/* * ARM translation: AArch32 Neon instructions * * Copyright (c) 2003 Fabrice Bellard * Copyright (c) 2005-2007 CodeSourcery * Copyright (c) 2007 OpenedHand, Ltd. * Copyright (c) 2020 Linaro, Ltd. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ /* * This file is intended to be included from translate.c; it uses * some macros and definitions provided by that file. * It might be possible to convert it to a standalone .c file eventually. */ static inline int plus1(DisasContext *s, int x) { return x + 1; } static inline int rsub_64(DisasContext *s, int x) { return 64 - x; } static inline int rsub_32(DisasContext *s, int x) { return 32 - x; } static inline int rsub_16(DisasContext *s, int x) { return 16 - x; } static inline int rsub_8(DisasContext *s, int x) { return 8 - x; } /* Include the generated Neon decoder */ #include "decode-neon-dp.inc.c" #include "decode-neon-ls.inc.c" #include "decode-neon-shared.inc.c" static bool trans_VCMLA(DisasContext *s, arg_VCMLA *a) { int opr_sz; TCGv_ptr fpst; gen_helper_gvec_3_ptr *fn_gvec_ptr; if (!dc_isar_feature(aa32_vcma, s) || (!a->size && !dc_isar_feature(aa32_fp16_arith, s))) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vn | a->vm) & 0x10)) { return false; } if ((a->vn | a->vm | a->vd) & a->q) { return false; } if (!vfp_access_check(s)) { return true; } opr_sz = (1 + a->q) * 8; fpst = get_fpstatus_ptr(1); fn_gvec_ptr = a->size ? gen_helper_gvec_fcmlas : gen_helper_gvec_fcmlah; tcg_gen_gvec_3_ptr(vfp_reg_offset(1, a->vd), vfp_reg_offset(1, a->vn), vfp_reg_offset(1, a->vm), fpst, opr_sz, opr_sz, a->rot, fn_gvec_ptr); tcg_temp_free_ptr(fpst); return true; } static bool trans_VCADD(DisasContext *s, arg_VCADD *a) { int opr_sz; TCGv_ptr fpst; gen_helper_gvec_3_ptr *fn_gvec_ptr; if (!dc_isar_feature(aa32_vcma, s) || (!a->size && !dc_isar_feature(aa32_fp16_arith, s))) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vn | a->vm) & 0x10)) { return false; } if ((a->vn | a->vm | a->vd) & a->q) { return false; } if (!vfp_access_check(s)) { return true; } opr_sz = (1 + a->q) * 8; fpst = get_fpstatus_ptr(1); fn_gvec_ptr = a->size ? gen_helper_gvec_fcadds : gen_helper_gvec_fcaddh; tcg_gen_gvec_3_ptr(vfp_reg_offset(1, a->vd), vfp_reg_offset(1, a->vn), vfp_reg_offset(1, a->vm), fpst, opr_sz, opr_sz, a->rot, fn_gvec_ptr); tcg_temp_free_ptr(fpst); return true; } static bool trans_VDOT(DisasContext *s, arg_VDOT *a) { int opr_sz; gen_helper_gvec_3 *fn_gvec; if (!dc_isar_feature(aa32_dp, s)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vn | a->vm) & 0x10)) { return false; } if ((a->vn | a->vm | a->vd) & a->q) { return false; } if (!vfp_access_check(s)) { return true; } opr_sz = (1 + a->q) * 8; fn_gvec = a->u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b; tcg_gen_gvec_3_ool(vfp_reg_offset(1, a->vd), vfp_reg_offset(1, a->vn), vfp_reg_offset(1, a->vm), opr_sz, opr_sz, 0, fn_gvec); return true; } static bool trans_VFML(DisasContext *s, arg_VFML *a) { int opr_sz; if (!dc_isar_feature(aa32_fhm, s)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) { return false; } if (a->vd & a->q) { return false; } if (!vfp_access_check(s)) { return true; } opr_sz = (1 + a->q) * 8; tcg_gen_gvec_3_ptr(vfp_reg_offset(1, a->vd), vfp_reg_offset(a->q, a->vn), vfp_reg_offset(a->q, a->vm), cpu_env, opr_sz, opr_sz, a->s, /* is_2 == 0 */ gen_helper_gvec_fmlal_a32); return true; } static bool trans_VCMLA_scalar(DisasContext *s, arg_VCMLA_scalar *a) { gen_helper_gvec_3_ptr *fn_gvec_ptr; int opr_sz; TCGv_ptr fpst; if (!dc_isar_feature(aa32_vcma, s)) { return false; } if (a->size == 0 && !dc_isar_feature(aa32_fp16_arith, s)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vn | a->vm) & 0x10)) { return false; } if ((a->vd | a->vn) & a->q) { return false; } if (!vfp_access_check(s)) { return true; } fn_gvec_ptr = (a->size ? gen_helper_gvec_fcmlas_idx : gen_helper_gvec_fcmlah_idx); opr_sz = (1 + a->q) * 8; fpst = get_fpstatus_ptr(1); tcg_gen_gvec_3_ptr(vfp_reg_offset(1, a->vd), vfp_reg_offset(1, a->vn), vfp_reg_offset(1, a->vm), fpst, opr_sz, opr_sz, (a->index << 2) | a->rot, fn_gvec_ptr); tcg_temp_free_ptr(fpst); return true; } static bool trans_VDOT_scalar(DisasContext *s, arg_VDOT_scalar *a) { gen_helper_gvec_3 *fn_gvec; int opr_sz; TCGv_ptr fpst; if (!dc_isar_feature(aa32_dp, s)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vn) & 0x10)) { return false; } if ((a->vd | a->vn) & a->q) { return false; } if (!vfp_access_check(s)) { return true; } fn_gvec = a->u ? gen_helper_gvec_udot_idx_b : gen_helper_gvec_sdot_idx_b; opr_sz = (1 + a->q) * 8; fpst = get_fpstatus_ptr(1); tcg_gen_gvec_3_ool(vfp_reg_offset(1, a->vd), vfp_reg_offset(1, a->vn), vfp_reg_offset(1, a->rm), opr_sz, opr_sz, a->index, fn_gvec); tcg_temp_free_ptr(fpst); return true; } static bool trans_VFML_scalar(DisasContext *s, arg_VFML_scalar *a) { int opr_sz; if (!dc_isar_feature(aa32_fhm, s)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd & 0x10) || (a->q && (a->vn & 0x10)))) { return false; } if (a->vd & a->q) { return false; } if (!vfp_access_check(s)) { return true; } opr_sz = (1 + a->q) * 8; tcg_gen_gvec_3_ptr(vfp_reg_offset(1, a->vd), vfp_reg_offset(a->q, a->vn), vfp_reg_offset(a->q, a->rm), cpu_env, opr_sz, opr_sz, (a->index << 2) | a->s, /* is_2 == 0 */ gen_helper_gvec_fmlal_idx_a32); return true; } static struct { int nregs; int interleave; int spacing; } const neon_ls_element_type[11] = { {1, 4, 1}, {1, 4, 2}, {4, 1, 1}, {2, 2, 2}, {1, 3, 1}, {1, 3, 2}, {3, 1, 1}, {1, 1, 1}, {1, 2, 1}, {1, 2, 2}, {2, 1, 1} }; static void gen_neon_ldst_base_update(DisasContext *s, int rm, int rn, int stride) { if (rm != 15) { TCGv_i32 base; base = load_reg(s, rn); if (rm == 13) { tcg_gen_addi_i32(base, base, stride); } else { TCGv_i32 index; index = load_reg(s, rm); tcg_gen_add_i32(base, base, index); tcg_temp_free_i32(index); } store_reg(s, rn, base); } } static bool trans_VLDST_multiple(DisasContext *s, arg_VLDST_multiple *a) { /* Neon load/store multiple