/* * AArch64 SVE translation * * Copyright (c) 2018 Linaro, Ltd * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/exec-all.h" #include "tcg-op.h" #include "tcg-op-gvec.h" #include "tcg-gvec-desc.h" #include "qemu/log.h" #include "arm_ldst.h" #include "translate.h" #include "internals.h" #include "exec/helper-proto.h" #include "exec/helper-gen.h" #include "exec/log.h" #include "trace-tcg.h" #include "translate-a64.h" /* * Helpers for extracting complex instruction fields. */ /* See e.g. ASR (immediate, predicated). * Returns -1 for unallocated encoding; diagnose later. */ static int tszimm_esz(int x) { x >>= 3; /* discard imm3 */ return 31 - clz32(x); } static int tszimm_shr(int x) { return (16 << tszimm_esz(x)) - x; } /* See e.g. LSL (immediate, predicated). */ static int tszimm_shl(int x) { return x - (8 << tszimm_esz(x)); } static inline int plus1(int x) { return x + 1; } /* The SH bit is in bit 8. Extract the low 8 and shift. */ static inline int expand_imm_sh8s(int x) { return (int8_t)x << (x & 0x100 ? 8 : 0); } /* * Include the generated decoder. */ #include "decode-sve.inc.c" /* * Implement all of the translator functions referenced by the decoder. */ /* Return the offset info CPUARMState of the predicate vector register Pn. * Note for this purpose, FFR is P16. */ static inline int pred_full_reg_offset(DisasContext *s, int regno) { return offsetof(CPUARMState, vfp.pregs[regno]); } /* Return the byte size of the whole predicate register, VL / 64. */ static inline int pred_full_reg_size(DisasContext *s) { return s->sve_len >> 3; } /* Round up the size of a register to a size allowed by * the tcg vector infrastructure. Any operation which uses this * size may assume that the bits above pred_full_reg_size are zero, * and must leave them the same way. * * Note that this is not needed for the vector registers as they * are always properly sized for tcg vectors. */ static int size_for_gvec(int size) { if (size <= 8) { return 8; } else { return QEMU_ALIGN_UP(size, 16); } } static int pred_gvec_reg_size(DisasContext *s) { return size_for_gvec(pred_full_reg_size(s)); } /* Invoke a vector expander on two Zregs. */ static bool do_vector2_z(DisasContext *s, GVecGen2Fn *gvec_fn, int esz, int rd, int rn) { if (sve_access_check(s)) { unsigned vsz = vec_full_reg_size(s); gvec_fn(esz, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), vsz, vsz); } return true; } /* Invoke a vector expander on three Zregs. */ static bool do_vector3_z(DisasContext *s, GVecGen3Fn *gvec_fn, int esz, int rd, int rn, int rm) { if (sve_access_check(s)) { unsigned vsz = vec_full_reg_size(s); gvec_fn(esz, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), vec_full_reg_offset(s, rm), vsz, vsz); } return true; } /* Invoke a vector move on two Zregs. */ static bool do_mov_z(DisasContext *s, int rd, int rn) { return do_vector2_z(s, tcg_gen_gvec_mov, 0, rd, rn); } /* Initialize a Zreg with replications of a 64-bit immediate. */ static void do_dupi_z(DisasContext *s, int rd, uint64_t word) { unsigned vsz = vec_full_reg_size(s); tcg_gen_gvec_dup64i(vec_full_reg_offset(s, rd), vsz, vsz, word); } /* Invoke a vector expander on two Pregs. */ static bool do_vector2_p(DisasContext *s, GVecGen2Fn *gvec_fn, int esz, int rd, int rn) { if (sve_access_check(s)) { unsigned psz = pred_gvec_reg_size(s); gvec_fn(esz, pred_full_reg_offset(s, rd), pred_full_reg_offset(s, rn), psz, psz); } return true; } /* Invoke a vector expander on three Pregs. */ static bool do_vector3_p(DisasContext *s, GVecGen3Fn *gvec_fn, int esz, int rd, int rn, int rm) { if (sve_access_check(s)) { unsigned psz = pred_gvec_reg_size(s); gvec_fn(esz, pred_full_reg_offset(s, rd), pred_full_reg_offset(s, rn), pred_full_reg_offset(s, rm), psz, psz); } return true; } /* Invoke a vector operation on four Pregs. */ static bool do_vecop4_p(DisasContext *s, const GVecGen4 *gvec_op, int rd, int rn, int rm, int rg) { if (sve_access_check(s)) { unsigned psz = pred_gvec_reg_size(s); tcg_gen_gvec_4(pred_full_reg_offset(s, rd), pred_full_reg_offset(s, rn), pred_full_reg_offset(s, rm), pred_full_reg_offset(s, rg), psz, psz, gvec_op); } return true; } /* Invoke a vector move on two Pregs. */ static bool do_mov_p(DisasContext *s, int rd, int rn) { return do_vector2_p(s, tcg_gen_gvec_mov, 0, rd, rn); } /* Set the cpu flags as per a return from an SVE helper. */ static void do_pred_flags(TCGv_i32 t) { tcg_gen_mov_i32(cpu_NF, t); tcg_gen_andi_i32(cpu_ZF, t, 2); tcg_gen_andi_i32(cpu_CF, t, 1); tcg_gen_movi_i32(cpu_VF, 0); } /* Subroutines computing the ARM PredTest psuedofunction. */ static void do_predtest1(TCGv_i64 d, TCGv_i64 g) { TCGv_i32 t = tcg_temp_new_i32(); gen_helper_sve_predtest1(t, d, g); do_pred_flags(t); tcg_temp_free_i32(t); } static void do_predtest(DisasContext *s, int dofs, int gofs, int words) { TCGv_ptr dptr = tcg_temp_new_ptr(); TCGv_ptr gptr = tcg_temp_new_ptr(); TCGv_i32 t; tcg_gen_addi_ptr(dptr, cpu_env, dofs); tcg_gen_addi_ptr(gptr, cpu_env, gofs); t = tcg_const_i32(words); gen_helper_sve_predtest(t, dptr, gptr, t); tcg_temp_free_ptr(dptr); tcg_temp_free_ptr(gptr); do_pred_flags(t); tcg_temp_free_i32(t); } /* For each element size, the bits within a predicate word that are active. */ const uint64_t pred_esz_masks[4] = { 0xffffffffffffffffull, 0x5555555555555555ull, 0x1111111111111111ull, 0x0101010101010101ull }; /* *** SVE Logical - Unpredicated Group */ static bool trans_AND_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn) { return do_vector3_z(s, tcg_gen_gvec_and, 0, a->rd, a->rn, a->rm); } static bool trans_ORR_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn) { if (a->rn == a->rm) { /* MOV */ return do_mov_z(s, a->rd, a->rn); } else { return do_vector3_z(s, tcg_gen_gvec_or, 0, a->rd, a->rn, a->rm); } } static bool trans_EOR_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn) { return do_vector3_z(s, tcg_gen_gvec_xor, 0, a->rd, a->rn, a->rm); } static bool trans_BIC_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn) { return do_vector3_z(s, tcg_gen_gvec_andc, 0, a->rd, a->rn, a->rm); } /* *** SVE Integer Arithmetic - Unpredicated Group */ static bool trans_ADD_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn) { return do_vector3_z(s, tcg_gen_gvec_add, a->esz, a->rd, a->rn, a->rm); } static bool trans_SUB_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn) { return do_vector3_z(s, tcg_gen_gvec_sub, a->esz, a->rd, a->rn, a->rm); } static bool trans_SQADD_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn) { return do_vector3_z(s, tcg_gen_gvec_ssadd, a->esz, a->rd, a->rn, a->rm); } static bool trans_SQSUB_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn) { return do_vector3_z(s, tcg_gen_gvec_sssub, a->esz, a->rd, a->rn, a->rm); } static bool trans_UQADD_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn) { return do_vector3_z(s, tcg_gen_gvec_usadd, a->esz, a->rd, a->rn, a->rm); } static bool trans_UQSUB_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn) { return do_vector3_z(s, tcg_gen_gvec_ussub, a->esz, a->rd, a->rn, a->rm); } /* *** SVE Integer Arithmetic - Binary Predicated Group */ static bool do_zpzz_ool(DisasContext *s, arg_rprr_esz *a, gen_helper_gvec_4 *fn) { unsigned vsz = vec_full_reg_size(s); if (fn == NULL) { return false; } if (sve_access_check(s)) { tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd), vec_full_reg_offset(s, a->rn), vec_full_reg_offset(s, a->rm), pred_full_reg_offset(s, a->pg), vsz, vsz, 0, fn); } return true; } #define DO_ZPZZ(NAME, name) \ static bool trans_##NAME##_zpzz(DisasContext *s, arg_rprr_esz *a, \ uint32_t insn) \ { \ static gen_helper_gvec_4 * const fns[4] = { \ gen_helper_sve_##name##_zpzz_b, gen_helper_sve_##name##_zpzz_h, \ gen_helper_sve_##name##_zpzz_s, gen_helper_sve_##name##_zpzz_d, \ }; \ return do_zpzz_ool(s, a, fns[a->esz]); \ } DO_ZPZZ(AND, and) DO_ZPZZ(EOR, eor) DO_ZPZZ(ORR, orr) DO_ZPZZ(BIC, bic) DO_ZPZZ(ADD, add) DO_ZPZZ(SUB, sub) DO_ZPZZ(SMAX, smax) DO_ZPZZ(UMAX, umax) DO_ZPZZ(SMIN, smin) DO_ZPZZ(UMIN, umin) DO_ZPZZ(SABD, sabd) DO_ZPZZ(UABD, uabd) DO_ZPZZ(MUL, mul) DO_ZPZZ(SMULH, smulh) DO_ZPZZ(UMULH, umulh) DO_ZPZZ(ASR, asr) DO_ZPZZ(LSR, lsr) DO_ZPZZ(LSL, lsl) static bool trans_SDIV_zpzz(DisasContext *s, arg_rprr_esz *a, uint32_t insn) { static gen_helper_gvec_4 * const fns[4] = { NULL, NULL, gen_helper_sve_sdiv_zpzz_s, gen_helper_sve_sdiv_zpzz_d }; return do_zpzz_ool(s, a, fns[a->esz]); } static bool trans_UDIV_zpzz(DisasContext *s, arg_rprr_esz *a, uint32_t insn) { static gen_helper_gvec_4 * const fns[4] = { NULL, NULL, gen_helper_sve_udiv_zpzz_s, gen_helper_sve_udiv_zpzz_d }; return do_zpzz_ool(s, a, fns[a->esz]); } #undef DO_ZPZZ /* *** SVE Integer Arithmetic - Unary Predicated Group */ static bool do_zpz_ool(DisasContext *s, arg_rpr_esz *a, gen_helper_gvec_3 *fn) { if (fn == NULL) { return false; } if (sve_access_check(s)) { unsigned vsz = vec_full_reg_size(s); tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd), vec_full_reg_offset(s, a->rn), pred_full_reg_offset(s, a->pg), vsz, vsz, 0, fn); } return true; } #define DO_ZPZ(NAME, name) \ static bool trans_##NAME(DisasContext *s, arg_rpr_esz *a, uint32_t insn) \ { \ static gen_helper_gvec_3 * const fns[4] = { \ gen_helper_sve_##name##_b, gen_helper_sve_##name##_h, \ gen_helper_sve_##name##_s, gen_helper_sve_##name##_d, \ }; \ return do_zpz_ool(s, a, fns[a->esz]); \ } DO_ZPZ(CLS, cls) DO_ZPZ(CLZ, clz) DO_ZPZ(CNT_zpz, cnt_zpz) DO_ZPZ(CNOT, cnot) DO_ZPZ(NOT_zpz, not_zpz) DO_ZPZ(ABS, abs) DO_ZPZ(NEG, neg) static bool trans_FABS(DisasContext *s, arg_rpr_esz *a, uint32_t insn) { static gen_helper_gvec_3 * const fns[4] = { NULL, gen_helper_sve_fabs_h, gen_helper_sve_fabs_s, gen_helper_sve_fabs_d }; return do_zpz_ool(s, a, fns[a->esz]); } static bool trans_FNEG(DisasContext *s, arg_rpr_esz *a, uint32_t insn) { static gen_helper_gvec_3 * const fns[4] = { NULL, gen_helper_sve_fneg_h, gen_helper_sve_fneg_s, gen_helper_sve_fneg_d }; return do_zpz_ool(s, a, fns[a->esz]); } static bool trans_SXTB(DisasContext *s, arg_rpr_esz *a, uint32_t insn) { static gen_helper_gvec_3 * const fns[4] = { NULL, gen_helper_sve_sxtb_h, gen_helper_sve_sxtb_s, gen_helper_sve_sxtb_d }; return do_zpz_ool(s, a, fns[a->esz]); } static bool trans_UXTB(DisasContext *s, arg_rpr_esz *a, uint32_t insn) { static gen_helper_gvec_3 * const fns[4] = { NULL, gen_helper_sve_uxtb_h, gen_helper_sve_uxtb_s, gen_helper_sve_uxtb_d }; return do_zpz_ool(s, a, fns[a->esz]); } static bool trans_SXTH(DisasContext *s, arg_rpr_esz *a, uint32_t insn) { static gen_helper_gvec_3 * const fns[4] = { NULL, NULL, gen_helper_sve_sxth_s, gen_helper_sve_sxth_d }; return do_zpz_ool(s, a, fns[a->esz]); } static bool trans_UXTH(DisasContext *s, arg_rpr_esz *a, uint32_t insn) { static gen_helper_gvec_3 * const fns[4] = { NULL, NULL, gen_helper_sve_uxth_s, gen_helper_sve_uxth_d }; return do_zpz_ool(s, a, fns[a->esz]); } static bool trans_SXTW(DisasContext *s, arg_rpr_esz *a, uint32_t insn) { return do_zpz_ool(s, a, a->esz == 3 ? gen_helper_sve_sxtw_d : NULL); } static bool trans_UXTW(DisasContext *s, arg_rpr_esz *a, uint32_t insn) { return do_zpz_ool(s, a, a->esz == 3 ? gen_helper_sve_uxtw_d : NULL); } #undef DO_ZPZ /* *** SVE Integer Reduction Group */ typedef void gen_helper_gvec_reduc(TCGv_i64, TCGv_ptr, TCGv_ptr, TCGv_i32); static bool do_vpz_ool(DisasContext *s, arg_rpr_esz *a, gen_helper_gvec_reduc *fn) { unsigned vsz = vec_full_reg_size(s); TCGv_ptr t_zn, t_pg; TCGv_i32 desc; TCGv_i64 temp; if (fn == NULL) { return false; } if (!sve_access_check(s)) { return true; } desc = tcg_const_i32(simd_desc(vsz, vsz, 0)); temp = tcg_temp_new_i64(); t_zn = tcg_temp_new_ptr(); t_pg = tcg_temp_new_ptr(); tcg_gen_addi_ptr(t_zn, cpu_env, vec_full_reg_offset(s, a->rn)); tcg_gen_addi_ptr(t_pg, cpu_env, pred_full_reg_offset(s, a->pg)); fn(temp, t_zn, t_pg, desc); tcg_temp_free_ptr(t_zn); tcg_temp_free_ptr(t_pg); tcg_temp_free_i32(desc); write_fp_dreg(s, a->rd, temp); tcg_temp_free_i64(temp); return true; } #define DO_VPZ(NAME, name) \ static bool trans_##NAME(DisasContext *s, arg_rpr_esz *a, uint32_t insn) \ { \ static gen_helper_gvec_reduc * const fns[4] = { \ gen_helper_sve_##name##_b, gen_helper_sve_##name##_h, \ gen_helper_sve_##name##_s, gen_helper_sve_##name##_d, \ }; \ return do_vpz_ool(s, a, fns[a->esz]); \ } DO_VPZ(ORV, orv) DO_VPZ(ANDV, andv) DO_VPZ(EORV, eorv) DO_VPZ(UADDV, uaddv) DO_VPZ(SMAXV, smaxv) DO_VPZ(UMAXV, umaxv) DO_VPZ(SMINV, sminv) DO_VPZ(UMINV, uminv) static bool trans_SADDV(DisasContext *s, arg_rpr_esz *a, uint32_t insn) { static gen_helper_gvec_reduc * const fns[4] = { gen_helper_sve_saddv_b, gen_helper_sve_saddv_h, gen_helper_sve_saddv_s, NULL }; return do_vpz_ool(s, a, fns[a->esz]); } #undef DO_VPZ /* *** SVE Shift by Immediate - Predicated Group */ /* Store zero into every active element of Zd. We will use this for two * and three-operand predicated instructions for which logic dictates a * zero result. */ static bool do_clr_zp(DisasContext *s, int rd, int pg, int esz) { static gen_helper_gvec_2 * const fns[4] = { gen_helper_sve_clr_b, gen_helper_sve_clr_h, gen_helper_sve_clr_s, gen_helper_sve_clr_d, }; if (sve_access_check(s)) { unsigned vsz = vec_full_reg_size(s); tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), pred_full_reg_offset(s, pg), vsz, vsz, 0, fns[esz]); } return true; } static bool do_zpzi_ool(DisasContext *s, arg_rpri_esz *a, gen_helper_gvec_3 *fn) { if (sve_access_check(s)) { unsigned vsz = vec_full_reg_size(s); tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd), vec_full_reg_offset(s, a->rn), pred_full_reg_offset(s, a->pg), vsz, vsz, a->imm, fn); } return true; } static bool trans_ASR_zpzi(DisasContext *s, arg_rpri_esz *a, uint32_t insn) { static gen_helper_gvec_3 * const fns[4] = { gen_helper_sve_asr_zpzi_b, gen_helper_sve_asr_zpzi_h, gen_helper_sve_asr_zpzi_s, gen_helper_sve_asr_zpzi_d, }; if (a->esz < 0) { /* Invalid tsz encoding -- see tszimm_esz. */ return false; } /* Shift by element size is architecturally valid. For arithmetic right-shift, it's the same as by one less. */ a->imm = MIN(a->imm, (8 << a->esz) - 1); return do_zpzi_ool(s, a, fns[a->esz]); } static bool trans_LSR_zpzi(DisasContext *s, arg_rpri_esz *a, uint32_t insn) { static gen_helper_gvec_3 * const