/*
* M-profile MVE Operations
*
* Copyright (c) 2021 Linaro, Ltd.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see .
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "internals.h"
#include "vec_internal.h"
#include "exec/helper-proto.h"
#include "exec/cpu_ldst.h"
#include "exec/exec-all.h"
#include "tcg/tcg.h"
static uint16_t mve_element_mask(CPUARMState *env)
{
/*
* Return the mask of which elements in the MVE vector should be
* updated. This is a combination of multiple things:
* (1) by default, we update every lane in the vector
* (2) VPT predication stores its state in the VPR register;
* (3) low-overhead-branch tail predication will mask out part
* the vector on the final iteration of the loop
* (4) if EPSR.ECI is set then we must execute only some beats
* of the insn
* We combine all these into a 16-bit result with the same semantics
* as VPR.P0: 0 to mask the lane, 1 if it is active.
* 8-bit vector ops will look at all bits of the result;
* 16-bit ops will look at bits 0, 2, 4, ...;
* 32-bit ops will look at bits 0, 4, 8 and 12.
* Compare pseudocode GetCurInstrBeat(), though that only returns
* the 4-bit slice of the mask corresponding to a single beat.
*/
uint16_t mask = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
if (!(env->v7m.vpr & R_V7M_VPR_MASK01_MASK)) {
mask |= 0xff;
}
if (!(env->v7m.vpr & R_V7M_VPR_MASK23_MASK)) {
mask |= 0xff00;
}
if (env->v7m.ltpsize < 4 &&
env->regs[14] <= (1 << (4 - env->v7m.ltpsize))) {
/*
* Tail predication active, and this is the last loop iteration.
* The element size is (1 << ltpsize), and we only want to process
* loopcount elements, so we want to retain the least significant
* (loopcount * esize) predicate bits and zero out bits above that.
*/
int masklen = env->regs[14] << env->v7m.ltpsize;
assert(masklen <= 16);
mask &= MAKE_64BIT_MASK(0, masklen);
}
if ((env->condexec_bits & 0xf) == 0) {
/*
* ECI bits indicate which beats are already executed;
* we handle this by effectively predicating them out.
*/
int eci = env->condexec_bits >> 4;
switch (eci) {
case ECI_NONE:
break;
case ECI_A0:
mask &= 0xfff0;
break;
case ECI_A0A1:
mask &= 0xff00;
break;
case ECI_A0A1A2:
case ECI_A0A1A2B0:
mask &= 0xf000;
break;
default:
g_assert_not_reached();
}
}
return mask;
}
static void mve_advance_vpt(CPUARMState *env)
{
/* Advance the VPT and ECI state if necessary */
uint32_t vpr = env->v7m.vpr;
unsigned mask01, mask23;
if ((env->condexec_bits & 0xf) == 0) {
env->condexec_bits = (env->condexec_bits == (ECI_A0A1A2B0 << 4)) ?
(ECI_A0 << 4) : (ECI_NONE << 4);
}
if (!(vpr & (R_V7M_VPR_MASK01_MASK | R_V7M_VPR_MASK23_MASK))) {
/* VPT not enabled, nothing to do */
return;
}
mask01 = FIELD_EX32(vpr, V7M_VPR, MASK01);
mask23 = FIELD_EX32(vpr, V7M_VPR, MASK23);
if (mask01 > 8) {
/* high bit set, but not 0b1000: invert the relevant half of P0 */
vpr ^= 0xff;
}
if (mask23 > 8) {
/* high bit set, but not 0b1000: invert the relevant half of P0 */
vpr ^= 0xff00;
}
vpr = FIELD_DP32(vpr, V7M_VPR, MASK01, mask01 << 1);
vpr = FIELD_DP32(vpr, V7M_VPR, MASK23, mask23 << 1);
env->v7m.vpr = vpr;
}
#define DO_VLDR(OP, MSIZE, LDTYPE, ESIZE, TYPE) \
void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr) \
