/* * PA-RISC emulation cpu definitions for qemu. * * Copyright (c) 2016 Richard Henderson <rth@twiddle.net> * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/>. */ #ifndef HPPA_CPU_H #define HPPA_CPU_H #include "qemu-common.h" #include "cpu-qom.h" #ifdef TARGET_HPPA64 #define TARGET_LONG_BITS 64 #define TARGET_VIRT_ADDR_SPACE_BITS 64 #define TARGET_REGISTER_BITS 64 #define TARGET_PHYS_ADDR_SPACE_BITS 64 #elif defined(CONFIG_USER_ONLY) #define TARGET_LONG_BITS 32 #define TARGET_VIRT_ADDR_SPACE_BITS 32 #define TARGET_REGISTER_BITS 32 #define TARGET_PHYS_ADDR_SPACE_BITS 32 #else /* In order to form the GVA from space:offset, we need a 64-bit virtual address space. */ #define TARGET_LONG_BITS 64 #define TARGET_VIRT_ADDR_SPACE_BITS 64 #define TARGET_REGISTER_BITS 32 #define TARGET_PHYS_ADDR_SPACE_BITS 32 #endif /* PA-RISC 1.x processors have a strong memory model. */ /* ??? While we do not yet implement PA-RISC 2.0, those processors have a weak memory model, but with TLB bits that force ordering on a per-page basis. It's probably easier to fall back to a strong memory model. */ #define TCG_GUEST_DEFAULT_MO TCG_MO_ALL #define CPUArchState struct CPUHPPAState #include "exec/cpu-defs.h" #define TARGET_PAGE_BITS 12 #define ALIGNED_ONLY #define NB_MMU_MODES 5 #define MMU_KERNEL_IDX 0 #define MMU_USER_IDX 3 #define MMU_PHYS_IDX 4 #define TARGET_INSN_START_EXTRA_WORDS 1 /* Hardware exceptions, interupts, faults, and traps. */ #define EXCP_HPMC 1 /* high priority machine check */ #define EXCP_POWER_FAIL 2 #define EXCP_RC 3 /* recovery counter */ #define EXCP_EXT_INTERRUPT 4 /* external interrupt */ #define EXCP_LPMC 5 /* low priority machine check */ #define EXCP_ITLB_MISS 6 /* itlb miss / instruction page fault */ #define EXCP_IMP 7 /* instruction memory protection trap */ #define EXCP_ILL 8 /* illegal instruction trap */ #define EXCP_BREAK 9 /* break instruction */ #define EXCP_PRIV_OPR 10 /* privileged operation trap */ #define EXCP_PRIV_REG 11 /* privileged register trap */ #define EXCP_OVERFLOW 12 /* signed overflow trap */ #define EXCP_COND 13 /* trap-on-condition */ #define EXCP_ASSIST 14 /* assist exception trap */ #define EXCP_DTLB_MISS 15 /* dtlb miss / data page fault */ #define EXCP_NA_ITLB_MISS 16 /* non-access itlb miss */ #define EXCP_NA_DTLB_MISS 17 /* non-access dtlb miss */ #define EXCP_DMP 18 /* data memory protection trap */ #define EXCP_DMB 19 /* data memory break trap */ #define EXCP_TLB_DIRTY 20 /* tlb dirty bit trap */ #define EXCP_PAGE_REF 21 /* page reference trap */ #define EXCP_ASSIST_EMU 22 /* assist emulation trap */ #define EXCP_HPT 23 /* high-privilege transfer trap */ #define EXCP_LPT 24 /* low-privilege transfer trap */ #define EXCP_TB 25 /* taken branch trap */ #define EXCP_DMAR 26 /* data memory access rights trap */ #define EXCP_DMPI 27 /* data memory protection id trap */ #define EXCP_UNALIGN 28 /* unaligned data reference trap */ #define EXCP_PER_INTERRUPT 29 /* performance monitor interrupt */ /* Exceptions for linux-user emulation. */ #define EXCP_SYSCALL 30 #define EXCP_SYSCALL_LWS 31 /* Taken from Linux kernel: arch/parisc/include/asm/psw.h */ #define PSW_I 0x00000001 #define PSW_D 0x00000002 #define PSW_P 0x00000004 #define PSW_Q 0x00000008 #define PSW_R 0x00000010 #define PSW_F 0x00000020 #define PSW_G 0x00000040 /* PA1.x only */ #define PSW_O 0x00000080 /* PA2.0 only */ #define PSW_CB 0x0000ff00 #define PSW_M 0x00010000 #define PSW_V 0x00020000 #define PSW_C 0x00040000 #define PSW_B 0x00080000 #define PSW_X 