fns[4] = { gen_helper_sve_lsr_zpzi_b, gen_helper_sve_lsr_zpzi_h, gen_helper_sve_lsr_zpzi_s, gen_helper_sve_lsr_zpzi_d, }; if (a->esz < 0) { return false; } /* Shift by element size is architecturally valid. For logical shifts, it is a zeroing operation. */ if (a->imm >= (8 << a->esz)) { return do_clr_zp(s, a->rd, a->pg, a->esz); } else { return do_zpzi_ool(s, a, fns[a->esz]); } } static bool trans_LSL_zpzi(DisasContext *s, arg_rpri_esz *a, uint32_t insn) { static gen_helper_gvec_3 * const fns[4] = { gen_helper_sve_lsl_zpzi_b, gen_helper_sve_lsl_zpzi_h, gen_helper_sve_lsl_zpzi_s, gen_helper_sve_lsl_zpzi_d, }; if (a->esz < 0) { return false; } /* Shift by element size is architecturally valid. For logical shifts, it is a zeroing operation. */ if (a->imm >= (8 << a->esz)) { return do_clr_zp(s, a->rd, a->pg, a->esz); } else { return do_zpzi_ool(s, a, fns[a->esz]); } } static bool trans_ASRD(DisasContext *s, arg_rpri_esz *a, uint32_t insn) { static gen_helper_gvec_3 * const fns[4] = { gen_helper_sve_asrd_b, gen_helper_sve_asrd_h, gen_helper_sve_asrd_s, gen_helper_sve_asrd_d, }; if (a->esz < 0) { return false; } /* Shift by element size is architecturally valid. For arithmetic right shift for division, it is a zeroing operation. */ if (a->imm >= (8 << a->esz)) { return do_clr_zp(s, a->rd, a->pg, a->esz); } else { return do_zpzi_ool(s, a, fns[a->esz]); } } /* *** SVE Bitwise Shift - Predicated Group */ #define DO_ZPZW(NAME, name) \ static bool trans_##NAME##_zpzw(DisasContext *s, arg_rprr_esz *a, \ uint32_t insn) \ { \ static gen_helper_gvec_4 * const fns[3] = { \ gen_helper_sve_##name##_zpzw_b, gen_helper_sve_##name##_zpzw_h, \ gen_helper_sve_##name##_zpzw_s, \ }; \ if (a->esz < 0 || a->esz >= 3) { \ return false; \ } \ return do_zpzz_ool(s, a, fns[a->esz]); \ } DO_ZPZW(ASR, asr) DO_ZPZW(LSR, lsr) DO_ZPZW(LSL, lsl) #undef DO_ZPZW /* *** SVE Bitwise Shift - Unpredicated Group */ static bool do_shift_imm(DisasContext *s, arg_rri_esz *a, bool asr, void (*gvec_fn)(unsigned, uint32_t, uint32_t, int64_t, uint32_t, uint32_t)) { if (a->esz < 0) { /* Invalid tsz encoding -- see tszimm_esz. */ return false; } if (sve_access_check(s)) { unsigned vsz = vec_full_reg_size(s); /* Shift by element size is architecturally valid. For arithmetic right-shift, it's the same as by one less. Otherwise it is a zeroing operation. */ if (a->imm >= 8 << a->esz) { if (asr) { a->imm = (8 << a->esz) - 1; } else { do_dupi_z(s, a->rd, 0); return true; } } gvec_fn(a->esz, vec_full_reg_offset(s, a->rd), vec_full_reg_offset(s, a->rn), a->imm, vsz, vsz); } return true; } static bool trans_ASR_zzi(DisasContext *s, arg_rri_esz *a, uint32_t insn) { return do_shift_imm(s, a, true, tcg_gen_gvec_sari); } static bool trans_LSR_zzi(DisasContext *s, arg_rri_esz *a, uint32_t insn) { return do_shift_imm(s, a, false, tcg_gen_gvec_shri); } static bool trans_LSL_zzi(DisasContext *s, arg_rri_esz *a, uint32_t insn) { return do_shift_imm(s, a, false, tcg_gen_gvec_shli); } static bool do_zzw_ool(DisasContext *s, arg_rrr_esz *a, gen_helper_gvec_3 *fn) { if (fn == NULL) { return false; } if (sve_access_check(s)) { unsigned vsz = vec_full_reg_size(s); tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd), vec_full_reg_offset(s, a->rn), vec_full_reg_offset(s, a->rm), vsz, vsz, 0, fn); } return true; } #define DO_ZZW(NAME, name) \ static bool trans_##NAME##_zzw(DisasContext *s, arg_rrr_esz *a, \ uint32_t insn) \ { \ static gen_helper_gvec_3 * const fns[4] = { \ gen_helper_sve_##name##_zzw_b, gen_helper_sve_##name##_zzw_h, \ gen_helper_sve_##name##_zzw_s, NULL \ }; \ return do_zzw_ool(s, a, fns[a->esz]); \ } DO_ZZW(ASR, asr) DO_ZZW(LSR, lsr) DO_ZZW(LSL, lsl) #undef DO_ZZW /* *** SVE Integer Multiply-Add Group */ static bool do_zpzzz_ool(DisasContext *s, arg_rprrr_esz *a, gen_helper_gvec_5 *fn) { if (sve_access_check(s)) { unsigned vsz = vec_full_reg_size(s); tcg_gen_gvec_5_ool(vec_full_reg_offset(s, a->rd), vec_full_reg_offset(s, a->ra), vec_full_reg_offset(s, a->rn), vec_full_reg_offset(s, a->rm), pred_full_reg_offset(s, a->pg), vsz, vsz, 0, fn); } return true; } #define DO_ZPZZZ(NAME, name) \ static bool trans_##NAME(DisasContext *s, arg_rprrr_esz *a, uint32_t insn) \ { \ static gen_helper_gvec_5 * const fns[4] = { \ gen_helper_sve_##name##_b, gen_helper_sve_##name##_h, \ gen_helper_sve_##name##_s, gen_helper_sve_##name##_d, \ }; \ return do_zpzzz_ool(s, a, fns[a->esz]); \ } DO_ZPZZZ(MLA, mla) DO_ZPZZZ(MLS, mls) #undef DO_ZPZZZ /* *** SVE Index Generation Group */ static void do_index(DisasContext *s, int esz, int rd, TCGv_i64 start, TCGv_i64 incr) { unsigned vsz = vec_full_reg_size(s); TCGv_i32 desc = tcg_const_i32(simd_desc(vsz, vsz, 0)); TCGv_ptr t_zd = tcg_temp_new_ptr(); tcg_gen_addi_ptr(t_zd, cpu_env, vec_full_reg_offset(s, rd)); if (esz == 3) { gen_helper_sve_index_d(t_zd, start, incr, desc); } else { typedef void index_fn(TCGv_ptr, TCGv_i32, TCGv_i32, TCGv_i32); static index_fn * const fns[3] = { gen_helper_sve_index_b, gen_helper_sve_index_h, gen_helper_sve_index_s, }; TCGv_i32 s32 = tcg_temp_new_i32(); TCGv_i32 i32 = tcg_temp_new_i32(); tcg_gen_extrl_i64_i32(s32, start); tcg_gen_extrl_i64_i32(i32, incr); fns[esz](t_zd, s32, i32, desc); tcg_temp_free_i32(s32); tcg_temp_free_i32(i32); } tcg_temp_free_ptr(t_zd); tcg_temp_free_i32(desc); } static bool trans_INDEX_ii(DisasContext *s, arg_INDEX_ii *a, uint32_t insn) { if (sve_access_check(s)) { TCGv_i64 start = tcg_const_i64(a->imm1); TCGv_i64 incr = tcg_const_i64(a->imm2); do_index(s, a->esz, a->rd, start, incr); tcg_temp_free_i64(start); tcg_temp_free_i64(incr); } return true; } static bool trans_INDEX_ir(DisasContext *s, arg_INDEX_ir *a, uint32_t insn) { if (sve_access_check(s)) { TCGv_i64 start = tcg_const_i64(a->imm); TCGv_i64 incr = cpu_reg(s, a->rm); do_index(s, a->esz, a->rd, start, incr); tcg_temp_free_i64(start); } return true; } static bool trans_INDEX_ri(DisasContext *s, arg_INDEX_ri *a, uint32_t insn) { if (sve_access_check(s)) { TCGv_i64 start = cpu_reg(s, a->rn); TCGv_i64 incr = tcg_const_i64(a->imm); do_index(s, a->esz, a->rd, start, incr); tcg_temp_free_i64(incr); } return true; } static bool trans_INDEX_rr(DisasContext *s, arg_INDEX_rr *a, uint32_t insn) { if (sve_access_check(s)) { TCGv_i64 start = cpu_reg(s, a->rn); TCGv_i64 incr = cpu_reg(s, a->rm); do_index(s, a->esz, a->rd, start, incr); } return true; } /* *** SVE Stack Allocation Group */ static bool trans_ADDVL(DisasContext *s, arg_ADDVL *a, uint32_t insn) { TCGv_i64 rd = cpu_reg_sp(s, a->rd); TCGv_i64 rn = cpu_reg_sp(s, a->rn); tcg_gen_addi_i64(rd, rn, a->imm * vec_full_reg_size(s)); return true; } static bool trans_ADDPL(DisasContext *s, arg_ADDPL *a, uint32_t insn) { TCGv_i64 rd = cpu_reg_sp(s, a->rd); TCGv_i64 rn = cpu_reg_sp(s, a->rn); tcg_gen_addi_i64(rd, rn, a->imm * pred_full_reg_size(s)); return true; } static bool trans_RDVL(DisasContext *s, arg_RDVL *a, uint32_t insn) { TCGv_i64 reg = cpu_reg(s, a->rd); tcg_gen_movi_i64(reg, a->imm * vec_full_reg_size(s)); return true; } /* *** SVE Compute Vector Address Group */ static bool do_adr(DisasContext *s, arg_rrri *a, gen_helper_gvec_3 *fn) { if (sve_access_check(s)) { unsigned vsz = vec_full_reg_size(s); tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd), vec_full_reg_offset(s, a->rn), vec_full_reg_offset(s, a->rm), vsz, vsz, a->imm, fn); } return true; } static bool trans_ADR_p32(DisasContext *s, arg_rrri *a, uint32_t insn) { return do_adr(s, a, gen_helper_sve_adr_p32); } static bool trans_ADR_p64(DisasContext *s, arg_rrri *a, uint32_t insn) { return do_adr(s, a, gen_helper_sve_adr_p64); } static bool trans_ADR_s32(DisasContext *s, arg_rrri *a, uint32_t insn) { return do_adr(s, a, gen_helper_sve_adr_s32); } static bool trans_ADR_u32(DisasContext *s, arg_rrri *a, uint32_t insn) { return do_adr(s, a, gen_helper_sve_adr_u32); } /* *** SVE Integer Misc - Unpredicated Group */ static bool trans_FEXPA(DisasContext *s, arg_rr_esz *a, uint32_t insn) { static gen_helper_gvec_2 * const fns[4] = { NULL, gen_helper_sve_fexpa_h, gen_helper_sve_fexpa_s, gen_helper_sve_fexpa_d, }; if (a->esz == 0) { return false; } if (sve_access_check(s)) { unsigned vsz = vec_full_reg_size(s); tcg_gen_gvec_2_ool(vec_full_reg_offset(s, a->rd), vec_full_reg_offset(s, a->rn), vsz, vsz, 0, fns[a->esz]); } return true; } static bool trans_FTSSEL(DisasContext *s, arg_rrr_esz *a, uint32_t insn) { static gen_helper_gvec_3 * const fns[4] = { NULL, gen_helper_sve_ftssel_h, gen_helper_sve_ftssel_s, gen_helper_sve_ftssel_d, }; if (a->esz == 0) { return false; } if (sve_access_check(s)) { unsigned vsz = vec_full_reg_size(s); tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd), vec_full_reg_offset(s, a->rn), vec_full_reg_offset(s, a->rm), vsz, vsz, 0, fns[a->esz]); } return true; } /* *** SVE Predicate Logical Operations Group */ static bool do_pppp_flags(DisasContext *s, arg_rprr_s *a, const GVecGen4 *gvec_op) { if (!sve_access_check(s)) { return true; } unsigned psz = pred_gvec_reg_size(s); int dofs = pred_full_reg_offset(s, a->rd); int nofs = pred_full_reg_offset(s, a->rn); int mofs = pred_full_reg_offset(s, a->rm); int gofs = pred_full_reg_offset(s, a->pg); if (psz == 8) { /* Do the operation and the flags generation in temps. */ TCGv_i64 pd = tcg_temp_new_i64(); TCGv_i64 pn = tcg_temp_new_i64(); TCGv_i64 pm = tcg_temp_new_i64(); TCGv_i64 pg = tcg_temp_new_i64(); tcg_gen_ld_i64(pn, cpu_env, nofs); tcg_gen_ld_i64(pm, cpu_env, mofs); tcg_gen_ld_i64(pg, cpu_env, gofs); gvec_op->fni8(pd, pn, pm, pg); tcg_gen_st_i64(pd, cpu_env, dofs); do_predtest1(pd, pg); tcg_temp_free_i64(pd); tcg_temp_free_i64(pn); tcg_temp_free_i64(pm); tcg_temp_free_i64(pg); } else { /* The operation and flags generation is large. The computation * of the flags depends on the original contents of the guarding * predicate. If the destination overwrites the guarding predicate, * then the easiest way to get this right is to save a copy. */ int tofs = gofs; if (a->rd == a->pg) { tofs = offsetof(CPUARMState, vfp.preg_tmp); tcg_gen_gvec_mov(0, tofs, gofs, psz, psz); } tcg_gen_gvec_4(dofs, nofs, mofs, gofs, psz, psz, gvec_op); do_predtest(s, dofs, tofs, psz / 8); } return true; } static void gen_and_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg) { tcg_gen_and_i64(pd, pn, pm); tcg_gen_and_i64(pd, pd, pg); } static void gen_and_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn, TCGv_vec pm, TCGv_vec pg) { tcg_gen_and_vec(vece, pd, pn, pm); tcg_gen_and_vec(vece, pd, pd, pg); } static bool trans_AND_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn) { static const GVecGen4 op = { .fni8 = gen_and_pg_i64, .fniv = gen_and_pg_vec, .fno = gen_helper_sve_and_pppp, .prefer_i64 = TCG_TARGET_REG_BITS == 64, }; if (a->s) { return do_pppp_flags(s, a, &op); } else if (a->rn == a->rm) { if (a->pg == a->rn) { return do_mov_p(s, a->rd, a->rn); } else { return do_vector3_p(s, tcg_gen_gvec_and, 0, a->rd, a->rn, a->pg); } } else if (a->pg == a->rn || a->pg == a->rm) { return do_vector3_p(s, tcg_gen_gvec_and, 0, a->rd, a->rn, a->rm); } else { return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg); } } static void gen_bic_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg) { tcg_gen_andc_i64(pd, pn, pm); tcg_gen_and_i64(pd, pd, pg); } static void gen_bic_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn, TCGv_vec pm, TCGv_vec pg) { tcg_gen_andc_vec(vece, pd, pn, pm); tcg_gen_and_vec(vece, pd, pd, pg); } static bool trans_BIC_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn) { static const GVecGen4 op = { .fni8 = gen_bic_pg_i64, .fniv = gen_bic_pg_vec, .fno = gen_helper_sve_bic_pppp, .prefer_i64 = TCG_TARGET_REG_BITS == 64, }; if (a->s) { return do_pppp_flags(s, a, &op); } else if (a->pg == a->rn) { return do_vector3_p(s, tcg_gen_gvec_andc, 0, a->rd, a->rn, a->rm); } else { return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg); } } static void gen_eor_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg) { tcg_gen_xor_i64(pd, pn, pm); tcg_gen_and_i64(pd, pd, pg); } static void gen_eor_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn, TCGv_vec pm, TCGv_vec pg) { tcg_gen_xor_vec(vece, pd, pn, pm); tcg_gen_and_vec(vece, pd, pd, pg); } static bool trans_EOR_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn) { static const GVecGen4 op = { .fni8 = gen_eor_pg_i64, .fniv = gen_eor_pg_vec, .fno = gen_helper_sve_eor_pppp, .prefer_i64 = TCG_TARGET_REG_BITS == 64, }; if (a->s) { return do_pppp_flags(s, a, &op); } else { return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg); } } static void gen_sel_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg) { tcg_gen_and_i64(pn, pn, pg); tcg_gen_andc_i64(pm, pm, pg); tcg_gen_or_i64(pd, pn, pm); } static void gen_sel_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn, TCGv_vec pm, TCGv_vec pg) { tcg_gen_and_vec(vece, pn, pn, pg); tcg_gen_andc_vec(vece, pm, pm, pg); tcg_gen_or_vec(vece, pd, pn, pm); } static bool trans_SEL_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn) { static const GVecGen4 op = { .fni8 = gen_sel_pg_i64, .fniv = gen_sel_pg_vec, .fno = gen_helper_sve_sel_pppp, .prefer_i64 = TCG_TARGET_REG_BITS == 64, }; if (a->s) { return false; } else { return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg); } } static void gen_orr_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg) { tcg_gen_or_i64(pd, pn, pm); tcg_gen_and_i64(pd, pd, pg); } static void gen_orr_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn, TCGv_vec pm, TCGv_vec pg) { tcg_gen_or_vec(vece, pd, pn, pm); tcg_gen_and_vec(vece, pd, pd, pg); } static bool trans_ORR_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn) { static const GVecGen4 op = { .fni8 = gen_orr_pg_i64, .fniv = gen_orr_pg_vec, .fno = gen_helper_sve_orr_pppp, .prefer_i64 = TCG_TARGET_REG_BITS == 64, }; if (a->s) { return do_pppp_flags(s, a, &op); } else if (a->pg == a->rn && a->rn == a->rm) { return do_mov_p(s, a->rd, a->rn); } else { return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg); } } static void gen_orn_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg) { tcg_gen_orc_i64(pd, pn, pm); tcg_gen_and_i64(pd, pd, pg); } static void gen_orn_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn, TCGv_vec pm, TCGv_vec pg) { tcg_gen_orc_vec(vece, pd, pn, pm); tcg_gen_and_vec(vece, pd, pd, pg); } static bool