{ \
TYPE *d = vd; \
uint16_t mask = mve_element_mask(env); \
unsigned b, e; \
/* \
* R_SXTM allows the dest reg to become UNKNOWN for abandoned \
* beats so we don't care if we update part of the dest and \
* then take an exception. \
*/ \
for (b = 0, e = 0; b < 16; b += ESIZE, e++) { \
if (mask & (1 << b)) { \
d[H##ESIZE(e)] = cpu_##LDTYPE##_data_ra(env, addr, GETPC()); \
} \
addr += MSIZE; \
} \
mve_advance_vpt(env); \
}
#define DO_VSTR(OP, MSIZE, STTYPE, ESIZE, TYPE) \
void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr) \
{ \
TYPE *d = vd; \
uint16_t mask = mve_element_mask(env); \
unsigned b, e; \
for (b = 0, e = 0; b < 16; b += ESIZE, e++) { \
if (mask & (1 << b)) { \
cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \
} \
addr += MSIZE; \
} \
mve_advance_vpt(env); \
}
DO_VLDR(vldrb, 1, ldub, 1, uint8_t)
DO_VLDR(vldrh, 2, lduw, 2, uint16_t)
DO_VLDR(vldrw, 4, ldl, 4, uint32_t)
DO_VSTR(vstrb, 1, stb, 1, uint8_t)
DO_VSTR(vstrh, 2, stw, 2, uint16_t)
DO_VSTR(vstrw, 4, stl, 4, uint32_t)
DO_VLDR(vldrb_sh, 1, ldsb, 2, int16_t)
DO_VLDR(vldrb_sw, 1, ldsb, 4, int32_t)
DO_VLDR(vldrb_uh, 1, ldub, 2, uint16_t)
DO_VLDR(vldrb_uw, 1, ldub, 4, uint32_t)
DO_VLDR(vldrh_sw, 2, ldsw, 4, int32_t)
DO_VLDR(vldrh_uw, 2, lduw, 4, uint32_t)
DO_VSTR(vstrb_h, 1, stb, 2, int16_t)
DO_VSTR(vstrb_w, 1, stb, 4, int32_t)
DO_VSTR(vstrh_w, 2, stw, 4, int32_t)
#undef DO_VLDR
#undef DO_VSTR
/*
* The mergemask(D, R, M) macro performs the operation "*D = R" but
* storing only the bytes which correspond to 1 bits in M,
* leaving other bytes in *D unchanged. We use _Generic
* to select the correct implementation based on the type of D.
*/
static void mergemask_ub(uint8_t *d, uint8_t r, uint16_t mask)
{
if (mask & 1) {
*d = r;
}
}
static void mergemask_sb(int8_t *d, int8_t r, uint16_t mask)
{
mergemask_ub((uint8_t *)d, r, mask);
}
static void mergemask_uh(uint16_t *d, uint16_t r, uint16_t mask)
{
uint16_t bmask = expand_pred_b_data[mask & 3];
*d = (*d & ~bmask) | (r & bmask);
}
static void mergemask_sh(int16_t *d, int16_t r, uint16_t mask)
{
mergemask_uh((uint16_t *)d, r, mask);
}
static void mergemask_uw(uint32_t *d, uint32_t r, uint16_t mask)
{
uint32_t bmask = expand_pred_b_data[mask & 0xf];
*d = (*d & ~bmask) | (r & bmask);
}
static void mergemask_sw(int32_t *d, int32_t r, uint16_t mask)
{
mergemask_uw((uint32_t *)d, r, mask);
}
static void mergemask_uq(uint64_t *d, uint64_t r, uint16_t mask)
{
uint64_t bmask = expand_pred_b_data[mask & 0xff];
*d = (*d & ~bmask) | (r & bmask);
}
static void mergemask_sq(int64_t *d, int64_t r, uint16_t mask)
{
mergemask_uq((uint64_t *)d, r, mask);
}
#define mergemask(D, R, M) \
_Generic(D, \
uint8_t *: mergemask_ub, \
int8_t *: mergemask_sb, \
uint16_t *: mergemask_uh, \
int16_t *: mergemask_sh, \
uint32_t *: mergemask_uw, \
int32_t *: mergemask_sw, \
uint64_t *: mergemask_uq, \
int64_t *: mergemask_sq)(D, R, M)
void HELPER(mve_vdup)(CPUARMState *env, void *vd, uint32_t val)
{
/*
* The generated code already replicated an 8 or 16 bit constant
* into the 32-bit value, so we only need to write the 32-bit
* value to all elements of the Qreg, allowing for predication.
