); if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) != (env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) { tlb_flush(CPU(cpu)); } #ifdef TARGET_X86_64 if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) && (env->efer & MSR_EFER_LME)) { /* enter in long mode */ /* XXX: generate an exception */ if (!(env->cr[4] & CR4_PAE_MASK)) return; env->efer |= MSR_EFER_LMA; env->hflags |= HF_LMA_MASK; } else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) && (env->efer & MSR_EFER_LMA)) { /* exit long mode */ env->efer &= ~MSR_EFER_LMA; env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK); env->eip &= 0xffffffff; } #endif env->cr[0] = new_cr0 | CR0_ET_MASK; /* update PE flag in hidden flags */ pe_state = (env->cr[0] & CR0_PE_MASK); env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT); /* ensure that ADDSEG is always set in real mode */ env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT); /* update FPU flags */ env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) | ((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)); } /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in the PDPT */ void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3) { X86CPU *cpu = x86_env_get_cpu(env); env->cr[3] = new_cr3; if (env->cr[0] & CR0_PG_MASK) { qemu_log_mask(CPU_LOG_MMU, "CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3); tlb_flush(CPU(cpu)); } } void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4) { X86CPU *cpu = x86_env_get_cpu(env); uint32_t hflags; #if defined(DEBUG_MMU) printf("CR4 update: %08x -> %08x\n", (uint32_t)env->cr[4], new_cr4); #endif if ((new_cr4 ^ env->cr[4]) & (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK | CR4_SMEP_MASK | CR4_SMAP_MASK | CR4_LA57_MASK)) { tlb_flush(CPU(cpu)); } /* Clear bits we're going to recompute. */ hflags = env->hflags & ~(HF_OSFXSR_MASK | HF_SMAP_MASK); /* SSE handling */ if (!(env->features[FEAT_1_EDX] & CPUID_SSE)) { new_cr4 &= ~CR4_OSFXSR_MASK; } if (new_cr4 & CR4_OSFXSR_MASK) { hflags |= HF_OSFXSR_MASK; } if (!(env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_SMAP)) { new_cr4 &= ~CR4_SMAP_MASK; } if (new_cr4 & CR4_SMAP_MASK) { hflags |= HF_SMAP_MASK; } if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKU)) { new_cr4 &= ~CR4_PKE_MASK; } env->cr[4] = new_cr4; env->hflags = hflags; cpu_sync_bndcs_hflags(env); } #if defined(CONFIG_USER_ONLY) int x86_cpu_handle_mmu_fault(CPUState *cs, vaddr addr, int is_write, int mmu_idx) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; /* user mode only emulation */ is_write &= 1; env->cr[2] = addr; env->error_code = (is_write << PG_ERROR_W_BIT); env->error_code |= PG_ERROR_U_MASK; cs->exception_index = EXCP0E_PAGE; env->exception_is_int = 0; env->exception_next_eip = -1; return 1; } #else /* return value: * -1 = cannot handle fault * 0 = nothing more to do * 1 = generate PF fault */ int x86_cpu_handle_mmu_fault(CPUState *cs, vaddr addr, int is_write1, int mmu_idx) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; uint64_t ptep, pte; target_ulong pde_addr, pte_addr; int error_code = 0; int is_dirty, prot, page_size, is_write, is_user; hwaddr paddr; uint64_t rsvd_mask = PG_HI_RSVD_MASK; uint32_t page_offset; target_ulong vaddr; is_user = mmu_idx == MMU_USER_IDX; #if defined(DEBUG_MMU) printf("MMU fault: addr=%" VADDR_PRIx " w=%d u=%d eip=" TARGET_FMT_lx "\n", addr, is_write1, is_user, env->eip); #endif is_write = is_write1 & 1; if (!