structures */ int nregs, interleave, spacing, reg, n; MemOp endian = s->be_data; int mmu_idx = get_mem_index(s); int size = a->size; TCGv_i64 tmp64; TCGv_i32 addr, tmp; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist */ if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) { return false; } if (a->itype > 10) { return false; } /* Catch UNDEF cases for bad values of align field */ switch (a->itype & 0xc) { case 4: if (a->align >= 2) { return false; } break; case 8: if (a->align == 3) { return false; } break; default: break; } nregs = neon_ls_element_type[a->itype].nregs; interleave = neon_ls_element_type[a->itype].interleave; spacing = neon_ls_element_type[a->itype].spacing; if (size == 3 && (interleave | spacing) != 1) { return false; } if (!vfp_access_check(s)) { return true; } /* For our purposes, bytes are always little-endian. */ if (size == 0) { endian = MO_LE; } /* * Consecutive little-endian elements from a single register * can be promoted to a larger little-endian operation. */ if (interleave == 1 && endian == MO_LE) { size = 3; } tmp64 = tcg_temp_new_i64(); addr = tcg_temp_new_i32(); tmp = tcg_const_i32(1 << size); load_reg_var(s, addr, a->rn); for (reg = 0; reg < nregs; reg++) { for (n = 0; n < 8 >> size; n++) { int xs; for (xs = 0; xs < interleave; xs++) { int tt = a->vd + reg + spacing * xs; if (a->l) { gen_aa32_ld_i64(s, tmp64, addr, mmu_idx, endian | size); neon_store_element64(tt, n, size, tmp64); } else { neon_load_element64(tmp64, tt, n, size); gen_aa32_st_i64(s, tmp64, addr, mmu_idx, endian | size); } tcg_gen_add_i32(addr, addr, tmp); } } } tcg_temp_free_i32(addr); tcg_temp_free_i32(tmp); tcg_temp_free_i64(tmp64); gen_neon_ldst_base_update(s, a->rm, a->rn, nregs * interleave * 8); return true; } static bool trans_VLD_all_lanes(DisasContext *s, arg_VLD_all_lanes *a) { /* Neon load single structure to all lanes */ int reg, stride, vec_size; int vd = a->vd; int size = a->size; int nregs = a->n + 1; TCGv_i32 addr, tmp; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist */ if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) { return false; } if (size == 3) { if (nregs != 4 || a->a == 0) { return false; } /* For VLD4 size == 3 a == 1 means 32 bits at 16 byte alignment */ size = 2; } if (nregs == 1 && a->a == 1 && size == 0) { return false; } if (nregs == 3 && a->a == 1) { return false; } if (!vfp_access_check(s)) { return true; } /* * VLD1 to all lanes: T bit indicates how many Dregs to write. * VLD2/3/4 to all lanes: T bit indicates register stride. */ stride = a->t ? 2 : 1; vec_size = nregs == 1 ? stride * 8 : 8; tmp = tcg_temp_new_i32(); addr = tcg_temp_new_i32(); load_reg_var(s, addr, a->rn); for (reg = 0; reg < nregs; reg++) { gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), s->be_data | size); if ((vd & 1) && vec_size == 16) { /* * We cannot write 16 bytes at once because the * destination is unaligned. */ tcg_gen_gvec_dup_i32(size, neon_reg_offset(vd, 0), 8, 8, tmp); tcg_gen_gvec_mov(0, neon_reg_offset(vd + 1, 0), neon_reg_offset(vd, 0), 8, 8); } else { tcg_gen_gvec_dup_i32(size, neon_reg_offset(vd, 0), vec_size, vec_size, tmp); } tcg_gen_addi_i32(addr, addr, 1 << size); vd += stride; } tcg_temp_free_i32(tmp); tcg_temp_free_i32(addr); gen_neon_ldst_base_update(s, a->rm, a->rn, (1 << size) * nregs); return true; } static bool trans_VLDST_single(DisasContext *s, arg_VLDST_single *a) { /* Neon load/store single structure to one lane */ int reg; int nregs = a->n + 1; int vd = a->vd; TCGv_i32 addr, tmp; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist */ if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) { return false; } /* Catch the UNDEF cases. This is unavoidably a bit messy. */ switch (nregs) { case 1: if (((a->align & (1 << a->size)) != 0) || (a->size == 2 && ((a->align & 3) == 1 || (a->align & 3) == 2))) { return false; } break; case 3: if ((a->align & 1) != 0) { return false; } /* fall through */ case 2: if (a->size == 2 && (a->align & 2) != 0) { return false; } break; case 4: if ((a->size == 2) && ((a->align & 3) == 3)) { return false; } break; default: abort(); } if ((vd + a->stride * (nregs - 1)) > 31) { /* * Attempts to write off the end of the register file are * UNPREDICTABLE; we choose to UNDEF because otherwise we would * access off the end of the array that holds the register data. */ return false; } if (!vfp_access_check(s)) { return true; } tmp = tcg_temp_new_i32(); addr = tcg_temp_new_i32(); load_reg_var(s, addr, a->rn); /* * TODO: if we implemented alignment exceptions, we should check * addr against the alignment encoded in a->align here. */ for (reg = 0; reg < nregs; reg++) { if (a->l) { gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), s->be_data | a->size); neon_store_element(vd, a->reg_idx, a->size, tmp); } else { /* Store */ neon_load_element(tmp, vd, a->reg_idx, a->size); gen_aa32_st_i32(s, tmp, addr, get_mem_index(s), s->be_data | a->size); } vd += a->stride; tcg_gen_addi_i32(addr, addr, 1 << a->size); } tcg_temp_free_i32(addr); tcg_temp_free_i32(tmp); gen_neon_ldst_base_update(s, a->rm, a->rn, (1 << a->size) * nregs); return true; } static bool do_3same(DisasContext *s, arg_3same *a, GVecGen3Fn fn) { int vec_size = a->q ? 