*/
uint32_t *d = vd;
uint16_t mask = mve_element_mask(env);
unsigned e;
for (e = 0; e < 16 / 4; e++, mask >>= 4) {
mergemask(&d[H4(e)], val, mask);
}
mve_advance_vpt(env);
}
#define DO_1OP(OP, ESIZE, TYPE, FN) \
void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm) \
{ \
TYPE *d = vd, *m = vm; \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)]), mask); \
} \
mve_advance_vpt(env); \
}
#define DO_CLS_B(N) (clrsb32(N) - 24)
#define DO_CLS_H(N) (clrsb32(N) - 16)
DO_1OP(vclsb, 1, int8_t, DO_CLS_B)
DO_1OP(vclsh, 2, int16_t, DO_CLS_H)
DO_1OP(vclsw, 4, int32_t, clrsb32)
#define DO_CLZ_B(N) (clz32(N) - 24)
#define DO_CLZ_H(N) (clz32(N) - 16)
DO_1OP(vclzb, 1, uint8_t, DO_CLZ_B)
DO_1OP(vclzh, 2, uint16_t, DO_CLZ_H)
DO_1OP(vclzw, 4, uint32_t, clz32)
DO_1OP(vrev16b, 2, uint16_t, bswap16)
DO_1OP(vrev32b, 4, uint32_t, bswap32)
DO_1OP(vrev32h, 4, uint32_t, hswap32)
DO_1OP(vrev64b, 8, uint64_t, bswap64)
DO_1OP(vrev64h, 8, uint64_t, hswap64)
DO_1OP(vrev64w, 8, uint64_t, wswap64)
#define DO_NOT(N) (~(N))
DO_1OP(vmvn, 8, uint64_t, DO_NOT)
#define DO_ABS(N) ((N) < 0 ? -(N) : (N))
#define DO_FABSH(N) ((N) & dup_const(MO_16, 0x7fff))
#define DO_FABSS(N) ((N) & dup_const(MO_32, 0x7fffffff))
DO_1OP(vabsb, 1, int8_t, DO_ABS)
DO_1OP(vabsh, 2, int16_t, DO_ABS)
DO_1OP(vabsw, 4, int32_t, DO_ABS)
/* We can do these 64 bits at a time */
DO_1OP(vfabsh, 8, uint64_t, DO_FABSH)
DO_1OP(vfabss, 8, uint64_t, DO_FABSS)
#define DO_NEG(N) (-(N))
#define DO_FNEGH(N) ((N) ^ dup_const(MO_16, 0x8000))
#define DO_FNEGS(N) ((N) ^ dup_const(MO_32, 0x80000000))
DO_1OP(vnegb, 1, int8_t, DO_NEG)
DO_1OP(vnegh, 2, int16_t, DO_NEG)
DO_1OP(vnegw, 4, int32_t, DO_NEG)
/* We can do these 64 bits at a time */
DO_1OP(vfnegh, 8, uint64_t, DO_FNEGH)
DO_1OP(vfnegs, 8, uint64_t, DO_FNEGS)
/*
* 1 operand immediates: Vda is destination and possibly also one source.
* All these insns work at 64-bit widths.
*/
#define DO_1OP_IMM(OP, FN) \
void HELPER(mve_##OP)(CPUARMState *env, void *vda, uint64_t imm) \
{ \
uint64_t *da = vda; \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
for (e = 0; e < 16 / 8; e++, mask >>= 8) { \
mergemask(&da[H8(e)], FN(da[H8(e)], imm), mask); \
} \
mve_advance_vpt(env); \
}
#define DO_MOVI(N, I) (I)
#define DO_ANDI(N, I) ((N) & (I))
#define DO_ORRI(N, I) ((N) | (I))
DO_1OP_IMM(vmovi, DO_MOVI)
DO_1OP_IMM(vandi, DO_ANDI)
DO_1OP_IMM(vorri, DO_ORRI)
#define DO_2OP(OP, ESIZE, TYPE, FN) \
void HELPER(glue(mve_, OP))(CPUARMState *env, \
void *vd, void *vn, void *vm) \
{ \
TYPE *d = vd, *n = vn, *m = vm; \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
mergemask(&d[H##ESIZE(e)], \
FN(n[H##ESIZE(e)], m[H##ESIZE(e)]), mask); \
} \
mve_advance_vpt(env); \
}
/* provide unsigned 2-op helpers for all sizes */
#define DO_2OP_U(OP, FN) \
DO_2OP(OP##b, 1, uint8_t, FN) \
DO_2OP(OP##h, 2, uint16_t, FN) \
DO_2OP(OP##w, 4, uint32_t, FN)
/* provide signed 2-op helpers for all sizes */
#define DO_2OP_S(OP, FN) \
DO_2OP(OP##b, 1, int8_t, FN) \
DO_2OP(OP##h, 2, int16_t, FN) \
DO_2OP(OP##w, 4, int32_t, FN)
/*
* "Long" operations where two half-sized inputs (taken from either the
* top or the bottom of the input vector) produce a double-width result.
* Here ESIZE, TYPE are for the input, and LESIZE, LTYPE for the output.