0x00100000 #define PSW_N 0x00200000 #define PSW_L 0x00400000 #define PSW_H 0x00800000 #define PSW_T 0x01000000 #define PSW_S 0x02000000 #define PSW_E 0x04000000 #ifdef TARGET_HPPA64 #define PSW_W 0x08000000 /* PA2.0 only */ #else #define PSW_W 0 #endif #define PSW_Z 0x40000000 /* PA1.x only */ #define PSW_Y 0x80000000 /* PA1.x only */ #define PSW_SM (PSW_W | PSW_E | PSW_O | PSW_G | PSW_F \ | PSW_R | PSW_Q | PSW_P | PSW_D | PSW_I) /* ssm/rsm instructions number PSW_W and PSW_E differently */ #define PSW_SM_I PSW_I /* Enable External Interrupts */ #define PSW_SM_D PSW_D #define PSW_SM_P PSW_P #define PSW_SM_Q PSW_Q /* Enable Interrupt State Collection */ #define PSW_SM_R PSW_R /* Enable Recover Counter Trap */ #ifdef TARGET_HPPA64 #define PSW_SM_E 0x100 #define PSW_SM_W 0x200 /* PA2.0 only : Enable Wide Mode */ #else #define PSW_SM_E 0 #define PSW_SM_W 0 #endif #define CR_RC 0 #define CR_SCRCCR 10 #define CR_SAR 11 #define CR_IVA 14 #define CR_EIEM 15 #define CR_IT 16 #define CR_IIASQ 17 #define CR_IIAOQ 18 #define CR_IIR 19 #define CR_ISR 20 #define CR_IOR 21 #define CR_IPSW 22 #define CR_EIRR 23 typedef struct CPUHPPAState CPUHPPAState; #if TARGET_REGISTER_BITS == 32 typedef uint32_t target_ureg; typedef int32_t target_sreg; #define TREG_FMT_lx "%08"PRIx32 #define TREG_FMT_ld "%"PRId32 #else typedef uint64_t target_ureg; typedef int64_t target_sreg; #define TREG_FMT_lx "%016"PRIx64 #define TREG_FMT_ld "%"PRId64 #endif typedef struct { uint64_t va_b; uint64_t va_e; target_ureg pa; unsigned u : 1; unsigned t : 1; unsigned d : 1; unsigned b : 1; unsigned page_size : 4; unsigned ar_type : 3; unsigned ar_pl1 : 2; unsigned ar_pl2 : 2; unsigned entry_valid : 1; unsigned access_id : 16; } hppa_tlb_entry; struct CPUHPPAState { target_ureg gr[32]; uint64_t fr[32]; uint64_t sr[8]; /* stored shifted into place for gva */ target_ureg psw; /* All psw bits except the following: */ target_ureg psw_n; /* boolean */ target_sreg psw_v; /* in most significant bit */ /* Splitting the carry-borrow field into the MSB and "the rest", allows * for "the rest" to be deleted when it is unused, but the MSB is in use. * In addition, it's easier to compute carry-in for bit B+1 than it is to * compute carry-out for bit B (3 vs 4 insns for addition, assuming the * host has the appropriate add-with-carry insn to compute the msb). * Therefore the carry bits are stored as: cb_msb : cb & 0x11111110. */ target_ureg psw_cb; /* in least significant bit of next nibble */ target_ureg psw_cb_msb; /* boolean */ target_ureg iaoq_f; /* front */ target_ureg iaoq_b; /* back, aka next instruction */ uint64_t iasq_f; uint64_t iasq_b; uint32_t fr0_shadow; /* flags, c, ca/cq, rm, d, enables */ float_status fp_status; target_ureg cr[32]; /* control registers */ target_ureg cr_back[2]; /* back of cr17/cr18 */ target_ureg shadow[7]; /* shadow registers */ /* Those resources are used only in QEMU core */ CPU_COMMON /* ??? The number of entries isn't specified by the architecture. */ /* ??? Implement a unified itlb/dtlb for the moment. */ /* ??? We should use a more intelligent data structure. */ hppa_tlb_entry tlb[256]; uint32_t tlb_last; }; /** * HPPACPU: * @env: #CPUHPPAState * * An HPPA CPU. */ struct HPPACPU { /*< private >*/ CPUState parent_obj; /*< public >*/ CPUHPPAState env; QEMUTimer *alarm_timer; }; static inline HPPACPU *hppa_env_get_cpu(CPUHPPAState *env) { return container_of(env, HPPACPU, env); } #define ENV_GET_CPU(e) CPU(hppa_env_get_cpu(e)) #define ENV_OFFSET offsetof(HPPACPU, env) #include "exec/cpu-all.h" static inline int cpu_mmu_index(CPUHPPAState *env, bool ifetch) { #ifdef CONFIG_USER_ONLY return MMU_USER_IDX; #else if (env->psw & (ifetch ? PSW_C : PSW_D)) { return env->iaoq_f & 3; } return MMU_PHYS_IDX; /* mmu disabled */ #endif } void hppa_translate_init(void); #define CPU_RESOLVING_TYPE TYPE_HPPA_CPU void hppa_cpu_list(FILE *f, fprintf_function cpu_fprintf); static inline target_ulong hppa_form_gva_psw(target_ureg psw, uint64_t spc, target_ureg off) { #ifdef CONFIG_USER_ONLY return off; #else off &= (psw & PSW_W ? 0x3fffffffffffffffull : 0xffffffffull); return spc | off; #endif } static inline target_ulong hppa_form_gva(CPUHPPAState *env, uint64_t spc, target_ureg off) { return hppa_form_gva_psw(env->psw, spc, off); } /* Since PSW_{I,CB} will never need to be in tb->flags, reuse them. * TB_FLAG_SR_SAME indicates that SR4 through SR7 all contain the * same value. */ #define TB_FLAG_SR_SAME PSW_I #define TB_FLAG_PRIV_SHIFT 8 static inline void cpu_get_tb_cpu_state(CPUHPPAState *env, target_ulong *pc, target_ulong *cs_base, uint32_t *pflags) { uint32_t flags = env->psw_n * PSW_N; /* TB lookup assumes that PC contains the complete virtual address. If we leave space+offset separate, we'll get ITLB misses to an incomplete virtual address. This also means that we must separate out current cpu priviledge from the low bits of IAOQ_F. */ #ifdef CONFIG_USER_ONLY *pc = env->iaoq_f & -4; *cs_base = env->iaoq_b & -4; #else /* ??? E, T, H, L, B, P bits need to be here, when implemented. */ flags |= env->psw & (PSW_W | PSW_C | PSW_D); flags |= (env->iaoq_f & 3) << TB_FLAG_PRIV_SHIFT; *pc = (env->psw & PSW_C ? hppa_form_gva_psw(env->psw, env->iasq_f, env->iaoq_f & -4) : env->iaoq_f & -4); *cs_base = env->iasq_f; /* Insert a difference between IAOQ_B and IAOQ_F within the otherwise zero low 32-bits of CS_BASE. This will succeed for all direct branches, which is the primary case we care about -- using goto_tb within a page. Failure is indicated by a zero difference. */ if (env->iasq_f == env->iasq_b) { target_sreg diff = env->iaoq_b - env->iaoq_f; if (TARGET_REGISTER_BITS == 32 || diff == (int32_t)diff) { *cs_base |= (uint32_t)diff; } } if ((env->sr[4] == env->sr[5]) & (env->sr[4] == env->sr[6]) & (env->sr[4] == env->sr[7])) { flags |= TB_FLAG_SR_SAME; } #endif *pflags = flags; } target_ureg cpu_hppa_get_psw(CPUHPPAState *env); void cpu_hppa_put_psw(CPUHPPAState *env, target_ureg); void cpu_hppa_loaded_fr0(CPUHPPAState *env); #define cpu_signal_handler cpu_hppa_signal_handler int cpu_hppa_signal_handler(int host_signum, void *pinfo, void *puc); hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr); int hppa_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); int hppa_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); void hppa_cpu_do_interrupt(CPUState *cpu); bool hppa_cpu_exec_interrupt(CPUState *cpu, int int_req); void hppa_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function, int); #ifdef CONFIG_USER_ONLY int hppa_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int size, int rw, int midx); #else int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx, int type, hwaddr *pphys, int *pprot); extern const MemoryRegionOps hppa_io_eir_ops; extern const struct VMStateDescription vmstate_hppa_cpu; void hppa_cpu_alarm_timer(void *); int hppa_artype_for_page(CPUHPPAState *env, target_ulong vaddr); #endif void QEMU_NORETURN hppa_dynamic_excp(CPUHPPAState *env, int excp, uintptr_t ra); #endif /* HPPA_CPU_H */