trans_ORN_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn) { static const GVecGen4 op = { .fni8 = gen_orn_pg_i64, .fniv = gen_orn_pg_vec, .fno = gen_helper_sve_orn_pppp, .prefer_i64 = TCG_TARGET_REG_BITS == 64, }; if (a->s) { return do_pppp_flags(s, a, &op); } else { return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg); } } static void gen_nor_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg) { tcg_gen_or_i64(pd, pn, pm); tcg_gen_andc_i64(pd, pg, pd); } static void gen_nor_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn, TCGv_vec pm, TCGv_vec pg) { tcg_gen_or_vec(vece, pd, pn, pm); tcg_gen_andc_vec(vece, pd, pg, pd); } static bool trans_NOR_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn) { static const GVecGen4 op = { .fni8 = gen_nor_pg_i64, .fniv = gen_nor_pg_vec, .fno = gen_helper_sve_nor_pppp, .prefer_i64 = TCG_TARGET_REG_BITS == 64, }; if (a->s) { return do_pppp_flags(s, a, &op); } else { return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg); } } static void gen_nand_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg) { tcg_gen_and_i64(pd, pn, pm); tcg_gen_andc_i64(pd, pg, pd); } static void gen_nand_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn, TCGv_vec pm, TCGv_vec pg) { tcg_gen_and_vec(vece, pd, pn, pm); tcg_gen_andc_vec(vece, pd, pg, pd); } static bool trans_NAND_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn) { static const GVecGen4 op = { .fni8 = gen_nand_pg_i64, .fniv = gen_nand_pg_vec, .fno = gen_helper_sve_nand_pppp, .prefer_i64 = TCG_TARGET_REG_BITS == 64, }; if (a->s) { return do_pppp_flags(s, a, &op); } else { return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg); } } /* *** SVE Predicate Misc Group */ static bool trans_PTEST(DisasContext *s, arg_PTEST *a, uint32_t insn) { if (sve_access_check(s)) { int nofs = pred_full_reg_offset(s, a->rn); int gofs = pred_full_reg_offset(s, a->pg); int words = DIV_ROUND_UP(pred_full_reg_size(s), 8); if (words == 1) { TCGv_i64 pn = tcg_temp_new_i64(); TCGv_i64 pg = tcg_temp_new_i64(); tcg_gen_ld_i64(pn, cpu_env, nofs); tcg_gen_ld_i64(pg, cpu_env, gofs); do_predtest1(pn, pg); tcg_temp_free_i64(pn); tcg_temp_free_i64(pg); } else { do_predtest(s, nofs, gofs, words); } } return true; } /* See the ARM pseudocode DecodePredCount. */ static unsigned decode_pred_count(unsigned fullsz, int pattern, int esz) { unsigned elements = fullsz >> esz; unsigned bound; switch (pattern) { case 0x0: /* POW2 */ return pow2floor(elements); case 0x1: /* VL1 */ case 0x2: /* VL2 */ case 0x3: /* VL3 */ case 0x4: /* VL4 */ case 0x5: /* VL5 */ case 0x6: /* VL6 */ case 0x7: /* VL7 */ case 0x8: /* VL8 */ bound = pattern; break; case 0x9: /* VL16 */ case 0xa: /* VL32 */ case 0xb: /* VL64 */ case 0xc: /* VL128 */ case 0xd: /* VL256 */ bound = 16 << (pattern - 9); break; case 0x1d: /* MUL4 */ return elements - elements % 4; case 0x1e: /* MUL3 */ return elements - elements % 3; case 0x1f: /* ALL */ return elements; default: /* #uimm5 */ return 0; } return elements >= bound ? bound : 0; } /* This handles all of the predicate initialization instructions, * PTRUE, PFALSE, SETFFR. For PFALSE, we will have set PAT == 32 * so that decode_pred_count returns 0. For SETFFR, we will have * set RD == 16 == FFR. */ static bool do_predset(DisasContext *s, int esz, int rd, int pat, bool setflag) { if (!sve_access_check(s)) { return true; } unsigned fullsz = vec_full_reg_size(s); unsigned ofs = pred_full_reg_offset(s, rd); unsigned numelem, setsz, i; uint64_t word, lastword; TCGv_i64 t; numelem = decode_pred_count(fullsz, pat, esz); /* Determine what we must store into each bit, and how many. */ if (numelem == 0) { lastword = word = 0; setsz = fullsz; } else { setsz = numelem << esz; lastword = word = pred_esz_masks[esz]; if (setsz % 64) { lastword &= ~(-1ull << (setsz % 64)); } } t = tcg_temp_new_i64(); if (fullsz <= 64) { tcg_gen_movi_i64(t, lastword); tcg_gen_st_i64(t, cpu_env, ofs); goto done; } if (word == lastword) { unsigned maxsz = size_for_gvec(fullsz / 8); unsigned oprsz = size_for_gvec(setsz / 8); if (oprsz * 8 == setsz) { tcg_gen_gvec_dup64i(ofs, oprsz, maxsz, word); goto done; } if (oprsz * 8 == setsz + 8) { tcg_gen_gvec_dup64i(ofs, oprsz, maxsz, word); tcg_gen_movi_i64(t, 0); tcg_gen_st_i64(t, cpu_env, ofs + oprsz - 8); goto done; } } setsz /= 8; fullsz /= 8; tcg_gen_movi_i64(t, word); for (i = 0; i < setsz; i += 8) { tcg_gen_st_i64(t, cpu_env, ofs + i); } if (lastword != word) { tcg_gen_movi_i64(t, lastword); tcg_gen_st_i64(t, cpu_env, ofs + i); i += 8; } if (i < fullsz) { tcg_gen_movi_i64(t, 0); for (; i < fullsz; i += 8) { tcg_gen_st_i64(t, cpu_env, ofs + i); } } done: tcg_temp_free_i64(t); /* PTRUES */ if (setflag) { tcg_gen_movi_i32(cpu_NF, -(word != 0)); tcg_gen_movi_i32(cpu_CF, word == 0); tcg_gen_movi_i32(cpu_VF, 0); tcg_gen_mov_i32(cpu_ZF, cpu_NF); } return true; } static bool trans_PTRUE(DisasContext *s, arg_PTRUE *a, uint32_t insn) { return do_predset(s, a->esz, a->rd, a->pat, a->s); } static bool trans_SETFFR(DisasContext *s, arg_SETFFR *a, uint32_t insn) { /* Note pat == 31 is #all, to set all elements. */ return do_predset(s, 0, FFR_PRED_NUM, 31, false); } static bool trans_PFALSE(DisasContext *s, arg_PFALSE *a, uint32_t insn) { /* Note pat == 32 is #unimp, to set no elements. */ return do_predset(s, 0, a->rd, 32, false); } static bool trans_RDFFR_p(DisasContext *s, arg_RDFFR_p *a, uint32_t insn) { /* The path through do_pppp_flags is complicated enough to want to avoid * duplication. Frob the arguments into the form of a predicated AND. */ arg_rprr_s alt_a = { .rd = a->rd, .pg = a->pg, .s = a->s, .rn = FFR_PRED_NUM, .rm = FFR_PRED_NUM, }; return trans_AND_pppp(s, &alt_a, insn); } static bool trans_RDFFR(DisasContext *s, arg_RDFFR *a, uint32_t insn) { return do_mov_p(s, a->rd, FFR_PRED_NUM); } static bool trans_WRFFR(DisasContext *s, arg_WRFFR *a, uint32_t insn) { return do_mov_p(s, FFR_PRED_NUM, a->rn); } static bool do_pfirst_pnext(DisasContext *s, arg_rr_esz *a, void (*gen_fn)(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_i32)) { if (!sve_access_check(s)) { return true; } TCGv_ptr t_pd = tcg_temp_new_ptr(); TCGv_ptr t_pg = tcg_temp_new_ptr(); TCGv_i32 t; unsigned desc; desc = DIV_ROUND_UP(pred_full_reg_size(s), 8); desc = deposit32(desc, SIMD_DATA_SHIFT, 2, a->esz); tcg_gen_addi_ptr(t_pd, cpu_env, pred_full_reg_offset(s, a->rd)); tcg_gen_addi_ptr(t_pg, cpu_env, pred_full_reg_offset(s, a->rn)); t = tcg_const_i32(desc); gen_fn(t, t_pd, t_pg, t); tcg_temp_free_ptr(t_pd); tcg_temp_free_ptr(t_pg); do_pred_flags(t); tcg_temp_free_i32(t); return true; } static bool trans_PFIRST(DisasContext *s, arg_rr_esz *a, uint32_t insn) { return do_pfirst_pnext(s, a, gen_helper_sve_pfirst); } static bool trans_PNEXT(DisasContext *s, arg_rr_esz *a, uint32_t insn) { return do_pfirst_pnext(s, a, gen_helper_sve_pnext); } /* *** SVE Element Count Group */ /* Perform an inline saturating addition of a 32-bit value within * a 64-bit register. The second operand is known to be positive, * which halves the comparisions we must perform to bound the result. */ static void do_sat_addsub_32(TCGv_i64 reg, TCGv_i64 val, bool u, bool d) { int64_t ibound; TCGv_i64 bound; TCGCond cond; /* Use normal 64-bit arithmetic to detect 32-bit overflow. */ if (u) { tcg_gen_ext32u_i64(reg, reg); } else { tcg_gen_ext32s_i64(reg, reg); } if (d) { tcg_gen_sub_i64(reg, reg, val); ibound = (u ? 