(env->cr[0] & CR0_PG_MASK)) { pte = addr; #ifdef TARGET_X86_64 if (!(env->hflags & HF_LMA_MASK)) { /* Without long mode we can only address 32bits in real mode */ pte = (uint32_t)pte; } #endif prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; page_size = 4096; goto do_mapping; } if (!(env->efer & MSR_EFER_NXE)) { rsvd_mask |= PG_NX_MASK; } if (env->cr[4] & CR4_PAE_MASK) { uint64_t pde, pdpe; target_ulong pdpe_addr; #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) { bool la57 = env->cr[4] & CR4_LA57_MASK; uint64_t pml5e_addr, pml5e; uint64_t pml4e_addr, pml4e; int32_t sext; /* test virtual address sign extension */ sext = la57 ? (int64_t)addr >> 56 : (int64_t)addr >> 47; if (sext != 0 && sext != -1) { env->error_code = 0; cs->exception_index = EXCP0D_GPF; return 1; } if (la57) { pml5e_addr = ((env->cr[3] & ~0xfff) + (((addr >> 48) & 0x1ff) << 3)) & env->a20_mask; pml5e = x86_ldq_phys(cs, pml5e_addr); if (!(pml5e & PG_PRESENT_MASK)) { goto do_fault; } if (pml5e & (rsvd_mask | PG_PSE_MASK)) { goto do_fault_rsvd; } if (!(pml5e & PG_ACCESSED_MASK)) { pml5e |= PG_ACCESSED_MASK; x86_stl_phys_notdirty(cs, pml5e_addr, pml5e); } ptep = pml5e ^ PG_NX_MASK; } else { pml5e = env->cr[3]; ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK; } pml4e_addr = ((pml5e & PG_ADDRESS_MASK) + (((addr >> 39) & 0x1ff) << 3)) & env->a20_mask; pml4e = x86_ldq_phys(cs, pml4e_addr); if (!(pml4e & PG_PRESENT_MASK)) { goto do_fault; } if (pml4e & (rsvd_mask | PG_PSE_MASK)) { goto do_fault_rsvd; } if (!(pml4e & PG_ACCESSED_MASK)) { pml4e |= PG_ACCESSED_MASK; x86_stl_phys_notdirty(cs, pml4e_addr, pml4e); } ptep &= pml4e ^ PG_NX_MASK; pdpe_addr = ((pml4e & PG_ADDRESS_MASK) + (((addr >> 30) & 0x1ff) << 3)) & env->a20_mask; pdpe = x86_ldq_phys(cs, pdpe_addr); if (!(pdpe & PG_PRESENT_MASK)) { goto do_fault; } if (pdpe & rsvd_mask) { goto do_fault_rsvd; } ptep &= pdpe ^ PG_NX_MASK; if (!(pdpe & PG_ACCESSED_MASK)) { pdpe |= PG_ACCESSED_MASK; x86_stl_phys_notdirty(cs, pdpe_addr, pdpe); } if (pdpe & PG_PSE_MASK) { /* 1 GB page */ page_size = 1024 * 1024 * 1024; pte_addr = pdpe_addr; pte = pdpe; goto do_check_protect; } } else #endif { /* XXX: load them when cr3 is loaded ? */ pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) & env->a20_mask; pdpe = x86_ldq_phys(cs, pdpe_addr); if (!(pdpe & PG_PRESENT_MASK)) { goto do_fault; } rsvd_mask |= PG_HI_USER_MASK; if (pdpe & (rsvd_mask | PG_NX_MASK)) { goto do_fault_rsvd; } ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK; } pde_addr = ((pdpe & PG_ADDRESS_MASK) + (((addr >> 21) & 0x1ff) << 3)) & env->a20_mask; pde = x86_ldq_phys(cs, pde_addr); if (!(pde & PG_PRESENT_MASK)) { goto do_fault; } if (pde & rsvd_mask) { goto do_fault_rsvd; } ptep &= pde ^ PG_NX_MASK; if (pde & PG_PSE_MASK) { /* 2 MB page */ page_size = 2048 * 1024; pte_addr = pde_addr; pte = pde; goto do_check_protect; } /* 4 KB page */ if (!(pde & PG_ACCESSED_MASK)) { pde |= PG_ACCESSED_MASK; x86_stl_phys_notdirty(cs, pde_addr, pde); } pte_addr = ((pde & PG_ADDRESS_MASK) + (((addr >> 12) & 0x1ff) << 3)) & env->a20_mask; pte = x86_ldq_phys(cs, pte_addr); if (!