/* * QEMU AVR CPU helpers * * Copyright (c) 2016-2020 Michael Rolnik * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see * <http://www.gnu.org/licenses/lgpl-2.1.html> */ #include "qemu/osdep.h" #include "qemu/log.h" #include "cpu.h" #include "hw/core/tcg-cpu-ops.h" #include "exec/exec-all.h" #include "exec/address-spaces.h" #include "exec/helper-proto.h" bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request) { AVRCPU *cpu = AVR_CPU(cs); CPUAVRState *env = &cpu->env; /* * We cannot separate a skip from the next instruction, * as the skip would not be preserved across the interrupt. * Separating the two insn normally only happens at page boundaries. */ if (env->skip) { return false; } if (interrupt_request & CPU_INTERRUPT_RESET) { if (cpu_interrupts_enabled(env)) { cs->exception_index = EXCP_RESET; avr_cpu_do_interrupt(cs); cs->interrupt_request &= ~CPU_INTERRUPT_RESET; return true; } } if (interrupt_request & CPU_INTERRUPT_HARD) { if (cpu_interrupts_enabled(env) && env->intsrc != 0) { int index = ctz32(env->intsrc); cs->exception_index = EXCP_INT(index); avr_cpu_do_interrupt(cs); env->intsrc &= env->intsrc - 1; /* clear the interrupt */ if (!env->intsrc) { cs->interrupt_request &= ~CPU_INTERRUPT_HARD; } return true; } } return false; } void avr_cpu_do_interrupt(CPUState *cs) { AVRCPU *cpu = AVR_CPU(cs); CPUAVRState *env = &cpu->env; uint32_t ret = env->pc_w; int vector = 0; int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1; int base = 0; if (cs->exception_index == EXCP_RESET) { vector = 0; } else if (env->intsrc != 0) { vector = ctz32(env->intsrc) + 1; } if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) { cpu_stb_data(env, env->sp--, (ret & 0x0000ff)); cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8); cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16); } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) { cpu_stb_data(env, env->sp--, (ret & 0x0000ff)); cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8); } else { cpu_stb_data(env, env->sp--, (ret & 0x0000ff)); } env->pc_w = base + vector * size; env->sregI = 0; /* clear Global Interrupt Flag */ cs->exception_index = -1; } hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) { return addr; /* I assume 1:1 address correspondence */ } bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size, MMUAccessType access_type, int mmu_idx, bool probe, uintptr_t retaddr) { int prot, page_size = TARGET_PAGE_SIZE; uint32_t paddr; address &= TARGET_PAGE_MASK; if (mmu_idx == MMU_CODE_IDX) { /* Access to code in flash. */ paddr = OFFSET_CODE + address; prot = PAGE_READ | PAGE_EXEC; if (paddr >= OFFSET_DATA) { /* * This should not be possible via any architectural operations. * There is certainly not an exception that we can deliver. * Accept probing that might come from generic code. */ if (probe) { return false; } error_report("execution left flash memory"); abort(); } } else { /* Access to memory. */ paddr = OFFSET_DATA + address; prot = PAGE_READ | PAGE_WRITE; if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) { /* * Access to CPU registers, exit and rebuilt this TB to use * full access in case it touches specially handled registers * like SREG or SP. For probing, set page_size = 1, in order * to force tlb_fill to be called for the next access. */ if (probe) { page_size = 1; } else { AVRCPU *cpu = AVR_CPU(cs); CPUAVRState *env = &cpu->env; env->fullacc = 1; cpu_loop_exit_restore(cs, retaddr); } } } tlb_set_page(cs, address, paddr, prot, mmu_idx, page_size); return true; } /* * helpers */ void helper_sleep(CPUAVRState *env) { CPUState *cs = env_cpu(env); cs->exception_index = EXCP_HLT; cpu_loop_exit(cs); } void helper_unsupported(CPUAVRState *env) { CPUState *cs = env_cpu(env); /* * I count not find what happens on the real platform, so * it's EXCP_DEBUG for meanwhile */ cs->exception_index = EXCP_DEBUG; if (qemu_loglevel_mask(LOG_UNIMP)) { qemu_log("UNSUPPORTED\n"); cpu_dump_state(cs, stderr, 0); } cpu_loop_exit(cs); } void