*/
#define DO_2OP_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN) \
void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
{ \
LTYPE *d = vd; \
TYPE *n = vn, *m = vm; \
uint16_t mask = mve_element_mask(env); \
unsigned le; \
for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], \
m[H##ESIZE(le * 2 + TOP)]); \
mergemask(&d[H##LESIZE(le)], r, mask); \
} \
mve_advance_vpt(env); \
}
#define DO_2OP_SAT(OP, ESIZE, TYPE, FN) \
void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
{ \
TYPE *d = vd, *n = vn, *m = vm; \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
bool qc = false; \
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
bool sat = false; \
TYPE r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], &sat); \
mergemask(&d[H##ESIZE(e)], r, mask); \
qc |= sat & mask & 1; \
} \
if (qc) { \
env->vfp.qc[0] = qc; \
} \
mve_advance_vpt(env); \
}
/* provide unsigned 2-op helpers for all sizes */
#define DO_2OP_SAT_U(OP, FN) \
DO_2OP_SAT(OP##b, 1, uint8_t, FN) \
DO_2OP_SAT(OP##h, 2, uint16_t, FN) \
DO_2OP_SAT(OP##w, 4, uint32_t, FN)
/* provide signed 2-op helpers for all sizes */
#define DO_2OP_SAT_S(OP, FN) \
DO_2OP_SAT(OP##b, 1, int8_t, FN) \
DO_2OP_SAT(OP##h, 2, int16_t, FN) \
DO_2OP_SAT(OP##w, 4, int32_t, FN)
#define DO_AND(N, M) ((N) & (M))
#define DO_BIC(N, M) ((N) & ~(M))
#define DO_ORR(N, M) ((N) | (M))
#define DO_ORN(N, M) ((N) | ~(M))
#define DO_EOR(N, M) ((N) ^ (M))
DO_2OP(vand, 8, uint64_t, DO_AND)
DO_2OP(vbic, 8, uint64_t, DO_BIC)
DO_2OP(vorr, 8, uint64_t, DO_ORR)
DO_2OP(vorn, 8, uint64_t, DO_ORN)
DO_2OP(veor, 8, uint64_t, DO_EOR)
#define DO_ADD(N, M) ((N) + (M))
#define DO_SUB(N, M) ((N) - (M))
#define DO_MUL(N, M) ((N) * (M))
DO_2OP_U(vadd, DO_ADD)
DO_2OP_U(vsub, DO_SUB)
DO_2OP_U(vmul, DO_MUL)
DO_2OP_L(vmullbsb, 0, 1, int8_t, 2, int16_t, DO_MUL)
DO_2OP_L(vmullbsh, 0, 2, int16_t, 4, int32_t, DO_MUL)
DO_2OP_L(vmullbsw, 0, 4, int32_t, 8, int64_t, DO_MUL)
DO_2OP_L(vmullbub, 0, 1, uint8_t, 2, uint16_t, DO_MUL)
DO_2OP_L(vmullbuh, 0, 2, uint16_t, 4, uint32_t, DO_MUL)
DO_2OP_L(vmullbuw, 0, 4, uint32_t, 8, uint64_t, DO_MUL)
DO_2OP_L(vmulltsb, 1, 1, int8_t, 2, int16_t, DO_MUL)
DO_2OP_L(vmulltsh, 1, 2, int16_t, 4, int32_t, DO_MUL)
DO_2OP_L(vmulltsw, 1, 4, int32_t, 8, int64_t, DO_MUL)
DO_2OP_L(vmulltub, 1, 1, uint8_t, 2, uint16_t, DO_MUL)
DO_2OP_L(vmulltuh, 1, 2, uint16_t, 4, uint32_t, DO_MUL)
DO_2OP_L(vmulltuw, 1, 4, uint32_t, 8, uint64_t, DO_MUL)
/*
* Because the computation type is at least twice as large as required,
* these work for both signed and unsigned source types.