16 : 8; int rd_ofs = neon_reg_offset(a->vd, 0); int rn_ofs = neon_reg_offset(a->vn, 0); int rm_ofs = neon_reg_offset(a->vm, 0); if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vn | a->vm) & 0x10)) { return false; } if ((a->vn | a->vm | a->vd) & a->q) { return false; } if (!vfp_access_check(s)) { return true; } fn(a->size, rd_ofs, rn_ofs, rm_ofs, vec_size, vec_size); return true; } #define DO_3SAME(INSN, FUNC) \ static bool trans_##INSN##_3s(DisasContext *s, arg_3same *a) \ { \ return do_3same(s, a, FUNC); \ } DO_3SAME(VADD, tcg_gen_gvec_add) DO_3SAME(VSUB, tcg_gen_gvec_sub) DO_3SAME(VAND, tcg_gen_gvec_and) DO_3SAME(VBIC, tcg_gen_gvec_andc) DO_3SAME(VORR, tcg_gen_gvec_or) DO_3SAME(VORN, tcg_gen_gvec_orc) DO_3SAME(VEOR, tcg_gen_gvec_xor) DO_3SAME(VSHL_S, gen_gvec_sshl) DO_3SAME(VSHL_U, gen_gvec_ushl) DO_3SAME(VQADD_S, gen_gvec_sqadd_qc) DO_3SAME(VQADD_U, gen_gvec_uqadd_qc) DO_3SAME(VQSUB_S, gen_gvec_sqsub_qc) DO_3SAME(VQSUB_U, gen_gvec_uqsub_qc) /* These insns are all gvec_bitsel but with the inputs in various orders. */ #define DO_3SAME_BITSEL(INSN, O1, O2, O3) \ static void gen_##INSN##_3s(unsigned vece, uint32_t rd_ofs, \ uint32_t rn_ofs, uint32_t rm_ofs, \ uint32_t oprsz, uint32_t maxsz) \ { \ tcg_gen_gvec_bitsel(vece, rd_ofs, O1, O2, O3, oprsz, maxsz); \ } \ DO_3SAME(INSN, gen_##INSN##_3s) DO_3SAME_BITSEL(VBSL, rd_ofs, rn_ofs, rm_ofs) DO_3SAME_BITSEL(VBIT, rm_ofs, rn_ofs, rd_ofs) DO_3SAME_BITSEL(VBIF, rm_ofs, rd_ofs, rn_ofs) #define DO_3SAME_NO_SZ_3(INSN, FUNC) \ static bool trans_##INSN##_3s(DisasContext *s, arg_3same *a) \ { \ if (a->size == 3) { \ return false; \ } \ return do_3same(s, a, FUNC); \ } DO_3SAME_NO_SZ_3(VMAX_S, tcg_gen_gvec_smax) DO_3SAME_NO_SZ_3(VMAX_U, tcg_gen_gvec_umax) DO_3SAME_NO_SZ_3(VMIN_S, tcg_gen_gvec_smin) DO_3SAME_NO_SZ_3(VMIN_U, tcg_gen_gvec_umin) DO_3SAME_NO_SZ_3(VMUL, tcg_gen_gvec_mul) DO_3SAME_NO_SZ_3(VMLA, gen_gvec_mla) DO_3SAME_NO_SZ_3(VMLS, gen_gvec_mls) DO_3SAME_NO_SZ_3(VTST, gen_gvec_cmtst) DO_3SAME_NO_SZ_3(VABD_S, gen_gvec_sabd) DO_3SAME_NO_SZ_3(VABA_S, gen_gvec_saba) DO_3SAME_NO_SZ_3(VABD_U, gen_gvec_uabd) DO_3SAME_NO_SZ_3(VABA_U, gen_gvec_uaba) #define DO_3SAME_CMP(INSN, COND) \ static void gen_##INSN##_3s(unsigned vece, uint32_t rd_ofs, \ uint32_t rn_ofs, uint32_t rm_ofs, \ uint32_t oprsz, uint32_t maxsz) \ { \ tcg_gen_gvec_cmp(COND, vece, rd_ofs, rn_ofs, rm_ofs, oprsz, maxsz); \ } \ DO_3SAME_NO_SZ_3(INSN, gen_##INSN##_3s) DO_3SAME_CMP(VCGT_S, TCG_COND_GT) DO_3SAME_CMP(VCGT_U, TCG_COND_GTU) DO_3SAME_CMP(VCGE_S, TCG_COND_GE) DO_3SAME_CMP(VCGE_U, TCG_COND_GEU) DO_3SAME_CMP(VCEQ, TCG_COND_EQ) #define WRAP_OOL_FN(WRAPNAME, FUNC) \ static void WRAPNAME(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, \ uint32_t rm_ofs, uint32_t oprsz, uint32_t maxsz) \ { \ tcg_gen_gvec_3_ool(rd_ofs, rn_ofs, rm_ofs, oprsz, maxsz, 0, FUNC); \ } WRAP_OOL_FN(gen_VMUL_p_3s, gen_helper_gvec_pmul_b) static bool trans_VMUL_p_3s(DisasContext *s, arg_3same *a) { if (a->size != 0) { return false; } return do_3same(s, a, gen_VMUL_p_3s); } #define DO_VQRDMLAH(INSN, FUNC) \ static bool trans_##INSN##_3s(DisasContext *s, arg_3same *a) \ { \ if (!dc_isar_feature(aa32_rdm, s)) { \ return false; \ } \ if (a->size != 1 && a->size != 2) { \ return false; \ } \ return do_3same(s, a, FUNC); \ } DO_VQRDMLAH(VQRDMLAH, gen_gvec_sqrdmlah_qc) DO_VQRDMLAH(VQRDMLSH, gen_gvec_sqrdmlsh_qc) #define DO_SHA1(NAME, FUNC) \ WRAP_OOL_FN(gen_##NAME##_3s, FUNC) \ static bool trans_##NAME##_3s(DisasContext *s, arg_3same *a) \ { \ if (!dc_isar_feature(aa32_sha1, s)) { \ return false; \ } \ return do_3same(s, a, gen_##NAME##_3s); \ } DO_SHA1(SHA1C, gen_helper_crypto_sha1c) DO_SHA1(SHA1P, gen_helper_crypto_sha1p) DO_SHA1(SHA1M, gen_helper_crypto_sha1m) DO_SHA1(SHA1SU0, gen_helper_crypto_sha1su0) #define DO_SHA2(NAME, FUNC) \ WRAP_OOL_FN(gen_##NAME##_3s, FUNC) \ static bool trans_##NAME##_3s(DisasContext *s, arg_3same *a) \ { \ if (!dc_isar_feature(aa32_sha2, s)) { \ return false; \ } \ return do_3same(s, a, gen_##NAME##_3s); \ } DO_SHA2(SHA256H, gen_helper_crypto_sha256h) DO_SHA2(SHA256H2, gen_helper_crypto_sha256h2) DO_SHA2(SHA256SU1, gen_helper_crypto_sha256su1) #define DO_3SAME_64(INSN, FUNC) \ static void gen_##INSN##_3s(unsigned vece, uint32_t rd_ofs, \ uint32_t rn_ofs, uint32_t rm_ofs, \ uint32_t oprsz, uint32_t maxsz) \ { \ static const GVecGen3 op = { .fni8 = FUNC }; \ tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, oprsz, maxsz, &op); \ } \ DO_3SAME(INSN, gen_##INSN##_3s) #define DO_3SAME_64_ENV(INSN, FUNC) \ static void gen_##INSN##_elt(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) \ { \ FUNC(d, cpu_env, n, m); \ } \ DO_3SAME_64(INSN, gen_##INSN##_elt) DO_3SAME_64(VRSHL_S64, gen_helper_neon_rshl_s64) DO_3SAME_64(VRSHL_U64, gen_helper_neon_rshl_u64) DO_3SAME_64_ENV(VQSHL_S64, gen_helper_neon_qshl_s64) DO_3SAME_64_ENV(VQSHL_U64, gen_helper_neon_qshl_u64) DO_3SAME_64_ENV(VQRSHL_S64, gen_helper_neon_qrshl_s64) DO_3SAME_64_ENV(VQRSHL_U64, gen_helper_neon_qrshl_u64) #define DO_3SAME_32(INSN, FUNC) \ static void gen_##INSN##_3s(unsigned vece, uint32_t rd_ofs, \ uint32_t rn_ofs, uint32_t rm_ofs, \ uint32_t oprsz, uint32_t maxsz) \ { \ static const GVecGen3 ops[4] = { \ { .fni4 = gen_helper_neon_##FUNC##8 }, \ { .fni4 = gen_helper_neon_##FUNC##16 }, \ { .fni4 = gen_helper_neon_##FUNC##32 }, \ { 0 }, \ }; \ tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, oprsz, maxsz, &ops[vece]); \ } \ static bool trans_##INSN##_3s(DisasContext *s, arg_3same *a) \ { \ if (a->size > 2) { \ return false; \ } \ return do_3same(s, a, gen_##INSN##_3s); \ } /* * Some helper functions need to be passed the cpu_env. In order * to use those with the gvec APIs like tcg_gen_gvec_3() we need * to create wrapper functions whose prototype is a NeonGenTwoOpFn() * and which call a NeonGenTwoOpEnvFn(). */ #define WRAP_ENV_FN(WRAPNAME, FUNC) \ static void WRAPNAME(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m) \ { \ FUNC(d, cpu_env, n, m); \ } #define DO_3SAME_32_ENV(INSN, FUNC) \ WRAP_ENV_FN(gen_##INSN##_tramp8, gen_helper_neon_##FUNC##8); \ WRAP_ENV_FN(gen_##INSN##_tramp16, gen_helper_neon_##FUNC##16); \ WRAP_ENV_FN(gen_##INSN##_tramp32, gen_helper_neon_##FUNC##32); \ static void gen_##INSN##_3s(unsigned vece, uint32_t rd_ofs, \ uint32_t rn_ofs, uint32_t rm_ofs, \ uint32_t oprsz, uint32_t maxsz) \ { \ static const GVecGen3 ops[4] = { \ { .fni4 = gen_##INSN##_tramp8 }, \ { .fni4 = gen_##INSN##_tramp16 }, \ { .fni4 = gen_##INSN##_tramp32 }, \ { 0 }, \ }; \ tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, oprsz, maxsz, &ops[vece]); \ } \ static bool trans_##INSN##_3s(DisasContext *s, arg_3same *a) \ { \ if (a->size > 2) { \ return false; \ } \ return do_3same(s, a, gen_##INSN##_3s); \ } DO_3SAME_32(VHADD_S, hadd_s) DO_3SAME_32(VHADD_U, hadd_u) DO_3SAME_32(VHSUB_S, hsub_s) DO_3SAME_32(VHSUB_U, hsub_u) DO_3SAME_32(VRHADD_S, rhadd_s) DO_3SAME_32(VRHADD_U, rhadd_u) DO_3SAME_32(VRSHL_S, rshl_s) DO_3SAME_32(VRSHL_U, rshl_u) DO_3SAME_32_ENV(VQSHL_S, qshl_s) DO_3SAME_32_ENV(VQSHL_U, qshl_u) DO_3SAME_32_ENV(VQRSHL_S, qrshl_s) DO_3SAME_32_ENV(VQRSHL_U, qrshl_u) static bool do_3same_pair(DisasContext *s, arg_3same *a, NeonGenTwoOpFn *fn) { /* Operations handled pairwise 32 bits at a time */ TCGv_i32 tmp, tmp2, tmp3; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vn | a->vm) & 0x10)) { return false; } if (a->size == 3) { return false; } if (!vfp_access_check(s)) { return true; } assert(a->q == 0); /* enforced by decode patterns */ /* * Note that we have to be careful not to clobber the source operands * in the "vm == vd" case by storing the result of the first pass too * early. Since Q is 0 there are always just two passes, so instead * of a complicated loop over each pass we just unroll. */ tmp = neon_load_reg(a->vn, 0); tmp2 = neon_load_reg(a->vn, 1); fn(tmp, tmp, tmp2); tcg_temp_free_i32(tmp2); tmp3 = neon_load_reg(a->vm, 0); tmp2 = neon_load_reg(a->vm, 1); fn(tmp3, tmp3, tmp2); tcg_temp_free_i32(tmp2); neon_store_reg(a->vd, 0, tmp); neon_store_reg(a->vd, 1, tmp3); return true; } #define DO_3SAME_PAIR(INSN, func) \ static bool trans_##INSN##_3s(DisasContext *s, arg_3same *a) \ { \ static NeonGenTwoOpFn * const fns[] = { \ gen_helper_neon_##func##8, \ gen_helper_neon_##func##16, \ gen_helper_neon_##func##32, \ }; \ if (a->size > 2) { \ return false; \ } \ return do_3same_pair(s, a, fns[a->size]); \ } /* 32-bit pairwise ops end up the same as the elementwise versions. */ #define gen_helper_neon_pmax_s32 tcg_gen_smax_i32 #define gen_helper_neon_pmax_u32 tcg_gen_umax_i32 #define gen_helper_neon_pmin_s32 tcg_gen_smin_i32 #define gen_helper_neon_pmin_u32 tcg_gen_umin_i32 #define gen_helper_neon_padd_u32 tcg_gen_add_i32 DO_3SAME_PAIR(VPMAX_S, pmax_s) DO_3SAME_PAIR(VPMIN_S, pmin_s) DO_3SAME_PAIR(VPMAX_U, pmax_u) DO_3SAME_PAIR(VPMIN_U, pmin_u) DO_3SAME_PAIR(VPADD, padd_u) #define DO_3SAME_VQDMULH(INSN, FUNC) \ WRAP_ENV_FN(gen_##INSN##_tramp16, gen_helper_neon_##FUNC##_s16); \ WRAP_ENV_FN(gen_##INSN##_tramp32, gen_helper_neon_##FUNC##_s32); \ static void gen_##INSN##_3s(unsigned vece, uint32_t rd_ofs, \ uint32_t rn_ofs, uint32_t rm_ofs, \ uint32_t oprsz, uint32_t maxsz) \ { \ static const GVecGen3 ops[2] = { \ { .fni4 = gen_##INSN##_tramp16 }, \ { .fni4 = gen_##INSN##_tramp32 }, \ }; \ tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, oprsz, maxsz, &ops[vece - 1]); \ } \ static bool trans_##INSN##_3s(DisasContext *s, arg_3same *a) \ { \ if (a->size != 1 && a->size != 2) { \ return false; \ } \ return do_3same(s, a, gen_##INSN##_3s); \ } DO_3SAME_VQDMULH(VQDMULH, qdmulh) DO_3SAME_VQDMULH(VQRDMULH, qrdmulh) static bool do_3same_fp(DisasContext *s, arg_3same *a, VFPGen3OpSPFn *fn, bool reads_vd) { /* * FP operations handled elementwise 32 bits at a time. * If reads_vd is true then the old value of Vd will be * loaded before calling the callback function. This is * used for multiply-accumulate type operations. */ TCGv_i32 tmp, tmp2; int pass; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vn | a->vm) & 0x10)) { return false; } if ((a->vn | a->vm | a->vd) & a->q) { return false; } if (!vfp_access_check(s)) { return true; } TCGv_ptr fpstatus = get_fpstatus_ptr(1); for (pass = 0; pass < (a->q ? 4 : 2); pass++) { tmp = neon_load_reg(a->vn, pass); tmp2 = neon_load_reg(a->vm, pass); if (reads_vd) { TCGv_i32 tmp_rd = neon_load_reg(a->vd, pass); fn(tmp_rd, tmp, tmp2, fpstatus); neon_store_reg(a->vd, pass, tmp_rd); tcg_temp_free_i32(tmp); } else { fn(tmp, tmp, tmp2, fpstatus); neon_store_reg(a->vd, pass, tmp); } tcg_temp_free_i32(tmp2); } tcg_temp_free_ptr(fpstatus); return true; } /* * For all the functions using this macro, size == 1 means fp16, * which is an architecture extension we don't implement yet. */ #define DO_3S_FP_GVEC(INSN,FUNC) \ static void gen_##INSN##_3s(unsigned vece, uint32_t rd_ofs, \ uint32_t rn_ofs, uint32_t rm_ofs, \ uint32_t oprsz, uint32_t maxsz) \ { \ TCGv_ptr fpst = get_fpstatus_ptr(1); \ tcg_gen_gvec_3_ptr(rd_ofs, rn_ofs, rm_ofs, fpst, \ oprsz, maxsz, 0, FUNC); \ tcg_temp_free_ptr(fpst); \ } \ static bool trans_##INSN##_fp_3s(DisasContext *s, arg_3same *a) \ { \ if (a->size != 0) { \ /* TODO fp16 support */ \ return false; \ } \ return do_3same(s, a, gen_##INSN##_3s); \ } DO_3S_FP_GVEC(VADD, gen_helper_gvec_fadd_s) DO_3S_FP_GVEC(VSUB, gen_helper_gvec_fsub_s) DO_3S_FP_GVEC(VABD, gen_helper_gvec_fabd_s) DO_3S_FP_GVEC(VMUL, gen_helper_gvec_fmul_s) /* * For all the functions using this macro, size == 1 means fp16, * which is an architecture extension we don't implement yet. */ #define DO_3S_FP(INSN,FUNC,READS_VD) \ static bool trans_##INSN##_fp_3s(DisasContext *s, arg_3same *a) \ { \ if (a->size != 0) { \ /* TODO fp16 support */ \ return false; \ } \ return do_3same_fp(s, a, FUNC, READS_VD); \ } DO_3S_FP(VCEQ, gen_helper_neon_ceq_f32, false) DO_3S_FP(VCGE, gen_helper_neon_cge_f32, false) DO_3S_FP(VCGT, gen_helper_neon_cgt_f32, false) DO_3S_FP(VACGE, gen_helper_neon_acge_f32, false) DO_3S_FP(VACGT, gen_helper_neon_acgt_f32, false) DO_3S_FP(VMAX, gen_helper_vfp_maxs, false) DO_3S_FP(VMIN, gen_helper_vfp_mins, false) static void gen_VMLA_fp_3s(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpstatus) { gen_helper_vfp_muls(vn, vn, vm, fpstatus); gen_helper_vfp_adds(vd, vd, vn, fpstatus); } static void gen_VMLS_fp_3s(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpstatus) { gen_helper_vfp_muls(vn, vn, vm, fpstatus); gen_helper_vfp_subs(vd, vd, vn, fpstatus); } DO_3S_FP(VMLA, gen_VMLA_fp_3s, true) DO_3S_FP(VMLS, gen_VMLS_fp_3s, true) static bool trans_VMAXNM_fp_3s(DisasContext *s, arg_3same *a) { if (!arm_dc_feature(s, ARM_FEATURE_V8)) { return false; } if (a->size != 0) { /* TODO fp16 support */ return false; } return do_3same_fp(s, a, gen_helper_vfp_maxnums, false); } static bool trans_VMINNM_fp_3s(DisasContext *s, arg_3same *a) { if (!arm_dc_feature(s, ARM_FEATURE_V8)) { return false; } if (a->size != 0) { /* TODO fp16 support */ return false; } return do_3same_fp(s, a, gen_helper_vfp_minnums, false); } WRAP_ENV_FN(gen_VRECPS_tramp, gen_helper_recps_f32) static void gen_VRECPS_fp_3s(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t oprsz, uint32_t maxsz) { static const GVecGen3 ops = { .fni4 = gen_VRECPS_tramp }; tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, oprsz, maxsz, &ops); } static bool trans_VRECPS_fp_3s(DisasContext *s, arg_3same *a) { if (a->size != 0) { /* TODO fp16 support */ return false; } return do_3same(s, a, gen_VRECPS_fp_3s); } WRAP_ENV_FN(gen_VRSQRTS_tramp, gen_helper_rsqrts_f32) static void gen_VRSQRTS_fp_3s(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t oprsz, uint32_t maxsz) { static const GVecGen3 ops = { .fni4 = gen_VRSQRTS_tramp }; tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, oprsz, maxsz, &ops); } static bool trans_VRSQRTS_fp_3s(DisasContext *s, arg_3same *a) { if (a->size != 0) { /* TODO fp16 support */ return false; } return do_3same(s, a, gen_VRSQRTS_fp_3s); } static void gen_VFMA_fp_3s(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpstatus) { gen_helper_vfp_muladds(vd, vn, vm, vd, fpstatus); } static bool trans_VFMA_fp_3s(DisasContext *s, arg_3same *a) { if (!dc_isar_feature(aa32_simdfmac, s)) { return false; } if (a->size != 0) { /* TODO fp16 support */ return false; } return do_3same_fp(s, a, gen_VFMA_fp_3s, true); } static void gen_VFMS_fp_3s(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpstatus) { gen_helper_vfp_negs(vn, vn); gen_helper_vfp_muladds(vd, vn, vm, vd, fpstatus); } static bool trans_VFMS_fp_3s(DisasContext *s, arg_3same *a) { if (!dc_isar_feature(aa32_simdfmac, s)) { return false; } if (a->size != 0) { /* TODO fp16 support */ return false; } return do_3same_fp(s, a, gen_VFMS_fp_3s, true); } static bool do_3same_fp_pair(DisasContext *s, arg_3same *a, VFPGen3OpSPFn *fn) { /* FP operations handled pairwise 32 bits at a time */ TCGv_i32 tmp, tmp2, tmp3; TCGv_ptr fpstatus; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vn | a->vm) & 0x10)) { return false; } if (!vfp_access_check(s)) { return true; } assert(a->q == 0); /* enforced by decode patterns */ /* * Note that we have to be careful not to clobber the source operands * in the "vm == vd" case by storing the result of the first pass too * early. Since Q is 0 there are always just two passes, so instead * of a complicated loop over each pass we just unroll. */ fpstatus = get_fpstatus_ptr(1); tmp = neon_load_reg(a->vn, 0); tmp2 = neon_load_reg(a->vn, 1); fn(tmp, tmp, tmp2, fpstatus); tcg_temp_free_i32(tmp2); tmp3 = neon_load_reg(a->vm, 0); tmp2 = neon_load_reg(a->vm, 1); fn(tmp3, tmp3, tmp2, fpstatus); tcg_temp_free_i32(tmp2); tcg_temp_free_ptr(fpstatus); neon_store_reg(a->vd, 0, tmp); neon_store_reg(a->vd, 1, tmp3); return true; } /* * For all the functions using this macro, size == 1 means fp16, * which is an architecture extension we don't implement yet. */ #define DO_3S_FP_PAIR(INSN,FUNC) \ static bool trans_##INSN##_fp_3s(DisasContext *s, arg_3same *a) \ { \ if (a->size != 0) { \ /* TODO fp16 support */ \ return false; \ } \ return do_3same_fp_pair(s, a, FUNC); \ } DO_3S_FP_PAIR(VPADD, gen_helper_vfp_adds) DO_3S_FP_PAIR(VPMAX, gen_helper_vfp_maxs) DO_3S_FP_PAIR(VPMIN, gen_helper_vfp_mins) static bool do_vector_2sh(DisasContext *s, arg_2reg_shift *a, GVecGen2iFn *fn) { /* Handle a 2-reg-shift insn which can be vectorized. */ int vec_size = a->q ? 16 : 8; int rd_ofs = neon_reg_offset(a->vd, 0); int rm_ofs = neon_reg_offset(a->vm, 0); if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { return false; } if ((a->vm | a->vd) & a->q) { return false; } if (!vfp_access_check(s)) { return true; } fn(a->size, rd_ofs, rm_ofs, a->shift, vec_size, vec_size); return true; } #define DO_2SH(INSN, FUNC) \ static bool trans_##INSN##_2sh(DisasContext *s, arg_2reg_shift *a) \ { \ return do_vector_2sh(s, a, FUNC); \ } \ DO_2SH(VSHL, tcg_gen_gvec_shli) DO_2SH(VSLI, gen_gvec_sli) DO_2SH(VSRI, gen_gvec_sri) DO_2SH(VSRA_S, gen_gvec_ssra) DO_2SH(VSRA_U, gen_gvec_usra) DO_2SH(VRSHR_S, gen_gvec_srshr) DO_2SH(VRSHR_U, gen_gvec_urshr) DO_2SH(VRSRA_S, gen_gvec_srsra) DO_2SH(VRSRA_U, gen_gvec_ursra) static bool trans_VSHR_S_2sh(DisasContext *s, arg_2reg_shift *a) { /* Signed shift out of range results in all-sign-bits */ a->shift = MIN(a->shift, (8 << a->size) - 1); return do_vector_2sh(s, a, tcg_gen_gvec_sari); } static void gen_zero_rd_2sh(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, int64_t shift, uint32_t oprsz, uint32_t maxsz) { tcg_gen_gvec_dup_imm(vece, rd_ofs, oprsz, maxsz, 0); } static bool trans_VSHR_U_2sh(DisasContext *s, arg_2reg_shift *a) { /* Shift out of range is architecturally valid and results in zero. */ if (a->shift >= (8 << a->size)) { return do_vector_2sh(s, a, gen_zero_rd_2sh); } else { return do_vector_2sh(s, a, tcg_gen_gvec_shri); } } static bool do_2shift_env_64(DisasContext *s, arg_2reg_shift *a, NeonGenTwo64OpEnvFn *fn) { /* * 2-reg-and-shift operations, size == 3 case, where the * function needs to be passed cpu_env. */ TCGv_i64 constimm; int pass; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { return false; } if ((a->vm | a->vd) & a->q) { return false; } if (!vfp_access_check(s)) { return true; } /* * To avoid excessive duplication of ops we implement shift * by immediate using the variable shift operations. */ constimm = tcg_const_i64(dup_const(a->size, a->shift)); for (pass = 0; pass < a->q + 1; pass++) { TCGv_i64 tmp = tcg_temp_new_i64(); neon_load_reg64(tmp, a->vm + pass); fn(tmp, cpu_env, tmp, constimm); neon_store_reg64(tmp, a->vd + pass); } tcg_temp_free_i64(constimm); return true; } static bool do_2shift_env_32(DisasContext *s, arg_2reg_shift *a, NeonGenTwoOpEnvFn *fn) { /* * 2-reg-and-shift operations, size < 3 case, where the * helper needs to be passed cpu_env. */ TCGv_i32 constimm; int pass; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { return false; } if ((a->vm | a->vd) & a->q) { return false; } if (!vfp_access_check(s)) { return true; } /* * To avoid excessive duplication of ops we implement shift * by immediate using the variable shift operations. */ constimm = tcg_const_i32(dup_const(a->size, a->shift)); for (pass = 0; pass < (a->q ? 