/* * QEMU HAXM support * * Copyright (c) 2011 Intel Corporation * Written by: * Jiang Yunhong * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * */ #include "qemu/osdep.h" #include "cpu.h" #include "hax-accel-ops.h" /* * return 0 when success, -1 when driver not loaded, * other negative value for other failure */ static int hax_open_device(hax_fd *fd) { uint32_t errNum = 0; HANDLE hDevice; if (!fd) { return -2; } hDevice = CreateFile("\\\\.\\HAX", GENERIC_READ | GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL); if (hDevice == INVALID_HANDLE_VALUE) { fprintf(stderr, "Failed to open the HAX device!\n"); errNum = GetLastError(); if (errNum == ERROR_FILE_NOT_FOUND) { return -1; } return -2; } *fd = hDevice; return 0; } /* hax_fd hax_mod_open */ hax_fd hax_mod_open(void) { int ret; hax_fd fd = NULL; ret = hax_open_device(&fd); if (ret != 0) { fprintf(stderr, "Open HAX device failed\n"); } return fd; } int hax_populate_ram(uint64_t va, uint64_t size) { int ret; HANDLE hDeviceVM; DWORD dSize = 0; if (!hax_global.vm || !hax_global.vm->fd) { fprintf(stderr, "Allocate memory before vm create?\n"); return -EINVAL; } hDeviceVM = hax_global.vm->fd; if (hax_global.supports_64bit_ramblock) { struct hax_ramblock_info ramblock = { .start_va = va, .size = size, .reserved = 0 }; ret = DeviceIoControl(hDeviceVM, HAX_VM_IOCTL_ADD_RAMBLOCK, &ramblock, sizeof(ramblock), NULL, 0, &dSize, (LPOVERLAPPED) NULL); } else { struct hax_alloc_ram_info info = { .size = (uint32_t) size, .pad = 0, .va = va }; ret = DeviceIoControl(hDeviceVM, HAX_VM_IOCTL_ALLOC_RAM, &info, sizeof(info), NULL, 0, &dSize, (LPOVERLAPPED) NULL); } if (!ret) { fprintf(stderr, "Failed to register RAM block: va=0x%" PRIx64 ", size=0x%" PRIx64 ", method=%s\n", va, size, hax_global.supports_64bit_ramblock ? "new" : "legacy"); return ret; } return 0; } int hax_set_ram(uint64_t start_pa, uint32_t size, uint64_t host_va, int flags) { struct hax_set_ram_info info; HANDLE hDeviceVM = hax_global.vm->fd; DWORD dSize = 0; int ret; info.pa_start = start_pa; info.size = size; info.va = host_va; info.flags = (uint8_t) flags; ret = DeviceIoControl(hDeviceVM, HAX_VM_IOCTL_SET_RAM, &info, sizeof(info), NULL, 0, &dSize, (LPOVERLAPPED) NULL); if (!ret) { return -EFAULT; } else { return 0; } } int hax_capability(struct hax_state *hax, struct hax_capabilityinfo *cap) { int ret; HANDLE hDevice = hax->fd; /* handle to hax module */ DWORD dSize = 0; DWORD err = 0; if (hax_invalid_fd(hDevice)) { fprintf(stderr, "Invalid fd for hax device!\n"); return -ENODEV; } ret = DeviceIoControl(hDevice, HAX_IOCTL_CAPABILITY, NULL, 0, cap, sizeof(*cap), &dSize, (LPOVERLAPPED) NULL); if (!ret) { err = GetLastError(); if (err == ERROR_INSUFFICIENT_BUFFER || err == ERROR_MORE_DATA) { fprintf(stderr, "hax capability is too long to hold.\n"); } fprintf(stderr, "Failed to get Hax capability:%luu\n", err); return -EFAULT; } else { return 0; } } int hax_mod_version(struct hax_state *hax, struct hax_module_version *version) { int ret; HANDLE hDevice = hax->fd; /* handle to hax module */ DWORD dSize = 0; DWORD err = 0; if (hax_invalid_fd(hDevice)) { fprintf(stderr, "Invalid fd for hax device!