*/
static inline uint8_t do_mulh_b(int32_t n, int32_t m)
{
return (n * m) >> 8;
}
static inline uint16_t do_mulh_h(int32_t n, int32_t m)
{
return (n * m) >> 16;
}
static inline uint32_t do_mulh_w(int64_t n, int64_t m)
{
return (n * m) >> 32;
}
static inline uint8_t do_rmulh_b(int32_t n, int32_t m)
{
return (n * m + (1U << 7)) >> 8;
}
static inline uint16_t do_rmulh_h(int32_t n, int32_t m)
{
return (n * m + (1U << 15)) >> 16;
}
static inline uint32_t do_rmulh_w(int64_t n, int64_t m)
{
return (n * m + (1U << 31)) >> 32;
}
DO_2OP(vmulhsb, 1, int8_t, do_mulh_b)
DO_2OP(vmulhsh, 2, int16_t, do_mulh_h)
DO_2OP(vmulhsw, 4, int32_t, do_mulh_w)
DO_2OP(vmulhub, 1, uint8_t, do_mulh_b)
DO_2OP(vmulhuh, 2, uint16_t, do_mulh_h)
DO_2OP(vmulhuw, 4, uint32_t, do_mulh_w)
DO_2OP(vrmulhsb, 1, int8_t, do_rmulh_b)
DO_2OP(vrmulhsh, 2, int16_t, do_rmulh_h)
DO_2OP(vrmulhsw, 4, int32_t, do_rmulh_w)
DO_2OP(vrmulhub, 1, uint8_t, do_rmulh_b)
DO_2OP(vrmulhuh, 2, uint16_t, do_rmulh_h)
DO_2OP(vrmulhuw, 4, uint32_t, do_rmulh_w)
#define DO_MAX(N, M) ((N) >= (M) ? (N) : (M))
#define DO_MIN(N, M) ((N) >= (M) ? (M) : (N))
DO_2OP_S(vmaxs, DO_MAX)
DO_2OP_U(vmaxu, DO_MAX)
DO_2OP_S(vmins, DO_MIN)
DO_2OP_U(vminu, DO_MIN)
#define DO_ABD(N, M) ((N) >= (M) ? (N) - (M) : (M) - (N))
DO_2OP_S(vabds, DO_ABD)
DO_2OP_U(vabdu, DO_ABD)
static inline uint32_t do_vhadd_u(uint32_t n, uint32_t m)
{
return ((uint64_t)n + m) >> 1;
}
static inline int32_t do_vhadd_s(int32_t n, int32_t m)
{
return ((int64_t)n + m) >> 1;
}
static inline uint32_t do_vhsub_u(uint32_t n, uint32_t m)
{
return ((uint64_t)n - m) >> 1;
}
static inline int32_t do_vhsub_s(int32_t n, int32_t m)
{
return ((int64_t)n - m) >> 1;
}
DO_2OP_S(vhadds, do_vhadd_s)
DO_2OP_U(vhaddu, do_vhadd_u)
DO_2OP_S(vhsubs, do_vhsub_s)
DO_2OP_U(vhsubu, do_vhsub_u)
#define DO_VSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
#define DO_VSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
#define DO_VRSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
#define DO_VRSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
DO_2OP_S(vshls, DO_VSHLS)
DO_2OP_U(vshlu, DO_VSHLU)
DO_2OP_S(vrshls, DO_VRSHLS)
DO_2OP_U(vrshlu, DO_VRSHLU)
#define DO_RHADD_S(N, M) (((int64_t)(N) + (M) + 1) >> 1)
#define DO_RHADD_U(N, M) (((uint64_t)(N) + (M) + 1) >> 1)
DO_2OP_S(vrhadds, DO_RHADD_S)
DO_2OP_U(vrhaddu, DO_RHADD_U)
static void do_vadc(CPUARMState *env, uint32_t *d, uint32_t *n, uint32_t *m,
uint32_t inv, uint32_t carry_in, bool update_flags)
{
uint16_t mask = mve_element_mask(env);
unsigned e;
/* If any additions trigger, we will update flags. */
if (mask & 0x1111) {
update_flags = true;
}
for (e = 0; e < 16 / 4; e++, mask >>= 4) {
uint64_t r = carry_in;
r += n[H4(e)];
r += m[H4(e)] ^ inv;
if (mask & 1) {
carry_in = r >> 32;
}
mergemask(&d[H4(e)], r, mask);
}
if (update_flags) {
/* Store C, clear NZV. */
env->vfp.xregs[ARM_VFP_FPSCR] &= ~FPCR_NZCV_MASK;
env->vfp.xregs[ARM_VFP_FPSCR] |= carry_in * FPCR_C;
}
mve_advance_vpt(env);
}
void HELPER(mve_vadc)(CPUARMState *env, void *vd, void *vn, void *vm)
{
bool carry_in = env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_C;
do_vadc(env, vd, vn, vm, 0, carry_in, false);
}
void HELPER(mve_vsbc)(CPUARMState *env, void *vd, void *vn, void *vm)
{
bool carry_in = env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_C;
do_vadc(env, vd, vn, vm, -1, carry_in, false);
}
void HELPER(mve_vadci)(CPUARMState *env, void *vd, void *vn, void *vm)
{
do_vadc(env, vd, vn, vm, 0, 0, true);
}
void HELPER(mve_vsbci)(CPUARMState *env, void *vd, void *vn, void *vm)
{
do_vadc(env, vd, vn, vm, -1, 1, true);
}
#define DO_VCADD(OP, ESIZE, TYPE, FN0, FN1) \
void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
{ \