4 : 2); pass++) { TCGv_i32 tmp = neon_load_reg(a->vm, pass); fn(tmp, cpu_env, tmp, constimm); neon_store_reg(a->vd, pass, tmp); } tcg_temp_free_i32(constimm); return true; } #define DO_2SHIFT_ENV(INSN, FUNC) \ static bool trans_##INSN##_64_2sh(DisasContext *s, arg_2reg_shift *a) \ { \ return do_2shift_env_64(s, a, gen_helper_neon_##FUNC##64); \ } \ static bool trans_##INSN##_2sh(DisasContext *s, arg_2reg_shift *a) \ { \ static NeonGenTwoOpEnvFn * const fns[] = { \ gen_helper_neon_##FUNC##8, \ gen_helper_neon_##FUNC##16, \ gen_helper_neon_##FUNC##32, \ }; \ assert(a->size < ARRAY_SIZE(fns)); \ return do_2shift_env_32(s, a, fns[a->size]); \ } DO_2SHIFT_ENV(VQSHLU, qshlu_s) DO_2SHIFT_ENV(VQSHL_U, qshl_u) DO_2SHIFT_ENV(VQSHL_S, qshl_s) static bool do_2shift_narrow_64(DisasContext *s, arg_2reg_shift *a, NeonGenTwo64OpFn *shiftfn, NeonGenNarrowEnvFn *narrowfn) { /* 2-reg-and-shift narrowing-shift operations, size == 3 case */ TCGv_i64 constimm, rm1, rm2; TCGv_i32 rd; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { return false; } if (a->vm & 1) { return false; } if (!vfp_access_check(s)) { return true; } /* * This is always a right shift, and the shiftfn is always a * left-shift helper, which thus needs the negated shift count. */ constimm = tcg_const_i64(-a->shift); rm1 = tcg_temp_new_i64(); rm2 = tcg_temp_new_i64(); /* Load both inputs first to avoid potential overwrite if rm == rd */ neon_load_reg64(rm1, a->vm); neon_load_reg64(rm2, a->vm + 1); shiftfn(rm1, rm1, constimm); rd = tcg_temp_new_i32(); narrowfn(rd, cpu_env, rm1); neon_store_reg(a->vd, 0, rd); shiftfn(rm2, rm2, constimm); rd = tcg_temp_new_i32(); narrowfn(rd, cpu_env, rm2); neon_store_reg(a->vd, 1, rd); tcg_temp_free_i64(rm1); tcg_temp_free_i64(rm2); tcg_temp_free_i64(constimm); return true; } static bool do_2shift_narrow_32(DisasContext *s, arg_2reg_shift *a, NeonGenTwoOpFn *shiftfn, NeonGenNarrowEnvFn *narrowfn) { /* 2-reg-and-shift narrowing-shift operations, size < 3 case */ TCGv_i32 constimm, rm1, rm2, rm3, rm4; TCGv_i64 rtmp; uint32_t imm; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { return false; } if (a->vm & 1) { return false; } if (!vfp_access_check(s)) { return true; } /* * This is always a right shift, and the shiftfn is always a * left-shift helper, which thus needs the negated shift count * duplicated into each lane of the immediate value. */ if (a->size == 1) { imm = (uint16_t)(-a->shift); imm |= imm << 16; } else { /* size == 2 */ imm = -a->shift; } constimm = tcg_const_i32(imm); /* Load all inputs first to avoid potential overwrite */ rm1 = neon_load_reg(a->vm, 0); rm2 = neon_load_reg(a->vm, 1); rm3 = neon_load_reg(a->vm + 1, 0); rm4 = neon_load_reg(a->vm + 1, 1); rtmp = tcg_temp_new_i64(); shiftfn(rm1, rm1, constimm); shiftfn(rm2, rm2, constimm); tcg_gen_concat_i32_i64(rtmp, rm1, rm2); tcg_temp_free_i32(rm2); narrowfn(rm1, cpu_env, rtmp); neon_store_reg(a->vd, 0, rm1); shiftfn(rm3, rm3, constimm); shiftfn(rm4, rm4, constimm); tcg_temp_free_i32(constimm); tcg_gen_concat_i32_i64(rtmp, rm3, rm4); tcg_temp_free_i32(rm4); narrowfn(rm3, cpu_env, rtmp); tcg_temp_free_i64(rtmp); neon_store_reg(a->vd, 1, rm3); return true; } #define DO_2SN_64(INSN, FUNC, NARROWFUNC) \ static bool trans_##INSN##_2sh(DisasContext *s, arg_2reg_shift *a) \ { \ return do_2shift_narrow_64(s, a, FUNC, NARROWFUNC); \ } #define DO_2SN_32(INSN, FUNC, NARROWFUNC) \ static bool trans_##INSN##_2sh(DisasContext *s, arg_2reg_shift *a) \ { \ return do_2shift_narrow_32(s, a, FUNC, NARROWFUNC); \ } static void gen_neon_narrow_u32(TCGv_i32 dest, TCGv_ptr env, TCGv_i64 src) { tcg_gen_extrl_i64_i32(dest, src); } static void gen_neon_narrow_u16(TCGv_i32 dest, TCGv_ptr env, TCGv_i64 src) { gen_helper_neon_narrow_u16(dest, src); } static void gen_neon_narrow_u8(TCGv_i32 dest, TCGv_ptr env, TCGv_i64 src) { gen_helper_neon_narrow_u8(dest, src); } DO_2SN_64(VSHRN_64, gen_ushl_i64, gen_neon_narrow_u32) DO_2SN_32(VSHRN_32, gen_ushl_i32, gen_neon_narrow_u16) DO_2SN_32(VSHRN_16, gen_helper_neon_shl_u16, gen_neon_narrow_u8) DO_2SN_64(VRSHRN_64, gen_helper_neon_rshl_u64, gen_neon_narrow_u32) DO_2SN_32(VRSHRN_32, gen_helper_neon_rshl_u32, gen_neon_narrow_u16) DO_2SN_32(VRSHRN_16, gen_helper_neon_rshl_u16, gen_neon_narrow_u8) DO_2SN_64(VQSHRUN_64, gen_sshl_i64, gen_helper_neon_unarrow_sat32) DO_2SN_32(VQSHRUN_32, gen_sshl_i32, gen_helper_neon_unarrow_sat16) DO_2SN_32(VQSHRUN_16, gen_helper_neon_shl_s16, gen_helper_neon_unarrow_sat8) DO_2SN_64(VQRSHRUN_64, gen_helper_neon_rshl_s64, gen_helper_neon_unarrow_sat32) DO_2SN_32(VQRSHRUN_32, gen_helper_neon_rshl_s32, gen_helper_neon_unarrow_sat16) DO_2SN_32(VQRSHRUN_16, gen_helper_neon_rshl_s16, gen_helper_neon_unarrow_sat8) DO_2SN_64(VQSHRN_S64, gen_sshl_i64, gen_helper_neon_narrow_sat_s32) DO_2SN_32(VQSHRN_S32, gen_sshl_i32, gen_helper_neon_narrow_sat_s16) DO_2SN_32(VQSHRN_S16, gen_helper_neon_shl_s16, gen_helper_neon_narrow_sat_s8) DO_2SN_64(VQRSHRN_S64, gen_helper_neon_rshl_s64, gen_helper_neon_narrow_sat_s32) DO_2SN_32(VQRSHRN_S32, gen_helper_neon_rshl_s32, gen_helper_neon_narrow_sat_s16) DO_2SN_32(VQRSHRN_S16, gen_helper_neon_rshl_s16, gen_helper_neon_narrow_sat_s8) DO_2SN_64(VQSHRN_U64, gen_ushl_i64, gen_helper_neon_narrow_sat_u32) DO_2SN_32(VQSHRN_U32, gen_ushl_i32, gen_helper_neon_narrow_sat_u16) DO_2SN_32(VQSHRN_U16, gen_helper_neon_shl_u16, gen_helper_neon_narrow_sat_u8) DO_2SN_64(VQRSHRN_U64, gen_helper_neon_rshl_u64, gen_helper_neon_narrow_sat_u32) DO_2SN_32(VQRSHRN_U32, gen_helper_neon_rshl_u32, gen_helper_neon_narrow_sat_u16) DO_2SN_32(VQRSHRN_U16, gen_helper_neon_rshl_u16, gen_helper_neon_narrow_sat_u8) static