0 : INT32_MIN); cond = TCG_COND_LT; } else { tcg_gen_add_i64(reg, reg, val); ibound = (u ? UINT32_MAX : INT32_MAX); cond = TCG_COND_GT; } bound = tcg_const_i64(ibound); tcg_gen_movcond_i64(cond, reg, reg, bound, bound, reg); tcg_temp_free_i64(bound); } /* Similarly with 64-bit values. */ static void do_sat_addsub_64(TCGv_i64 reg, TCGv_i64 val, bool u, bool d) { TCGv_i64 t0 = tcg_temp_new_i64(); TCGv_i64 t1 = tcg_temp_new_i64(); TCGv_i64 t2; if (u) { if (d) { tcg_gen_sub_i64(t0, reg, val); tcg_gen_movi_i64(t1, 0); tcg_gen_movcond_i64(TCG_COND_LTU, reg, reg, val, t1, t0); } else { tcg_gen_add_i64(t0, reg, val); tcg_gen_movi_i64(t1, -1); tcg_gen_movcond_i64(TCG_COND_LTU, reg, t0, reg, t1, t0); } } else { if (d) { /* Detect signed overflow for subtraction. */ tcg_gen_xor_i64(t0, reg, val); tcg_gen_sub_i64(t1, reg, val); tcg_gen_xor_i64(reg, reg, t0); tcg_gen_and_i64(t0, t0, reg); /* Bound the result. */ tcg_gen_movi_i64(reg, INT64_MIN); t2 = tcg_const_i64(0); tcg_gen_movcond_i64(TCG_COND_LT, reg, t0, t2, reg, t1); } else { /* Detect signed overflow for addition. */ tcg_gen_xor_i64(t0, reg, val); tcg_gen_add_i64(reg, reg, val); tcg_gen_xor_i64(t1, reg, val); tcg_gen_andc_i64(t0, t1, t0); /* Bound the result. */ tcg_gen_movi_i64(t1, INT64_MAX); t2 = tcg_const_i64(0); tcg_gen_movcond_i64(TCG_COND_LT, reg, t0, t2, t1, reg); } tcg_temp_free_i64(t2); } tcg_temp_free_i64(t0); tcg_temp_free_i64(t1); } /* Similarly with a vector and a scalar operand. */ static void do_sat_addsub_vec(DisasContext *s, int esz, int rd, int rn, TCGv_i64 val, bool u, bool d) { unsigned vsz = vec_full_reg_size(s); TCGv_ptr dptr, nptr; TCGv_i32 t32, desc; TCGv_i64 t64; dptr = tcg_temp_new_ptr(); nptr = tcg_temp_new_ptr(); tcg_gen_addi_ptr(dptr, cpu_env, vec_full_reg_offset(s, rd)); tcg_gen_addi_ptr(nptr, cpu_env, vec_full_reg_offset(s, rn)); desc = tcg_const_i32(simd_desc(vsz, vsz, 0)); switch (esz) { case MO_8: t32 = tcg_temp_new_i32(); tcg_gen_extrl_i64_i32(t32, val); if (d) { tcg_gen_neg_i32(t32, t32); } if (u) { gen_helper_sve_uqaddi_b(dptr, nptr, t32, desc); } else { gen_helper_sve_sqaddi_b(dptr, nptr, t32, desc); } tcg_temp_free_i32(t32); break; case MO_16: t32 = tcg_temp_new_i32(); tcg_gen_extrl_i64_i32(t32, val); if (d) { tcg_gen_neg_i32(t32, t32); } if (u) { gen_helper_sve_uqaddi_h(dptr, nptr, t32, desc); } else { gen_helper_sve_sqaddi_h(dptr, nptr, t32, desc); } tcg_temp_free_i32(t32); break; case MO_32: t64 = tcg_temp_new_i64(); if (d) { tcg_gen_neg_i64(t64, val); } else { tcg_gen_mov_i64(t64, val); } if (u) { gen_helper_sve_uqaddi_s(dptr, nptr, t64, desc); } else { gen_helper_sve_sqaddi_s(dptr, nptr, t64, desc); } tcg_temp_free_i64(t64); break; case MO_64: if (u) { if (d) { gen_helper_sve_uqsubi_d(dptr, nptr, val, desc); } else { gen_helper_sve_uqaddi_d(dptr, nptr, val, desc); } } else if (d) { t64 = tcg_temp_new_i64(); tcg_gen_neg_i64(t64, val); gen_helper_sve_sqaddi_d(dptr, nptr, t64, desc); tcg_temp_free_i64(t64); } else { gen_helper_sve_sqaddi_d(dptr, nptr, val, desc); } break; default: g_assert_not_reached(); } tcg_temp_free_ptr(dptr); tcg_temp_free_ptr(nptr); tcg_temp_free_i32(desc); } static bool trans_CNT_r(DisasContext *s, arg_CNT_r *a, uint32_t insn) { if (sve_access_check(s)) { unsigned fullsz = vec_full_reg_size(s); unsigned numelem = decode_pred_count(fullsz, a->pat, a->esz); tcg_gen_movi_i64(cpu_reg(s, a->rd), numelem * a->imm); } return true; } static bool trans_INCDEC_r(DisasContext *s, arg_incdec_cnt *a, uint32_t insn) { if (sve_access_check(s)) { unsigned fullsz = vec_full_reg_size(s); unsigned numelem = decode_pred_count(fullsz, a->pat, a->esz); int inc = numelem * a->imm * (a->d ? -1 : 1); TCGv_i64 reg = cpu_reg(s, a->rd); tcg_gen_addi_i64(reg, reg, inc); } return true; } static bool trans_SINCDEC_r_32(DisasContext *s, arg_incdec_cnt *a, uint32_t insn) { if (!sve_access_check(s)) { return true; } unsigned fullsz = vec_full_reg_size(s); unsigned numelem = decode_pred_count(fullsz, a->pat, a->esz); int inc = numelem * a->imm; TCGv_i64 reg = cpu_reg(s, a->rd); /* Use normal 64-bit arithmetic to detect 32-bit overflow. */ if (inc == 0) { if (a->u) { tcg_gen_ext32u_i64(reg, reg); } else { tcg_gen_ext32s_i64(reg, reg); } } else { TCGv_i64 t = tcg_const_i64(inc); do_sat_addsub_32(reg, t, a->u, a->d); tcg_temp_free_i64(t); } return true; } static bool trans_SINCDEC_r_64(DisasContext *s, arg_incdec_cnt *a, uint32_t insn) { if (!sve_access_check(s)) { return true; } unsigned fullsz = vec_full_reg_size(s); unsigned numelem = decode_pred_count(fullsz, a->pat, a->esz); int inc = numelem * a->imm; TCGv_i64 reg = cpu_reg(s, a->rd); if (inc != 0) { TCGv_i64 t = tcg_const_i64(inc); do_sat_addsub_64(reg, t, a->u, a->d); tcg_temp_free_i64(t); } return true; } static bool trans_INCDEC_v(DisasContext *s, arg_incdec2_cnt *a, uint32_t insn) { if (a->esz == 0) { return false; } unsigned fullsz = vec_full_reg_size(s); unsigned numelem = decode_pred_count(fullsz, a->pat, a->esz); int inc = numelem * a->imm; if (inc != 0) { if (sve_access_check(s)) { TCGv_i64 t = tcg_const_i64(a->d ? -inc : inc); tcg_gen_gvec_adds(a->esz, vec_full_reg_offset(s, a->rd), vec_full_reg_offset(s, a->rn), t, fullsz, fullsz); tcg_temp_free_i64(t); } } else { do_mov_z(s, a->rd, a->rn); } return true; } static bool trans_SINCDEC_v(DisasContext *s, arg_incdec2_cnt *a, uint32_t insn) { if (a->esz == 0) { return false; } unsigned fullsz = vec_full_reg_size(s); unsigned numelem = decode_pred_count(fullsz, a->pat, a->esz); int inc = numelem * a->imm; if (inc != 0) { if (sve_access_check(s)) { TCGv_i64 t = tcg_const_i64(inc); do_sat_addsub_vec(s, a->esz, a->rd, a->rn, t, a->u, a->d); tcg_temp_free_i64(t); } } else { do_mov_z(s, a->rd, a->rn); } return true; } /* *** SVE Bitwise Immediate Group */ static bool do_zz_dbm(DisasContext *s, arg_rr_dbm *a, GVecGen2iFn *gvec_fn) { uint64_t imm; if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), extract32(a->dbm, 0, 6), extract32(a->dbm, 6, 6))) { return false; } if (sve_access_check(s)) { unsigned vsz = vec_full_reg_size(s); gvec_fn(MO_64, vec_full_reg_offset(s, a->rd), vec_full_reg_offset(s, a->rn), imm, vsz, vsz); } return true; } static bool trans_AND_zzi(DisasContext *s, arg_rr_dbm *a, uint32_t insn) { return do_zz_dbm(s, a, tcg_gen_gvec_andi); } static bool trans_ORR_zzi(DisasContext *s, arg_rr_dbm *a, uint32_t insn) { return do_zz_dbm(s, a, tcg_gen_gvec_ori); } static bool trans_EOR_zzi(DisasContext *s, arg_rr_dbm *a, uint32_t insn) { return do_zz_dbm(s, a, tcg_gen_gvec_xori); } static bool trans_DUPM(DisasContext *s, arg_DUPM *a, uint32_t insn) { uint64_t imm; if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), extract32(a->dbm, 0, 6), extract32(a->dbm, 6, 6))) { return false; } if (sve_access_check(s)) { do_dupi_z(s, a->rd, imm); } return true; } /* *** SVE Integer Wide Immediate - Predicated Group */ /* Implement all merging copies. This