TYPE *d = vd, *n = vn, *m = vm; \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
TYPE r[16 / ESIZE]; \
/* Calculate all results first to avoid overwriting inputs */ \
for (e = 0; e < 16 / ESIZE; e++) { \
if (!(e & 1)) { \
r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)]); \
} else { \
r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)]); \
} \
} \
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
mergemask(&d[H##ESIZE(e)], r[e], mask); \
} \
mve_advance_vpt(env); \
}
#define DO_VCADD_ALL(OP, FN0, FN1) \
DO_VCADD(OP##b, 1, int8_t, FN0, FN1) \
DO_VCADD(OP##h, 2, int16_t, FN0, FN1) \
DO_VCADD(OP##w, 4, int32_t, FN0, FN1)
DO_VCADD_ALL(vcadd90, DO_SUB, DO_ADD)
DO_VCADD_ALL(vcadd270, DO_ADD, DO_SUB)
DO_VCADD_ALL(vhcadd90, do_vhsub_s, do_vhadd_s)
DO_VCADD_ALL(vhcadd270, do_vhadd_s, do_vhsub_s)
static inline int32_t do_sat_bhw(int64_t val, int64_t min, int64_t max, bool *s)
{
if (val > max) {
*s = true;
return max;
} else if (val < min) {
*s = true;
return min;
}
return val;
}
#define DO_SQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, INT8_MIN, INT8_MAX, s)
#define DO_SQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, INT16_MIN, INT16_MAX, s)
#define DO_SQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, INT32_MIN, INT32_MAX, s)
#define DO_UQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT8_MAX, s)
#define DO_UQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT16_MAX, s)
#define DO_UQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT32_MAX, s)
#define DO_SQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, INT8_MIN, INT8_MAX, s)
#define DO_SQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, INT16_MIN, INT16_MAX, s)
#define DO_SQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, INT32_MIN, INT32_MAX, s)
#define DO_UQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT8_MAX, s)
#define DO_UQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT16_MAX, s)
#define DO_UQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT32_MAX, s)
/*
* For QDMULH and QRDMULH we simplify "double and shift by esize" into
* "shift by esize-1", adjusting the QRDMULH rounding constant to match.
*/
#define DO_QDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m) >> 7, \
INT8_MIN, INT8_MAX, s)
#define DO_QDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m) >> 15, \
INT16_MIN, INT16_MAX, s)
#define DO_QDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m) >> 31, \
INT32_MIN, INT32_MAX, s)
#define DO_QRDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 6)) >> 7, \
INT8_MIN, INT8_MAX, s)
#define DO_QRDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 14)) >> 15, \
INT16_MIN, INT16_MAX, s)
#define DO_QRDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 30)) >> 31, \
INT32_MIN, INT32_MAX, s)
DO_2OP_SAT(vqdmulhb, 1, int8_t, DO_QDMULH_B)
DO_2OP_SAT(vqdmulhh, 2, int16_t, DO_QDMULH_H)
DO_2OP_SAT(vqdmulhw, 4, int32_t, DO_QDMULH_W)
DO_2OP_SAT(vqrdmulhb, 1, int8_t, DO_QRDMULH_B)
DO_2OP_SAT(vqrdmulhh, 2, int16_t, DO_QRDMULH_H)
DO_2OP_SAT(vqrdmulhw, 4, int32_t, DO_QRDMULH_W)
DO_2OP_SAT(vqaddub, 1, uint8_t, DO_UQADD_B)
DO_2OP_SAT(vqadduh, 2, uint16_t, DO_UQADD_H)
DO_2OP_SAT(vqadduw, 4, uint32_t, DO_UQADD_W)
DO_2OP_SAT(vqaddsb, 1, int8_t, DO_SQADD_B)
DO_2OP_SAT(vqaddsh, 2, int16_t, DO_SQADD_H)
DO_2OP_SAT(vqaddsw, 4, int32_t, DO_SQADD_W)
DO_2OP_SAT(vqsubub, 1, uint8_t, DO_UQSUB_B)
DO_2OP_SAT(vqsubuh, 2, uint16_t, DO_UQSUB_H)
DO_2OP_SAT(vqsubuw, 4, uint32_t, DO_UQSUB_W)
DO_2OP_SAT(vqsubsb, 1, int8_t, DO_SQSUB_B)
DO_2OP_SAT(vqsubsh, 2, int16_t, DO_SQSUB_H)
DO_2OP_SAT(vqsubsw, 4, int32_t, DO_SQSUB_W)
/*
* This wrapper fixes up the impedance mismatch between do_sqrshl_bhs()
* and friends wanting a uint32_t* sat and our needing a bool*.