(pte & PG_PRESENT_MASK)) { goto do_fault; } if (pte & rsvd_mask) { goto do_fault_rsvd; } /* combine pde and pte nx, user and rw protections */ ptep &= pte ^ PG_NX_MASK; page_size = 4096; } else { uint32_t pde; /* page directory entry */ pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & env->a20_mask; pde = x86_ldl_phys(cs, pde_addr); if (!(pde & PG_PRESENT_MASK)) { goto do_fault; } ptep = pde | PG_NX_MASK; /* if PSE bit is set, then we use a 4MB page */ if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) { page_size = 4096 * 1024; pte_addr = pde_addr; /* Bits 20-13 provide bits 39-32 of the address, bit 21 is reserved. * Leave bits 20-13 in place for setting accessed/dirty bits below. */ pte = pde | ((pde & 0x1fe000LL) << (32 - 13)); rsvd_mask = 0x200000; goto do_check_protect_pse36; } if (!(pde & PG_ACCESSED_MASK)) { pde |= PG_ACCESSED_MASK; x86_stl_phys_notdirty(cs, pde_addr, pde); } /* page directory entry */ pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & env->a20_mask; pte = x86_ldl_phys(cs, pte_addr); if (!(pte & PG_PRESENT_MASK)) { goto do_fault; } /* combine pde and pte user and rw protections */ ptep &= pte | PG_NX_MASK; page_size = 4096; rsvd_mask = 0; } do_check_protect: rsvd_mask |= (page_size - 1) & PG_ADDRESS_MASK & ~PG_PSE_PAT_MASK; do_check_protect_pse36: if (pte & rsvd_mask) { goto do_fault_rsvd; } ptep ^= PG_NX_MASK; /* can the page can be put in the TLB? prot will tell us */ if (is_user && !(ptep & PG_USER_MASK)) { goto do_fault_protect; } prot = 0; if (mmu_idx != MMU_KSMAP_IDX || !(ptep & PG_USER_MASK)) { prot |= PAGE_READ; if ((ptep & PG_RW_MASK) || (!is_user && !(env->cr[0] & CR0_WP_MASK))) { prot |= PAGE_WRITE; } } if (!(ptep & PG_NX_MASK) && (mmu_idx == MMU_USER_IDX || !((env->cr[4] & CR4_SMEP_MASK) && (ptep & PG_USER_MASK)))) { prot |= PAGE_EXEC; } if ((env->cr[4] & CR4_PKE_MASK) && (env->hflags & HF_LMA_MASK) && (ptep & PG_USER_MASK) && env->pkru) { uint32_t pk = (pte & PG_PKRU_MASK) >> PG_PKRU_BIT; uint32_t pkru_ad = (env->pkru >> pk * 2) & 1; uint32_t pkru_wd = (env->pkru >> pk * 2) & 2; uint32_t pkru_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; if (pkru_ad) { pkru_prot &= ~(PAGE_READ | PAGE_WRITE); } else if (pkru_wd && (is_user || env->cr[0] & CR0_WP_MASK)) { pkru_prot &= ~PAGE_WRITE; } prot &= pkru_prot; if ((pkru_prot & (1 << is_write1)) == 0) { assert(is_write1 != 2); error_code |= PG_ERROR_PK_MASK; goto do_fault_protect; } } if ((prot & (1 << is_write1)) == 0) { goto do_fault_protect; } /* yes, it can! */ is_dirty = is_write && !(pte & PG_DIRTY_MASK); if (!(pte & PG_ACCESSED_MASK) || is_dirty) { pte |= PG_ACCESSED_MASK; if (is_dirty) { pte |= PG_DIRTY_MASK; } x86_stl_phys_notdirty(cs, pte_addr, pte); } if (!(pte & PG_DIRTY_MASK)) { /* only set write access if already dirty... otherwise wait for dirty access */ assert(!is_write); prot &= ~PAGE_WRITE; } do_mapping: pte = pte & env->a20_mask; /* align to page_size */ pte &= PG_ADDRESS_MASK & ~(page_size - 1); /* Even if 4MB pages, we map only one 4KB page in the cache to avoid filling it too fast */ vaddr = addr & TARGET_PAGE_MASK; page_offset = vaddr & (page_size - 1); paddr = pte + page_offset; assert(prot & (1 << is_write1)); tlb_set_page_with_attrs(cs, vaddr, paddr, cpu_get_mem_attrs(env), prot, mmu_idx, page_size); return 0; do_fault_rsvd: error_code |= PG_ERROR_RSVD_MASK; do_fault_protect: error_code |= PG_ERROR_P_MASK; do_fault: error_code |= (is_write << PG_ERROR_W_BIT); if (is_user) error_code |= PG_ERROR_U_MASK; if (is_write1 == 2 && (((env->efer & MSR_EFER_NXE) && (env->cr[4] & CR4_PAE_MASK)) || (env->cr[4] & CR4_SMEP_MASK))) error_code |= PG_ERROR_I_D_MASK; if (env->intercept_exceptions & (1 << EXCP0E_PAGE)) { /* cr2 is not modified in case of exceptions */ x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2), addr); } else { env->cr[2] = addr; } env->error_code = error_code; cs->exception_index = EXCP0E_PAGE; return 1; } hwaddr x86_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; target_ulong pde_addr, pte_addr; uint64_t pte; uint32_t page_offset; int page_size; if (!(env->cr[0] & CR0_PG_MASK)) { pte = addr & env->a20_mask; page_size = 4096; } else if (env->cr[4] & CR4_PAE_MASK) { target_ulong pdpe_addr; uint64_t pde, pdpe; #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) { bool la57 = env->cr[4] & CR4_LA57_MASK; uint64_t pml5e_addr, pml5e; uint64_t pml4e_addr, pml4e; int32_t sext; /* test virtual address sign extension */ sext = la57 ? (int64_t)addr >> 56 : (int64_t)addr >> 47; if (sext != 0 && sext != -1) { return -1; } if (la57) { pml5e_addr = ((env->cr[3] & ~0xfff) + (((addr >> 48) & 0x1ff) << 3)) & env->a20_mask; pml5e = x86_ldq_phys(cs, pml5e_addr); if (!(pml5e & PG_PRESENT_MASK)) { return -1; } } else { pml5e = env->cr[3]; } pml4e_addr = ((pml5e & PG_ADDRESS_MASK) + (((addr >> 39) & 0x1ff) << 3)) & env->a20_mask; pml4e = x86_ldq_phys(cs, pml4e_addr); if (!(pml4e & PG_PRESENT_MASK)) { return -1; } pdpe_addr = ((pml4e & PG_ADDRESS_MASK) + (((addr >> 30) & 0x1ff) << 3)) & env->a20_mask; pdpe = x86_ldq_phys(cs, pdpe_addr); if (!(pdpe & PG_PRESENT_MASK)) { return -1; } if (pdpe & PG_PSE_MASK) { page_size = 1024 * 1024 * 1024; pte = pdpe; goto out; } } else #endif { pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) & env->a20_mask; pdpe = x86_ldq_phys(cs, pdpe_addr); if (!(pdpe & PG_PRESENT_MASK)) return -1; } pde_addr = ((pdpe & PG_ADDRESS_MASK) + (((addr >> 21) & 0x1ff) << 3)) & env->a20_mask; pde = x86_ldq_phys(cs, pde_addr); if (!(pde & PG_PRESENT_MASK)) { return -1; } if (pde & PG_PSE_MASK) { /* 2 MB page */ page_size = 2048 * 1024; pte = pde; } else { /* 4 KB page */ pte_addr = ((pde & PG_ADDRESS_MASK) + (((addr >> 12) & 0x1ff) << 3)) & env->a20_mask; page_size = 4096; pte = x86_ldq_phys(cs, pte_addr); } if (!(pte & PG_PRESENT_MASK)) { return -1; } } else { uint32_t pde; /* page directory entry */ pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & env->a20_mask; pde = x86_ldl_phys(cs, pde_addr); if (!(pde & PG_PRESENT_MASK)) return -1; if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) { pte = pde | ((pde & 0x1fe000LL) << (32 - 13)); page_size = 4096 * 1024; } else { /* page directory entry */ pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & env->a20_mask; pte = x86_ldl_phys(cs, pte_addr); if (!(pte & PG_PRESENT_MASK)) { return -1; } page_size = 4096; } pte = pte & env->a20_mask; } #ifdef TARGET_X86_64 out: #endif pte &= PG_ADDRESS_MASK & ~(page_size - 1); page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1); return pte | page_offset; } typedef struct MCEInjectionParams { Monitor *mon; int bank; uint64_t status; uint64_t mcg_status; uint64_t addr; uint64_t misc; int flags; } MCEInjectionParams; static void do_inject_x86_mce(CPUState *cs, run_on_cpu_data data) { MCEInjectionParams *params = data.host_ptr; X86CPU *cpu = X86_CPU(cs); CPUX86State *cenv = &cpu->env; uint64_t *banks = cenv->mce_banks + 4 * params->bank; cpu_synchronize_state(cs); /* * If there is an MCE exception being processed, ignore this SRAO MCE * unless unconditional injection was requested. */ if (!