\n"); return -ENODEV; } ret = DeviceIoControl(hDevice, HAX_IOCTL_VERSION, NULL, 0, version, sizeof(*version), &dSize, (LPOVERLAPPED) NULL); if (!ret) { err = GetLastError(); if (err == ERROR_INSUFFICIENT_BUFFER || err == ERROR_MORE_DATA) { fprintf(stderr, "hax module verion is too long to hold.\n"); } fprintf(stderr, "Failed to get Hax module version:%lu\n", err); return -EFAULT; } else { return 0; } } static char *hax_vm_devfs_string(int vm_id) { return g_strdup_printf("\\\\.\\hax_vm%02d", vm_id); } static char *hax_vcpu_devfs_string(int vm_id, int vcpu_id) { return g_strdup_printf("\\\\.\\hax_vm%02d_vcpu%02d", vm_id, vcpu_id); } int hax_host_create_vm(struct hax_state *hax, int *vmid) { int ret; int vm_id = 0; DWORD dSize = 0; if (hax_invalid_fd(hax->fd)) { return -EINVAL; } if (hax->vm) { return 0; } ret = DeviceIoControl(hax->fd, HAX_IOCTL_CREATE_VM, NULL, 0, &vm_id, sizeof(vm_id), &dSize, (LPOVERLAPPED) NULL); if (!ret) { fprintf(stderr, "Failed to create VM. Error code: %lu\n", GetLastError()); return -1; } *vmid = vm_id; return 0; } hax_fd hax_host_open_vm(struct hax_state *hax, int vm_id) { char *vm_name = NULL; hax_fd hDeviceVM; vm_name = hax_vm_devfs_string(vm_id); if (!vm_name) { fprintf(stderr, "Failed to open VM. VM name is null\n"); return INVALID_HANDLE_VALUE; } hDeviceVM = CreateFile(vm_name, GENERIC_READ | GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL); if (hDeviceVM == INVALID_HANDLE_VALUE) { fprintf(stderr, "Open the vm device error:%s, ec:%lu\n", vm_name, GetLastError()); } g_free(vm_name); return hDeviceVM; } int hax_notify_qemu_version(hax_fd vm_fd, struct hax_qemu_version *qversion) { int ret; DWORD dSize = 0; if (hax_invalid_fd(vm_fd)) { return -EINVAL; } ret = DeviceIoControl(vm_fd, HAX_VM_IOCTL_NOTIFY_QEMU_VERSION, qversion, sizeof(struct hax_qemu_version), NULL, 0, &dSize, (LPOVERLAPPED) NULL); if (!ret) { fprintf(stderr, "Failed to notify qemu API version\n"); return -1; } return 0; } int hax_host_create_vcpu(hax_fd vm_fd, int vcpuid) { int ret; DWORD dSize = 0; ret = DeviceIoControl(vm_fd, HAX_VM_IOCTL_VCPU_CREATE, &vcpuid, sizeof(vcpuid), NULL, 0, &dSize, (LPOVERLAPPED) NULL); if (!ret) { fprintf(stderr, "Failed to create vcpu %x\n", vcpuid); return -1; } return 0; } hax_fd hax_host_open_vcpu(int vmid, int vcpuid) { char *devfs_path = NULL; hax_fd hDeviceVCPU; devfs_path = hax_vcpu_devfs_string(vmid, vcpuid); if (!devfs_path) { fprintf(stderr, "Failed to get the devfs\n"); return INVALID_HANDLE_VALUE; } hDeviceVCPU = CreateFile(devfs_path, GENERIC_READ | GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL); if (hDeviceVCPU == INVALID_HANDLE_VALUE) { fprintf(stderr, "Failed to open the vcpu devfs\n"); } g_free(devfs_path); return hDeviceVCPU; } int hax_host_setup_vcpu_channel(AccelCPUState *vcpu) { hax_fd hDeviceVCPU = vcpu->fd; int ret; struct hax_tunnel_info info; DWORD dSize = 0; ret = DeviceIoControl(hDeviceVCPU, HAX_VCPU_IOCTL_SETUP_TUNNEL, NULL, 0, &info, sizeof(info), &dSize, (LPOVERLAPPED) NULL); if (!ret) { fprintf(stderr, "Failed to setup the hax tunnel\n"); return -1; } if (!valid_hax_tunnel_size(info.size)) { fprintf(stderr, "Invalid hax tunnel size %x\n", info.size); ret = -EINVAL; return ret; } vcpu->tunnel = (struct hax_tunnel *) (intptr_t) (info.va); vcpu->iobuf = (unsigned char *) (intptr_t) (info.io_va); return 0; } int hax_vcpu_run(AccelCPUState *vcpu) { int ret; HANDLE hDeviceVCPU = vcpu->fd; DWORD dSize = 0; ret = DeviceIoControl(hDeviceVCPU, HAX_VCPU_IOCTL_RUN, NULL, 0, NULL, 0, &dSize, (LPOVERLAPPED) NULL); if (!ret) { return -EFAULT; } else { return 0; } } int hax_sync_fpu(CPUArchState *env, struct fx_layout *fl, int set) { int ret; hax_fd fd; HANDLE hDeviceVCPU; DWORD dSize = 0; fd = hax_vcpu_get_fd(env); if (hax_invalid_fd(fd)) { return -1; } hDeviceVCPU = fd; if (set) { ret = DeviceIoControl(hDeviceVCPU, HAX_VCPU_IOCTL_SET_FPU, fl, sizeof(*fl), NULL, 0, &dSize, (LPOVERLAPPED) NULL); } else { ret = DeviceIoControl(hDeviceVCPU, HAX_VCPU_IOCTL_GET_FPU, NULL, 0, fl, sizeof(*fl), &dSize, (LPOVERLAPPED) NULL); } if (!ret) { return -EFAULT; } else { return 0; } } int hax_sync_msr(CPUArchState *env, struct hax_msr_data *msrs, int set) { int ret; hax_fd fd; HANDLE hDeviceVCPU; DWORD dSize = 0; fd = hax_vcpu_get_fd(env); if (hax_invalid_fd(fd)) { return -1; } hDeviceVCPU = fd; if (set) { ret = DeviceIoControl(hDeviceVCPU, HAX_VCPU_IOCTL_SET_MSRS, msrs, sizeof(*msrs), msrs, sizeof(*msrs), &dSize, (LPOVERLAPPED) NULL); } else { ret = DeviceIoControl(hDeviceVCPU, HAX_VCPU_IOCTL_GET_MSRS, msrs, sizeof(*msrs), msrs, sizeof(*msrs), &dSize, (LPOVERLAPPED) NULL); } if (!ret) { return -EFAULT; } else { return 0; } } int hax_sync_vcpu_state(CPUArchState *env, struct vcpu_state_t *state, int set) { int ret; hax_fd fd; HANDLE hDeviceVCPU; DWORD dSize; fd = hax_vcpu_get_fd(env); if (hax_invalid_fd(fd)) { return -1; } hDeviceVCPU = fd; if (set) { ret = DeviceIoControl(hDeviceVCPU, HAX_VCPU_SET_REGS, state, sizeof(*state), NULL, 0, &dSize, (LPOVERLAPPED) NULL); } else { ret = DeviceIoControl(hDeviceVCPU, HAX_VCPU_GET_REGS, NULL, 0, state, sizeof(*state), &dSize, (LPOVERLAPPED) NULL); } if (!ret) { return -EFAULT; } else { return 0; } } int hax_inject_interrupt(CPUArchState *env, int vector) { int ret; hax_fd fd; HANDLE hDeviceVCPU; DWORD dSize; fd = hax_vcpu_get_fd(env); if (hax_invalid_fd(fd)) { return -1; } hDeviceVCPU = fd; ret = DeviceIoControl(hDeviceVCPU, HAX_VCPU_IOCTL_INTERRUPT, &vector, sizeof(vector), NULL, 0, &dSize, (LPOVERLAPPED) NULL); if (!ret) { return -EFAULT; } else { return 0; } } static void CALLBACK dummy_apc_func(ULONG_PTR unused) { } void hax_kick_vcpu_thread(CPUState *cpu) { /* * FIXME: race condition with the exit_request check in * hax_vcpu_hax_exec */ cpu->exit_request = 1; if (!qemu_cpu_is_self(cpu)) { if (!QueueUserAPC(dummy_apc_func, cpu->accel->hThread, 0)) { fprintf(stderr, "%s: QueueUserAPC failed with error %lu\n", __func__, GetLastError()); exit(1); } } }