is used for CPY (immediate), * FCPY, CPY (scalar), CPY (SIMD&FP scalar). */ static void do_cpy_m(DisasContext *s, int esz, int rd, int rn, int pg, TCGv_i64 val) { typedef void gen_cpy(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i64, TCGv_i32); static gen_cpy * const fns[4] = { gen_helper_sve_cpy_m_b, gen_helper_sve_cpy_m_h, gen_helper_sve_cpy_m_s, gen_helper_sve_cpy_m_d, }; unsigned vsz = vec_full_reg_size(s); TCGv_i32 desc = tcg_const_i32(simd_desc(vsz, vsz, 0)); TCGv_ptr t_zd = tcg_temp_new_ptr(); TCGv_ptr t_zn = tcg_temp_new_ptr(); TCGv_ptr t_pg = tcg_temp_new_ptr(); tcg_gen_addi_ptr(t_zd, cpu_env, vec_full_reg_offset(s, rd)); tcg_gen_addi_ptr(t_zn, cpu_env, vec_full_reg_offset(s, rn)); tcg_gen_addi_ptr(t_pg, cpu_env, pred_full_reg_offset(s, pg)); fns[esz](t_zd, t_zn, t_pg, val, desc); tcg_temp_free_ptr(t_zd); tcg_temp_free_ptr(t_zn); tcg_temp_free_ptr(t_pg); tcg_temp_free_i32(desc); } static bool trans_FCPY(DisasContext *s, arg_FCPY *a, uint32_t insn) { if (a->esz == 0) { return false; } if (sve_access_check(s)) { /* Decode the VFP immediate. */ uint64_t imm = vfp_expand_imm(a->esz, a->imm); TCGv_i64 t_imm = tcg_const_i64(imm); do_cpy_m(s, a->esz, a->rd, a->rn, a->pg, t_imm); tcg_temp_free_i64(t_imm); } return true; } static bool trans_CPY_m_i(DisasContext *s, arg_rpri_esz *a, uint32_t insn) { if (a->esz == 0 && extract32(insn, 13, 1)) { return false; } if (sve_access_check(s)) { TCGv_i64 t_imm = tcg_const_i64(a->imm); do_cpy_m(s, a->esz, a->rd, a->rn, a->pg, t_imm); tcg_temp_free_i64(t_imm); } return true; } static bool trans_CPY_z_i(DisasContext *s, arg_CPY_z_i *a, uint32_t insn) { static gen_helper_gvec_2i * const fns[4] = { gen_helper_sve_cpy_z_b, gen_helper_sve_cpy_z_h, gen_helper_sve_cpy_z_s, gen_helper_sve_cpy_z_d, }; if (a->esz == 0 && extract32(insn, 13, 1)) { return false; } if (sve_access_check(s)) { unsigned vsz = vec_full_reg_size(s); TCGv_i64 t_imm = tcg_const_i64(a->imm); tcg_gen_gvec_2i_ool(vec_full_reg_offset(s, a->rd), pred_full_reg_offset(s, a->pg), t_imm, vsz, vsz, 0, fns[a->esz]); tcg_temp_free_i64(t_imm); } return true; } /* *** SVE Permute Extract Group */ static bool trans_EXT(DisasContext *s, arg_EXT *a, uint32_t insn) { if (!sve_access_check(s)) { return true; } unsigned vsz = vec_full_reg_size(s); unsigned n_ofs = a->imm >= vsz ? 0 : a->imm; unsigned n_siz = vsz - n_ofs; unsigned d = vec_full_reg_offset(s, a->rd); unsigned n = vec_full_reg_offset(s, a->rn); unsigned m = vec_full_reg_offset(s, a->rm); /* Use host vector move insns if we have appropriate sizes * and no unfortunate overlap. */ if (m != d && n_ofs == size_for_gvec(n_ofs) && n_siz == size_for_gvec(n_siz) && (d != n || n_siz <= n_ofs)) { tcg_gen_gvec_mov(0, d, n + n_ofs, n_siz, n_siz); if (n_ofs != 0) { tcg_gen_gvec_mov(0, d + n_siz, m, n_ofs, n_ofs); } } else { tcg_gen_gvec_3_ool(d, n, m, vsz, vsz, n_ofs, gen_helper_sve_ext); } return true; } /* *** SVE Permute - Unpredicated Group */ static bool trans_DUP_s(DisasContext *s, arg_DUP_s *a, uint32_t insn) { if (sve_access_check(s)) { unsigned vsz = vec_full_reg_size(s); tcg_gen_gvec_dup_i64(a->esz, vec_full_reg_offset(s, a->rd), vsz, vsz, cpu_reg_sp(s, a->rn)); } return true; } static bool trans_DUP_x(DisasContext *s, arg_DUP_x *a, uint32_t insn) { if ((a->imm & 0x1f) == 0) { return false; } if (sve_access_check(s)) { unsigned vsz = vec_full_reg_size(s); unsigned dofs = vec_full_reg_offset(s, a->rd); unsigned esz, index; esz = ctz32(a->imm); index = a->imm >> (esz + 1); if ((index << esz) < vsz) { unsigned nofs = vec_reg_offset(s, a->rn, index, esz); tcg_gen_gvec_dup_mem(esz, dofs, nofs, vsz, vsz); } else { tcg_gen_gvec_dup64i(dofs, vsz, vsz, 0); } } return true; } static void do_insr_i64(DisasContext *s, arg_rrr_esz *a, TCGv_i64 val) { typedef void gen_insr(TCGv_ptr, TCGv_ptr, TCGv_i64, TCGv_i32); static gen_insr * const fns[4] = { gen_helper_sve_insr_b, gen_helper_sve_insr_h, gen_helper_sve_insr_s, gen_helper_sve_insr_d, }; unsigned vsz = vec_full_reg_size(s); TCGv_i32 desc = tcg_const_i32(simd_desc(vsz, vsz, 0)); TCGv_ptr t_zd = tcg_temp_new_ptr(); TCGv_ptr t_zn = tcg_temp_new_ptr(); tcg_gen_addi_ptr(t_zd, cpu_env, vec_full_reg_offset(s, a->rd)); tcg_gen_addi_ptr(t_zn, cpu_env, vec_full_reg_offset(s, a->rn)); fns[a->esz](t_zd, t_zn, val, desc); tcg_temp_free_ptr(t_zd); tcg_temp_free_ptr(t_zn); tcg_temp_free_i32(desc); } static bool trans_INSR_f(DisasContext *s, arg_rrr_esz *a, uint32_t insn) { if (sve_access_check(s)) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_ld_i64(t, cpu_env, vec_reg_offset(s, a->rm, 0, MO_64)); do_insr_i64(s, a, t); tcg_temp_free_i64(t); } return true; } static bool trans_INSR_r(DisasContext *s, arg_rrr_esz *a, uint32_t insn) { if (sve_access_check(s)) { do_insr_i64(s, a, cpu_reg(s, a->rm)); } return true; } static bool trans_REV_v(DisasContext *s, arg_rr_esz *a, uint32_t insn) { static gen_helper_gvec_2 * const fns[4] = { gen_helper_sve_rev_b, gen_helper_sve_rev_h, gen_helper_sve_rev_s, gen_helper_sve_rev_d }; if (sve_access_check(s)) { unsigned vsz = vec_full_reg_size(s); tcg_gen_gvec_2_ool(vec_full_reg_offset(s, a->rd), vec_full_reg_offset(s, a->rn), vsz, vsz, 0, fns[a->esz]); } return true; } static bool trans_TBL(DisasContext *s, arg_rrr_esz *a, uint32_t insn) { static gen_helper_gvec_3 * const fns[4] = { gen_helper_sve_tbl_b, gen_helper_sve_tbl_h, gen_helper_sve_tbl_s, gen_helper_sve_tbl_d }; if (sve_access_check(s)) { unsigned vsz = vec_full_reg_size(s); tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd), vec_full_reg_offset(s, a->rn), vec_full_reg_offset(s, a->rm), vsz, vsz, 0, fns[a->esz]); } return true; } static bool trans_UNPK(DisasContext *s, arg_UNPK *a, uint32_t insn) { static gen_helper_gvec_2 * const fns[4][2] = { { NULL, NULL }, { gen_helper_sve_sunpk_h, gen_helper_sve_uunpk_h }, { gen_helper_sve_sunpk_s, gen_helper_sve_uunpk_s }, { gen_helper_sve_sunpk_d, gen_helper_sve_uunpk_d }, }; if (a->esz == 0) { return false; } if (sve_access_check(s)) { unsigned vsz = vec_full_reg_size(s); tcg_gen_gvec_2_ool(vec_full_reg_offset(s, a->rd), vec_full_reg_offset(s, a->rn) + (a->h ? vsz / 2 : 0), vsz, vsz, 0, fns[a->esz][a->u]); } return true; } /* *** SVE Permute - Predicates Group */ static bool do_perm_pred3(DisasContext *s, arg_rrr_esz *a, bool high_odd, gen_helper_gvec_3 *fn) { if (!sve_access_check(s)) { return true; } unsigned vsz = pred_full_reg_size(s); /* Predicate sizes may be smaller and cannot use simd_desc. We cannot round up, as we do elsewhere, because we need the exact size for ZIP2 and REV. We retain the style for the other helpers for consistency. */ TCGv_ptr t_d = tcg_temp_new_ptr(); TCGv_ptr t_n = tcg_temp_new_ptr(); TCGv_ptr t_m = tcg_temp_new_ptr(); TCGv_i32 t_desc; int desc; desc = vsz - 2; desc = deposit32(desc, SIMD_DATA_SHIFT, 2, a->esz); desc = deposit32(desc, SIMD_DATA_SHIFT + 2, 2, high_odd); tcg_gen_addi_ptr(t_d, cpu_env, pred_full_reg_offset(s, a->rd)); tcg_gen_addi_ptr(t_n, cpu_env, pred_full_reg_offset(s, a->rn)); tcg_gen_addi_ptr(t_m, cpu_env, pred_full_reg_offset(s, a->rm)); t_desc = tcg_const_i32(desc); fn(t_d, t_n, t_m, t_desc); tcg_temp_free_ptr(t_d); tcg_temp_free_ptr(t_n); tcg_temp_free_ptr(t_m); tcg_temp_free_i32(t_desc); return