bool do_vshll_2sh(DisasContext *s, arg_2reg_shift *a, NeonGenWidenFn *widenfn, bool u) { TCGv_i64 tmp; TCGv_i32 rm0, rm1; uint64_t widen_mask = 0; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { return false; } if (a->vd & 1) { return false; } if (!vfp_access_check(s)) { return true; } /* * This is a widen-and-shift operation. The shift is always less * than the width of the source type, so after widening the input * vector we can simply shift the whole 64-bit widened register, * and then clear the potential overflow bits resulting from left * bits of the narrow input appearing as right bits of the left * neighbour narrow input. Calculate a mask of bits to clear. */ if ((a->shift != 0) && (a->size < 2 || u)) { int esize = 8 << a->size; widen_mask = MAKE_64BIT_MASK(0, esize); widen_mask >>= esize - a->shift; widen_mask = dup_const(a->size + 1, widen_mask); } rm0 = neon_load_reg(a->vm, 0); rm1 = neon_load_reg(a->vm, 1); tmp = tcg_temp_new_i64(); widenfn(tmp, rm0); tcg_temp_free_i32(rm0); if (a->shift != 0) { tcg_gen_shli_i64(tmp, tmp, a->shift); tcg_gen_andi_i64(tmp, tmp, ~widen_mask); } neon_store_reg64(tmp, a->vd); widenfn(tmp, rm1); tcg_temp_free_i32(rm1); if (a->shift != 0) { tcg_gen_shli_i64(tmp, tmp, a->shift); tcg_gen_andi_i64(tmp, tmp, ~widen_mask); } neon_store_reg64(tmp, a->vd + 1); tcg_temp_free_i64(tmp); return true; } static bool trans_VSHLL_S_2sh(DisasContext *s, arg_2reg_shift *a) { NeonGenWidenFn *widenfn[] = { gen_helper_neon_widen_s8, gen_helper_neon_widen_s16, tcg_gen_ext_i32_i64, }; return do_vshll_2sh(s, a, widenfn[a->size], false); } static bool trans_VSHLL_U_2sh(DisasContext *s, arg_2reg_shift *a) { NeonGenWidenFn *widenfn[] = { gen_helper_neon_widen_u8, gen_helper_neon_widen_u16, tcg_gen_extu_i32_i64, }; return do_vshll_2sh(s, a, widenfn[a->size], true); } static bool do_fp_2sh(DisasContext *s, arg_2reg_shift *a, NeonGenTwoSingleOPFn *fn) { /* FP operations in 2-reg-and-shift group */ TCGv_i32 tmp, shiftv; TCGv_ptr fpstatus; int pass; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { return false; } if ((a->vm | a->vd) & a->q) { return false; } if (!vfp_access_check(s)) { return true; } fpstatus = get_fpstatus_ptr(1); shiftv = tcg_const_i32(a->shift); for (pass = 0; pass < (a->q ? 4 : 2); pass++) { tmp = neon_load_reg(a->vm, pass); fn(tmp, tmp, shiftv, fpstatus); neon_store_reg(a->vd, pass, tmp); } tcg_temp_free_ptr(fpstatus); tcg_temp_free_i32(shiftv); return true; } #define DO_FP_2SH(INSN, FUNC) \ static bool trans_##INSN##_2sh(DisasContext *s, arg_2reg_shift *a) \ { \ return do_fp_2sh(s, a, FUNC); \ } DO_FP_2SH(VCVT_SF, gen_helper_vfp_sltos) DO_FP_2SH(VCVT_UF, gen_helper_vfp_ultos) DO_FP_2SH(VCVT_FS, gen_helper_vfp_tosls_round_to_zero) DO_FP_2SH(VCVT_FU, gen_helper_vfp_touls_round_to_zero) static uint64_t asimd_imm_const(uint32_t imm, int cmode, int op) { /* * Expand the encoded constant. * Note that cmode = 2,3,4,5,6,7,10,11,12,13 imm=0 is UNPREDICTABLE. * We choose to not special-case this and will behave as if a * valid constant encoding of 0 had been given. * cmode = 15 op = 1 must UNDEF; we assume decode has handled that. */ switch (cmode) { case 0: case 1: /* no-op */ break; case 2: case 3: imm <<= 8; break; case 4: case 5: imm <<= 16; break; case 6: case 7: imm <<= 24; break; case 8: case 9: imm |= imm << 16; break; case 10: case 11: imm = (imm << 8) | (imm << 24); break; case 12: imm = (imm << 8) | 0xff; break; case 13: imm = (imm << 16) | 0xffff; break; case 14: if (op) { /* * This is the only case where the top and bottom 32 bits * of the encoded constant differ. */ uint64_t imm64 = 0; int n; for (n = 0; n < 8; n++) { if (imm & (1 << n)) { imm64 |= (0xffULL << (n * 8)); } } return imm64; } imm |= (imm << 8) | (imm << 16) | (imm << 24); break; case 15: imm = ((imm & 0x80) << 24) | ((imm & 0x3f) << 19) | ((imm & 0x40) ? (0x1f << 25) : (1 << 30)); break; } if (op) { imm = ~imm; } return dup_const(MO_32, imm); } static bool do_1reg_imm(DisasContext *s, arg_1reg_imm *a, GVecGen2iFn *fn) { uint64_t imm; int reg_ofs, vec_size; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) { return false; } if (a->vd & a->q) { return false; } if (!vfp_access_check(s)) { return true; } reg_ofs = neon_reg_offset(a->vd, 0); vec_size = a->q ? 16 : 8; imm = asimd_imm_const(a->imm, a->cmode, a->op); fn(MO_64, reg_ofs, reg_ofs, imm, vec_size, vec_size); return true; } static void gen_VMOV_1r(unsigned vece, uint32_t dofs, uint32_t aofs, int64_t c, uint32_t oprsz, uint32_t maxsz) { tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, c); } static bool trans_Vimm_1r(DisasContext *s, arg_1reg_imm *a) { /* Handle decode of cmode/op here between VORR/VBIC/VMOV */ GVecGen2iFn *fn; if ((a->cmode & 1) && a->cmode < 12) { /* for op=1, the imm will be inverted, so BIC becomes AND. */ fn = a->op ? tcg_gen_gvec_andi : tcg_gen_gvec_ori; } else { /* There is one unallocated cmode/op combination in this space */ if (a->cmode == 15 && a->op == 1) { return false; } fn = gen_VMOV_1r; } return do_1reg_imm(s, a, fn); } static bool do_prewiden_3d(DisasContext *s, arg_3diff *a, NeonGenWidenFn *widenfn, NeonGenTwo64OpFn *opfn, bool src1_wide) { /* 3-regs different lengths, prewidening case (VADDL/VSUBL/VAADW/VSUBW) */ TCGv_i64 rn0_64, rn1_64, rm_64; TCGv_i32 rm; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vn | a->vm) & 0x10)) { return false; } if (!widenfn || !opfn) { /* size == 3 case, which is an entirely different insn group */ return false; } if ((a->vd & 1) || (src1_wide && (a->vn & 1))) { return false; } if (!vfp_access_check(s)) { return true; } rn0_64 = tcg_temp_new_i64(); rn1_64 = tcg_temp_new_i64(); rm_64 = tcg_temp_new_i64(); if (src1_wide) { neon_load_reg64(rn0_64, a->vn); } else { TCGv_i32 tmp = neon_load_reg(a->vn, 0); widenfn(rn0_64, tmp); tcg_temp_free_i32(tmp); } rm = neon_load_reg(a->vm, 0); widenfn(rm_64, rm); tcg_temp_free_i32(rm); opfn(rn0_64, rn0_64, rm_64); /* * Load second pass inputs before storing the first pass result, to * avoid incorrect results if a narrow input overlaps with the result. */ if (src1_wide) { neon_load_reg64(rn1_64, a->vn + 1); } else { TCGv_i32 tmp = neon_load_reg(a->vn, 1); widenfn(rn1_64, tmp); tcg_temp_free_i32(tmp); } rm = neon_load_reg(a->vm, 1); neon_store_reg64(rn0_64, a->vd); widenfn(rm_64, rm); tcg_temp_free_i32(rm); opfn(rn1_64, rn1_64, rm_64); neon_store_reg64(rn1_64, a->vd + 1); tcg_temp_free_i64(rn0_64); tcg_temp_free_i64(rn1_64); tcg_temp_free_i64(rm_64); return true; } #define DO_PREWIDEN(INSN, S, EXT, OP, SRC1WIDE) \ static bool trans_##INSN##_3d(DisasContext *s, arg_3diff *a) \ { \ static NeonGenWidenFn * const widenfn[] = { \ gen_helper_neon_widen_##S##8, \ gen_helper_neon_widen_##S##16, \ tcg_gen_##EXT##_i32_i64, \ NULL, \ }; \ static NeonGenTwo64OpFn * const addfn[] = { \ gen_helper_neon_##OP##l_u16, \ gen_helper_neon_##OP##l_u32, \ tcg_gen_##OP##_i64, \ NULL, \ }; \ return do_prewiden_3d(s, a, widenfn[a->size], \ addfn[a->size], SRC1WIDE); \ } DO_PREWIDEN(VADDL_S, s, ext, add, false) DO_PREWIDEN(VADDL_U, u, extu, add, false) DO_PREWIDEN(VSUBL_S, s, ext, sub, false) DO_PREWIDEN(VSUBL_U, u, extu, sub, false) DO_PREWIDEN(VADDW_S, s, ext, add, true) DO_PREWIDEN(VADDW_U, u, extu, add, true) DO_PREWIDEN(VSUBW_S, s, ext, sub, true) DO_PREWIDEN(VSUBW_U, u, extu, sub, true) static bool do_narrow_3d(DisasContext *s, arg_3diff *a, NeonGenTwo64OpFn *opfn, NeonGenNarrowFn *narrowfn) { /* 3-regs different lengths, narrowing (VADDHN/VSUBHN/VRADDHN/VRSUBHN) */ TCGv_i64 rn_64, rm_64; TCGv_i32 rd0, rd1; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vn | a->vm) & 0x10)) { return false; } if (!opfn || !narrowfn) { /* size == 3 case, which is an entirely different insn group */ return false; } if ((a->vn | a->vm) & 1) { return false; } if (!vfp_access_check(s)) { return true; } rn_64 = tcg_temp_new_i64(); rm_64 = tcg_temp_new_i64(); rd0 = tcg_temp_new_i32(); rd1 = tcg_temp_new_i32(); neon_load_reg64(rn_64, a->vn); neon_load_reg64(rm_64, a->vm); opfn(rn_64, rn_64, rm_64); narrowfn(rd0, rn_64); neon_load_reg64(rn_64, a->vn + 1); neon_load_reg64(rm_64, a->vm + 1); opfn(rn_64, rn_64, rm_64); narrowfn(rd1, rn_64); neon_store_reg(a->vd, 0, rd0); neon_store_reg(a->vd, 1, rd1); tcg_temp_free_i64(rn_64); tcg_temp_free_i64(rm_64); return true; } #define DO_NARROW_3D(INSN, OP, NARROWTYPE, EXTOP) \ static bool trans_##INSN##_3d(DisasContext *s, arg_3diff *a) \ { \ static NeonGenTwo64OpFn * const addfn[] = { \ gen_helper_neon_##OP##l_u16, \ gen_helper_neon_##OP##l_u32, \ tcg_gen_##OP##_i64, \ NULL, \ }; \ static NeonGenNarrowFn * const narrowfn[] = { \ gen_helper_neon_##NARROWTYPE##_high_u8, \ gen_helper_neon_##NARROWTYPE##_high_u16, \ EXTOP, \ NULL, \ }; \ return do_narrow_3d(s, a, addfn[a->size], narrowfn[a->size]); \ } static void gen_narrow_round_high_u32(TCGv_i32 rd, TCGv_i64 rn) { tcg_gen_addi_i64(rn, rn, 1u << 31); tcg_gen_extrh_i64_i32(rd, rn); } DO_NARROW_3D(VADDHN, add, narrow, tcg_gen_extrh_i64_i32) DO_NARROW_3D(VSUBHN, sub, narrow, tcg_gen_extrh_i64_i32) DO_NARROW_3D(VRADDHN, add, narrow_round, gen_narrow_round_high_u32) DO_NARROW_3D(VRSUBHN, sub, narrow_round, gen_narrow_round_high_u32) static bool do_long_3d(DisasContext *s, arg_3diff *a, NeonGenTwoOpWidenFn *opfn, NeonGenTwo64OpFn *accfn) { /* * 3-regs different lengths, long operations. * These perform an operation on two inputs that returns a double-width * result, and then possibly perform an accumulation operation of * that result into the double-width destination. */ TCGv_i64 rd0, rd1, tmp; TCGv_i32 rn, rm; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vn | a->vm) & 0x10)) { return false; } if (!opfn) { /* size == 3 case, which is an entirely different insn group */ return false; } if (a->vd & 1) { return false; } if (!vfp_access_check(s)) { return true; } rd0 = tcg_temp_new_i64(); rd1 = tcg_temp_new_i64(); rn = neon_load_reg(a->vn, 0); rm = neon_load_reg(a->vm, 0); opfn(rd0, rn, rm); tcg_temp_free_i32(rn); tcg_temp_free_i32(rm); rn = neon_load_reg(a->vn, 1); rm = neon_load_reg(a->vm, 1); opfn(rd1, rn, rm); tcg_temp_free_i32(rn); tcg_temp_free_i32(rm); /* Don't store results until after all loads: they might overlap */ if (accfn) { tmp = tcg_temp_new_i64(); neon_load_reg64(tmp, a->vd); accfn(tmp, tmp, rd0); neon_store_reg64(tmp, a->vd); neon_load_reg64(tmp, a->vd + 1); accfn(tmp, tmp, rd1); neon_store_reg64(tmp, a->vd + 1); tcg_temp_free_i64(tmp); } else { neon_store_reg64(rd0, a->vd); neon_store_reg64(rd1, a->vd + 1); } tcg_temp_free_i64(rd0); tcg_temp_free_i64(rd1); return true; } static bool trans_VABDL_S_3d(DisasContext *s, arg_3diff *a) { static NeonGenTwoOpWidenFn * const opfn[] = { gen_helper_neon_abdl_s16, gen_helper_neon_abdl_s32, gen_helper_neon_abdl_s64, NULL, }; return do_long_3d(s, a, opfn[a->size], NULL); } static bool trans_VABDL_U_3d(DisasContext *s, arg_3diff *a) { static NeonGenTwoOpWidenFn * const opfn[] = { gen_helper_neon_abdl_u16, gen_helper_neon_abdl_u32, gen_helper_neon_abdl_u64, NULL, }; return do_long_3d(s, a, opfn[a->size], NULL); } static bool trans_VABAL_S_3d(DisasContext *s, arg_3diff *a) { static NeonGenTwoOpWidenFn * const opfn[] = { gen_helper_neon_abdl_s16, gen_helper_neon_abdl_s32, gen_helper_neon_abdl_s64, NULL, }; static NeonGenTwo64OpFn * const addfn[] = { gen_helper_neon_addl_u16, gen_helper_neon_addl_u32, tcg_gen_add_i64, NULL, }; return do_long_3d(s, a, opfn[a->size], addfn[a->size]); } static bool trans_VABAL_U_3d(DisasContext *s, arg_3diff *a) { static NeonGenTwoOpWidenFn * const opfn[] = { gen_helper_neon_abdl_u16, gen_helper_neon_abdl_u32, gen_helper_neon_abdl_u64, NULL, }; static NeonGenTwo64OpFn * const addfn[] = { gen_helper_neon_addl_u16, gen_helper_neon_addl_u32, tcg_gen_add_i64, NULL, }; return do_long_3d(s, a, opfn[a->size], addfn[a->size]); }