(params->flags & MCE_INJECT_UNCOND_AO) && !(params->status & MCI_STATUS_AR) && (cenv->mcg_status & MCG_STATUS_MCIP)) { return; } if (params->status & MCI_STATUS_UC) { /* * if MSR_MCG_CTL is not all 1s, the uncorrected error * reporting is disabled */ if ((cenv->mcg_cap & MCG_CTL_P) && cenv->mcg_ctl != ~(uint64_t)0) { monitor_printf(params->mon, "CPU %d: Uncorrected error reporting disabled\n", cs->cpu_index); return; } /* * if MSR_MCi_CTL is not all 1s, the uncorrected error * reporting is disabled for the bank */ if (banks[0] != ~(uint64_t)0) { monitor_printf(params->mon, "CPU %d: Uncorrected error reporting disabled for" " bank %d\n", cs->cpu_index, params->bank); return; } if ((cenv->mcg_status & MCG_STATUS_MCIP) || !(cenv->cr[4] & CR4_MCE_MASK)) { monitor_printf(params->mon, "CPU %d: Previous MCE still in progress, raising" " triple fault\n", cs->cpu_index); qemu_log_mask(CPU_LOG_RESET, "Triple fault\n"); qemu_system_reset_request(); return; } if (banks[1] & MCI_STATUS_VAL) { params->status |= MCI_STATUS_OVER; } banks[2] = params->addr; banks[3] = params->misc; cenv->mcg_status = params->mcg_status; banks[1] = params->status; cpu_interrupt(cs, CPU_INTERRUPT_MCE); } else if (!(banks[1] & MCI_STATUS_VAL) || !(banks[1] & MCI_STATUS_UC)) { if (banks[1] & MCI_STATUS_VAL) { params->status |= MCI_STATUS_OVER; } banks[2] = params->addr; banks[3] = params->misc; banks[1] = params->status; } else { banks[1] |= MCI_STATUS_OVER; } } void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank, uint64_t status, uint64_t mcg_status, uint64_t addr, uint64_t misc, int flags) { CPUState *cs = CPU(cpu); CPUX86State *cenv = &cpu->env; MCEInjectionParams params = { .mon = mon, .bank = bank, .status = status, .mcg_status = mcg_status, .addr = addr, .misc = misc, .flags = flags, }; unsigned bank_num = cenv->mcg_cap & 0xff; if (!cenv->mcg_cap) { monitor_printf(mon, "MCE injection not supported\n"); return; } if (bank >= bank_num) { monitor_printf(mon, "Invalid MCE bank number\n"); return; } if (!(status & MCI_STATUS_VAL)) { monitor_printf(mon, "Invalid MCE status code\n"); return; } if ((flags & MCE_INJECT_BROADCAST) && !cpu_x86_support_mca_broadcast(cenv)) { monitor_printf(mon, "Guest CPU does not support MCA broadcast\n"); return; } run_on_cpu(cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(¶ms)); if (flags & MCE_INJECT_BROADCAST) { CPUState *other_cs; params.bank = 1; params.status = MCI_STATUS_VAL | MCI_STATUS_UC; params.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV; params.addr = 0; params.misc = 0; CPU_FOREACH(other_cs) { if (other_cs == cs) { continue; } run_on_cpu(other_cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(¶ms)); } } } void cpu_report_tpr_access(CPUX86State *env, TPRAccess access) { X86CPU *cpu = x86_env_get_cpu(env); CPUState *cs = CPU(cpu); if (kvm_enabled()) { env->tpr_access_type = access; cpu_interrupt(cs, CPU_INTERRUPT_TPR); } else { cpu_restore_state(cs, cs->mem_io_pc); apic_handle_tpr_access_report(cpu->apic_state, env->eip, access); } } #endif /* !CONFIG_USER_ONLY */ int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector, target_ulong *base, unsigned int *limit, unsigned int *flags) { X86CPU *cpu = x86_env_get_cpu(env); CPUState *cs = CPU(cpu); SegmentCache *dt; target_ulong ptr; uint32_t e1, e2; int index; if (selector & 0x4) dt = &env->ldt; else dt = &env->gdt; index = selector & ~7; ptr = dt->base + index; if ((index + 7) > dt->limit || cpu_memory_rw_debug(cs, ptr, (uint8_t *)&e1, sizeof(e1), 0) != 0 || cpu_memory_rw_debug(cs, ptr+4, (uint8_t *)&e2, sizeof(e2), 0) != 0) return 0; *base = ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000)); *limit = (e1 & 0xffff) | (e2 & 0x000f0000); if (e2 & DESC_G_MASK) *limit = (*limit << 12) | 0xfff; *flags = e2; return 1; } #if !defined(CONFIG_USER_ONLY) void do_cpu_init(X86CPU *cpu) { CPUState *cs = CPU(cpu); CPUX86State *env = &cpu->env; CPUX86State *save = g_new(CPUX86State, 1); int sipi = cs->interrupt_request & CPU_INTERRUPT_SIPI; *save = *env; cpu_reset(cs); cs->interrupt_request = sipi; memcpy(&env->start_init_save, &save->start_init_save, offsetof(CPUX86State, end_init_save) - offsetof(CPUX86State, start_init_save)); g_free(save); if (kvm_enabled()) { kvm_arch_do_init_vcpu(cpu); } apic_init_reset(cpu->apic_state); } void do_cpu_sipi(X86CPU *cpu) { apic_sipi(cpu->apic_state); } #else void do_cpu_init(X86CPU *cpu) { } void do_cpu_sipi(X86CPU *cpu) { } #endif /* Frob eflags into and out of the CPU temporary format. */ void x86_cpu_exec_enter(CPUState *cs) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); env->df = 1 - (2 * ((env->eflags >> 10) & 1)); CC_OP = CC_OP_EFLAGS; env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); } void x86_cpu_exec_exit(CPUState *cs) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; env->eflags = cpu_compute_eflags(env); } #ifndef CONFIG_USER_ONLY uint8_t x86_ldub_phys(CPUState *cs, hwaddr addr) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; return address_space_ldub(cs->as, addr, cpu_get_mem_attrs(env), NULL); } uint32_t x86_lduw_phys(CPUState *cs, hwaddr addr) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; return address_space_lduw(cs->as, addr, cpu_get_mem_attrs(env), NULL); } uint32_t x86_ldl_phys(CPUState *cs, hwaddr addr) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; return address_space_ldl(cs->as, addr, cpu_get_mem_attrs(env), NULL); } uint64_t x86_ldq_phys(CPUState *cs, hwaddr addr) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; return address_space_ldq(cs->as, addr, cpu_get_mem_attrs(env), NULL); } void x86_stb_phys(CPUState *cs, hwaddr addr, uint8_t val) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; address_space_stb(cs->as, addr, val, cpu_get_mem_attrs(env), NULL); } void x86_stl_phys_notdirty(CPUState *cs, hwaddr addr, uint32_t val) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; address_space_stl_notdirty(cs->as, addr, val, cpu_get_mem_attrs(env), NULL); } void x86_stw_phys(CPUState *cs, hwaddr addr, uint32_t val) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; address_space_stw(cs->as, addr, val, cpu_get_mem_attrs(env), NULL); } void x86_stl_phys(CPUState *cs, hwaddr addr, uint32_t val) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; address_space_stl(cs->as, addr, val, cpu_get_mem_attrs(env), NULL); } void x86_stq_phys(CPUState *cs, hwaddr addr, uint64_t val) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; address_space_stq(cs->as, addr, val, cpu_get_mem_attrs(env), NULL); } #endif