*/
#define WRAP_QRSHL_HELPER(FN, N, M, ROUND, satp) \
({ \
uint32_t su32 = 0; \
typeof(N) r = FN(N, (int8_t)(M), sizeof(N) * 8, ROUND, &su32); \
if (su32) { \
*satp = true; \
} \
r; \
})
#define DO_SQSHL_OP(N, M, satp) \
WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, false, satp)
#define DO_UQSHL_OP(N, M, satp) \
WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, false, satp)
#define DO_SQRSHL_OP(N, M, satp) \
WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, true, satp)
#define DO_UQRSHL_OP(N, M, satp) \
WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, true, satp)
#define DO_SUQSHL_OP(N, M, satp) \
WRAP_QRSHL_HELPER(do_suqrshl_bhs, N, M, false, satp)
DO_2OP_SAT_S(vqshls, DO_SQSHL_OP)
DO_2OP_SAT_U(vqshlu, DO_UQSHL_OP)
DO_2OP_SAT_S(vqrshls, DO_SQRSHL_OP)
DO_2OP_SAT_U(vqrshlu, DO_UQRSHL_OP)
/*
* Multiply add dual returning high half
* The 'FN' here takes four inputs A, B, C, D, a 0/1 indicator of
* whether to add the rounding constant, and the pointer to the
* saturation flag, and should do "(A * B + C * D) * 2 + rounding constant",
* saturate to twice the input size and return the high half; or
* (A * B - C * D) etc for VQDMLSDH.
*/
#define DO_VQDMLADH_OP(OP, ESIZE, TYPE, XCHG, ROUND, FN) \
void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \
void *vm) \
{ \
TYPE *d = vd, *n = vn, *m = vm; \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
bool qc = false; \
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
bool sat = false; \
if ((e & 1) == XCHG) { \
TYPE r = FN(n[H##ESIZE(e)], \
m[H##ESIZE(e - XCHG)], \
n[H##ESIZE(e + (1 - 2 * XCHG))], \
m[H##ESIZE(e + (1 - XCHG))], \
ROUND, &sat); \
mergemask(&d[H##ESIZE(e)], r, mask); \
qc |= sat & mask & 1; \
} \
} \
if (qc) { \
env->vfp.qc[0] = qc; \
} \
mve_advance_vpt(env); \
}
static int8_t do_vqdmladh_b(int8_t a, int8_t b, int8_t c, int8_t d,
int round, bool *sat)
{
int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 7);
return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
}
static int16_t do_vqdmladh_h(int16_t a, int16_t b, int16_t c, int16_t d,
int round, bool *sat)
{
int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 15);
return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
}
static int32_t do_vqdmladh_w(int32_t a, int32_t b, int32_t c, int32_t d,
int round, bool *sat)
{
int64_t m1 = (int64_t)a * b;
int64_t m2 = (int64_t)c * d;
int64_t r;
/*
* Architecturally we should do the entire add, double, round
* and then check for saturation. We do three saturating adds,
* but we need to be careful about the order. If the first
* m1 + m2 saturates then it's impossible for the *2+rc to
* bring it back into the non-saturated range. However, if
* m1 + m2 is negative then it's possible that doing the doubling
* would take the intermediate result below INT64_MAX and the
* addition of the rounding constant then brings it back in range.
* So we add half the rounding constant before doubling rather
* than adding the rounding constant after the doubling.
*/
if (sadd64_overflow(m1, m2, &r) ||
sadd64_overflow(r, (round << 30), &r) ||
sadd64_overflow(r, r, &r)) {
*sat = true;
return r < 0 ? INT32_MAX : INT32_MIN;
}
return r >> 32;
}
static int8_t do_vqdmlsdh_b(int8_t a, int8_t b, int8_t c, int8_t d,
int round, bool *sat)
{
int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 7);
return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
}
static int16_t do_vqdmlsdh_h(int16_t a, int16_t b, int16_t c, int16_t d,
int round, bool *sat)
{