helper_debug(CPUAVRState *env) { CPUState *cs = env_cpu(env); cs->exception_index = EXCP_DEBUG; cpu_loop_exit(cs); } void helper_break(CPUAVRState *env) { CPUState *cs = env_cpu(env); cs->exception_index = EXCP_DEBUG; cpu_loop_exit(cs); } void helper_wdr(CPUAVRState *env) { qemu_log_mask(LOG_UNIMP, "WDG reset (not implemented)\n"); } /* * This function implements IN instruction * * It does the following * a. if an IO register belongs to CPU, its value is read and returned * b. otherwise io address is translated to mem address and physical memory * is read. * c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation * */ target_ulong helper_inb(CPUAVRState *env, uint32_t port) { target_ulong data = 0; switch (port) { case 0x38: /* RAMPD */ data = 0xff & (env->rampD >> 16); break; case 0x39: /* RAMPX */ data = 0xff & (env->rampX >> 16); break; case 0x3a: /* RAMPY */ data = 0xff & (env->rampY >> 16); break; case 0x3b: /* RAMPZ */ data = 0xff & (env->rampZ >> 16); break; case 0x3c: /* EIND */ data = 0xff & (env->eind >> 16); break; case 0x3d: /* SPL */ data = env->sp & 0x00ff; break; case 0x3e: /* SPH */ data = env->sp >> 8; break; case 0x3f: /* SREG */ data = cpu_get_sreg(env); break; default: /* not a special register, pass to normal memory access */ data = address_space_ldub(&address_space_memory, OFFSET_IO_REGISTERS + port, MEMTXATTRS_UNSPECIFIED, NULL); } return data; } /* * This function implements OUT instruction * * It does the following * a. if an IO register belongs to CPU, its value is written into the register * b. otherwise io address is translated to mem address and physical memory * is written. * c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation * */ void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data) { data &= 0x000000ff; switch (port) { case 0x38: /* RAMPD */ if (avr_feature(env, AVR_FEATURE_RAMPD)) { env->rampD = (data & 0xff) << 16; } break; case 0x39: /* RAMPX */ if (avr_feature(env, AVR_FEATURE_RAMPX)) { env->rampX = (data & 0xff) << 16; } break; case 0x3a: /* RAMPY */ if (avr_feature(env, AVR_FEATURE_RAMPY)) { env->rampY = (data & 0xff) << 16; } break; case 0x3b: /* RAMPZ */ if (avr_feature(env, AVR_FEATURE_RAMPZ)) { env->rampZ = (data & 0xff) << 16; } break; case 0x3c: /* EIDN */ env->eind = (data & 0xff) << 16; break; case 0x3d: /* SPL */ env->sp = (env->sp & 0xff00) | (data); break; case 0x3e: /* SPH */ if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) { env->sp = (env->sp & 0x00ff) | (data << 8); } break; case 0x3f: /* SREG */ cpu_set_sreg(env, data); break; default: /* not a special register, pass to normal memory access */ address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port, data, MEMTXATTRS_UNSPECIFIED, NULL); } } /* * this function implements LD instruction when there is a possibility to read * from a CPU register */ target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr) { uint8_t data; env->fullacc = false; if (addr < NUMBER_OF_CPU_REGISTERS) { /* CPU registers */ data = env->r[addr]; } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) { /* IO registers */ data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS); } else { /* memory */ data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr, MEMTXATTRS_UNSPECIFIED, NULL); } return data; } /* * this function implements ST instruction when there is a possibility to write * into a CPU register */ void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr) { env->fullacc = false; /* Following logic assumes this: */ assert(OFFSET_CPU_REGISTERS == OFFSET_DATA); assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS + NUMBER_OF_CPU_REGISTERS); if (addr < NUMBER_OF_CPU_REGISTERS) { /* CPU registers */ env->r[addr] = data; } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) { /* IO registers */ helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data); } else { /* memory */ address_space_stb(&address_space_memory, OFFSET_DATA + addr, data, MEMTXATTRS_UNSPECIFIED, NULL); } }