true; } static bool do_perm_pred2(DisasContext *s, arg_rr_esz *a, bool high_odd, gen_helper_gvec_2 *fn) { if (!sve_access_check(s)) { return true; } unsigned vsz = pred_full_reg_size(s); TCGv_ptr t_d = tcg_temp_new_ptr(); TCGv_ptr t_n = tcg_temp_new_ptr(); TCGv_i32 t_desc; int desc; tcg_gen_addi_ptr(t_d, cpu_env, pred_full_reg_offset(s, a->rd)); tcg_gen_addi_ptr(t_n, cpu_env, pred_full_reg_offset(s, a->rn)); /* Predicate sizes may be smaller and cannot use simd_desc. We cannot round up, as we do elsewhere, because we need the exact size for ZIP2 and REV. We retain the style for the other helpers for consistency. */ desc = vsz - 2; desc = deposit32(desc, SIMD_DATA_SHIFT, 2, a->esz); desc = deposit32(desc, SIMD_DATA_SHIFT + 2, 2, high_odd); t_desc = tcg_const_i32(desc); fn(t_d, t_n, t_desc); tcg_temp_free_i32(t_desc); tcg_temp_free_ptr(t_d); tcg_temp_free_ptr(t_n); return true; } static bool trans_ZIP1_p(DisasContext *s, arg_rrr_esz *a, uint32_t insn) { return do_perm_pred3(s, a, 0, gen_helper_sve_zip_p); } static bool trans_ZIP2_p(DisasContext *s, arg_rrr_esz *a, uint32_t insn) { return do_perm_pred3(s, a, 1, gen_helper_sve_zip_p); } static bool trans_UZP1_p(DisasContext *s, arg_rrr_esz *a, uint32_t insn) { return do_perm_pred3(s, a, 0, gen_helper_sve_uzp_p); } static bool trans_UZP2_p(DisasContext *s, arg_rrr_esz *a, uint32_t insn) { return do_perm_pred3(s, a, 1, gen_helper_sve_uzp_p); } static bool trans_TRN1_p(DisasContext *s, arg_rrr_esz *a, uint32_t insn) { return do_perm_pred3(s, a, 0, gen_helper_sve_trn_p); } static bool trans_TRN2_p(DisasContext *s, arg_rrr_esz *a, uint32_t insn) { return do_perm_pred3(s, a, 1, gen_helper_sve_trn_p); } static bool trans_REV_p(DisasContext *s, arg_rr_esz *a, uint32_t insn) { return do_perm_pred2(s, a, 0, gen_helper_sve_rev_p); } static bool trans_PUNPKLO(DisasContext *s, arg_PUNPKLO *a, uint32_t insn) { return do_perm_pred2(s, a, 0, gen_helper_sve_punpk_p); } static bool trans_PUNPKHI(DisasContext *s, arg_PUNPKHI *a, uint32_t insn) { return do_perm_pred2(s, a, 1, gen_helper_sve_punpk_p); } /* *** SVE Permute - Interleaving Group */ static bool do_zip(DisasContext *s, arg_rrr_esz *a, bool high) { static gen_helper_gvec_3 * const fns[4] = { gen_helper_sve_zip_b, gen_helper_sve_zip_h, gen_helper_sve_zip_s, gen_helper_sve_zip_d, }; if (sve_access_check(s)) { unsigned vsz = vec_full_reg_size(s); unsigned high_ofs = high ? vsz / 2 : 0; tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd), vec_full_reg_offset(s, a->rn) + high_ofs, vec_full_reg_offset(s, a->rm) + high_ofs, vsz, vsz, 0, fns[a->esz]); } return true; } static bool do_zzz_data_ool(DisasContext *s, arg_rrr_esz *a, int data, gen_helper_gvec_3 *fn) { if (sve_access_check(s)) { unsigned vsz = vec_full_reg_size(s); tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd), vec_full_reg_offset(s, a->rn), vec_full_reg_offset(s, a->rm), vsz, vsz, data, fn); } return true; } static bool trans_ZIP1_z(DisasContext *s, arg_rrr_esz *a, uint32_t insn) { return do_zip(s, a, false); } static bool trans_ZIP2_z(DisasContext *s, arg_rrr_esz *a, uint32_t insn) { return do_zip(s, a, true); } static gen_helper_gvec_3 * const uzp_fns[4] = { gen_helper_sve_uzp_b, gen_helper_sve_uzp_h, gen_helper_sve_uzp_s, gen_helper_sve_uzp_d, }; static bool trans_UZP1_z(DisasContext *s, arg_rrr_esz *a, uint32_t insn) { return do_zzz_data_ool(s, a, 0, uzp_fns[a->esz]); } static bool trans_UZP2_z(DisasContext *s, arg_rrr_esz *a, uint32_t insn) { return do_zzz_data_ool(s, a, 1 << a->esz, uzp_fns[a->esz]); } static gen_helper_gvec_3 * const trn_fns[4] = { gen_helper_sve_trn_b, gen_helper_sve_trn_h, gen_helper_sve_trn_s, gen_helper_sve_trn_d, }; static bool trans_TRN1_z(DisasContext *s, arg_rrr_esz *a, uint32_t insn) { return do_zzz_data_ool(s, a, 0, trn_fns[a->esz]); } static bool trans_TRN2_z(DisasContext *s, arg_rrr_esz *a, uint32_t insn) { return do_zzz_data_ool(s, a, 1 << a->esz, trn_fns[a->esz]); } /* *** SVE Permute Vector - Predicated Group */ static bool trans_COMPACT(DisasContext *s, arg_rpr_esz *a, uint32_t insn) { static gen_helper_gvec_3 * const fns[4] = { NULL, NULL, gen_helper_sve_compact_s, gen_helper_sve_compact_d }; return do_zpz_ool(s, a, fns[a->esz]); } /* *** SVE Memory - 32-bit Gather and Unsized Contiguous Group */ /* Subroutine loading a vector register at VOFS of LEN bytes. * The load should begin at the address Rn + IMM. */ static void do_ldr(DisasContext *s, uint32_t vofs, uint32_t len, int rn, int imm) { uint32_t len_align = QEMU_ALIGN_DOWN(len, 8); uint32_t len_remain = len % 8; uint32_t nparts = len / 8 + ctpop8(len_remain); int midx = get_mem_index(s); TCGv_i64 addr, t0, t1; addr = tcg_temp_new_i64(); t0 = tcg_temp_new_i64(); /* Note that unpredicated load/store of vector/predicate registers * are defined as a stream of bytes, which equates to little-endian * operations on larger quantities. There is no nice way to force * a little-endian load for aarch64_be-linux-user out of line. * * Attempt to keep code expansion to a minimum by limiting the * amount of unrolling done. */ if (nparts <= 4) { int i; for (i = 0; i < len_align; i += 8) { tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm + i); tcg_gen_qemu_ld_i64(t0, addr, midx, MO_LEQ); tcg_gen_st_i64(t0, cpu_env, vofs + i); } } else { TCGLabel *loop = gen_new_label(); TCGv_ptr tp, i = tcg_const_local_ptr(0); gen_set_label(loop); /* Minimize the number of local temps that must be re-read from * the stack each iteration. Instead, re-compute values other * than the loop counter. */ tp = tcg_temp_new_ptr(); tcg_gen_addi_ptr(tp, i, imm); tcg_gen_extu_ptr_i64(addr, tp); tcg_gen_add_i64(addr, addr, cpu_reg_sp(s, rn)); tcg_gen_qemu_ld_i64(t0, addr, midx, MO_LEQ); tcg_gen_add_ptr(tp, cpu_env, i); tcg_gen_addi_ptr(i, i, 8); tcg_gen_st_i64(t0, tp, vofs); tcg_temp_free_ptr(tp); tcg_gen_brcondi_ptr(TCG_COND_LTU, i, len_align, loop); tcg_temp_free_ptr(i); } /* Predicate register loads can be any multiple of 2. * Note that we still store the entire 64-bit unit into cpu_env. */ if (len_remain) { tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm + len_align); switch (len_remain) { case 2: case 4: case 8: tcg_gen_qemu_ld_i64(t0, addr, midx, MO_LE | ctz32(len_remain)); break; case 6: t1 = tcg_temp_new_i64(); tcg_gen_qemu_ld_i64(t0, addr, midx, MO_LEUL); tcg_gen_addi_i64(addr, addr, 4); tcg_gen_qemu_ld_i64(t1, addr, midx, MO_LEUW); tcg_gen_deposit_i64(t0, t0, t1, 32, 32); tcg_temp_free_i64(t1); break; default: g_assert_not_reached(); } tcg_gen_st_i64(t0, cpu_env, vofs + len_align); } tcg_temp_free_i64(addr); tcg_temp_free_i64(t0); } static bool trans_LDR_zri(DisasContext *s, arg_rri *a, uint32_t insn) { if (sve_access_check(s)) { int size = vec_full_reg_size(s); int off = vec_full_reg_offset(s, a->rd); do_ldr(s, off, size, a->rn, a->imm * size); } return true; } static bool trans_LDR_pri(DisasContext *s, arg_rri *a, uint32_t insn) { if (sve_access_check(s)) { int size = pred_full_reg_size(s); int off = pred_full_reg_offset(s, a->rd); do_ldr(s, off, size, a->rn, a->imm * size); } return true; }