int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 15);
return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
}
static int32_t do_vqdmlsdh_w(int32_t a, int32_t b, int32_t c, int32_t d,
int round, bool *sat)
{
int64_t m1 = (int64_t)a * b;
int64_t m2 = (int64_t)c * d;
int64_t r;
/* The same ordering issue as in do_vqdmladh_w applies here too */
if (ssub64_overflow(m1, m2, &r) ||
sadd64_overflow(r, (round << 30), &r) ||
sadd64_overflow(r, r, &r)) {
*sat = true;
return r < 0 ? INT32_MAX : INT32_MIN;
}
return r >> 32;
}
DO_VQDMLADH_OP(vqdmladhb, 1, int8_t, 0, 0, do_vqdmladh_b)
DO_VQDMLADH_OP(vqdmladhh, 2, int16_t, 0, 0, do_vqdmladh_h)
DO_VQDMLADH_OP(vqdmladhw, 4, int32_t, 0, 0, do_vqdmladh_w)
DO_VQDMLADH_OP(vqdmladhxb, 1, int8_t, 1, 0, do_vqdmladh_b)
DO_VQDMLADH_OP(vqdmladhxh, 2, int16_t, 1, 0, do_vqdmladh_h)
DO_VQDMLADH_OP(vqdmladhxw, 4, int32_t, 1, 0, do_vqdmladh_w)
DO_VQDMLADH_OP(vqrdmladhb, 1, int8_t, 0, 1, do_vqdmladh_b)
DO_VQDMLADH_OP(vqrdmladhh, 2, int16_t, 0, 1, do_vqdmladh_h)
DO_VQDMLADH_OP(vqrdmladhw, 4, int32_t, 0, 1, do_vqdmladh_w)
DO_VQDMLADH_OP(vqrdmladhxb, 1, int8_t, 1, 1, do_vqdmladh_b)
DO_VQDMLADH_OP(vqrdmladhxh, 2, int16_t, 1, 1, do_vqdmladh_h)
DO_VQDMLADH_OP(vqrdmladhxw, 4, int32_t, 1, 1, do_vqdmladh_w)
DO_VQDMLADH_OP(vqdmlsdhb, 1, int8_t, 0, 0, do_vqdmlsdh_b)
DO_VQDMLADH_OP(vqdmlsdhh, 2, int16_t, 0, 0, do_vqdmlsdh_h)
DO_VQDMLADH_OP(vqdmlsdhw, 4, int32_t, 0, 0, do_vqdmlsdh_w)
DO_VQDMLADH_OP(vqdmlsdhxb, 1, int8_t, 1, 0, do_vqdmlsdh_b)
DO_VQDMLADH_OP(vqdmlsdhxh, 2, int16_t, 1, 0, do_vqdmlsdh_h)
DO_VQDMLADH_OP(vqdmlsdhxw, 4, int32_t, 1, 0, do_vqdmlsdh_w)
DO_VQDMLADH_OP(vqrdmlsdhb, 1, int8_t, 0, 1, do_vqdmlsdh_b)
DO_VQDMLADH_OP(vqrdmlsdhh, 2, int16_t, 0, 1, do_vqdmlsdh_h)
DO_VQDMLADH_OP(vqrdmlsdhw, 4, int32_t, 0, 1, do_vqdmlsdh_w)
DO_VQDMLADH_OP(vqrdmlsdhxb, 1, int8_t, 1, 1, do_vqdmlsdh_b)
DO_VQDMLADH_OP(vqrdmlsdhxh, 2, int16_t, 1, 1, do_vqdmlsdh_h)
DO_VQDMLADH_OP(vqrdmlsdhxw, 4, int32_t, 1, 1, do_vqdmlsdh_w)
#define DO_2OP_SCALAR(OP, ESIZE, TYPE, FN) \
void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \
uint32_t rm) \
{ \
TYPE *d = vd, *n = vn; \
TYPE m = rm; \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m), mask); \
} \
mve_advance_vpt(env); \
}
#define DO_2OP_SAT_SCALAR(OP, ESIZE, TYPE, FN) \
void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \
uint32_t rm) \
{ \
TYPE *d = vd, *n = vn; \
TYPE m = rm; \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
bool qc = false; \
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
bool sat = false; \
mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m, &sat), \
mask); \
qc |= sat & mask & 1; \
} \
if (qc) { \
env->vfp.qc[0] = qc; \
} \
mve_advance_vpt(env); \
}
/* provide unsigned 2-op scalar helpers for all sizes */
#define DO_2OP_SCALAR_U(OP, FN) \
DO_2OP_SCALAR(OP##b, 1, uint8_t, FN) \
DO_2OP_SCALAR(OP##h, 2, uint16_t, FN) \
DO_2OP_SCALAR(OP##w, 4, uint32_t, FN)
#define DO_2OP_SCALAR_S(OP, FN) \
DO_2OP_SCALAR(OP##b, 1, int8_t, FN) \
DO_2OP_SCALAR(OP##h, 2, int16_t, FN) \
DO_2OP_SCALAR(OP##w, 4, int32_t, FN)
DO_2OP_SCALAR_U(vadd_scalar, DO_ADD)
DO_2OP_SCALAR_U(vsub_scalar, DO_SUB)
DO_2OP_SCALAR_U(vmul_scalar, DO_MUL)
DO_2OP_SCALAR_S(vhadds_scalar, do_vhadd_s)
DO_2OP_SCALAR_U(vhaddu_scalar, do_vhadd_u)
DO_2OP_SCALAR_S(vhsubs_scalar, do_vhsub_s)
DO_2OP_SCALAR_U(vhsubu_scalar, do_vhsub_u)
DO_2OP_SAT_SCALAR(vqaddu_scalarb, 1, uint8_t, DO_UQADD_B)
DO_2OP_SAT_SCALAR(vqaddu_scalarh, 2, uint16_t, DO_UQADD_H)
DO_2OP_SAT_SCALAR(vqaddu_scalarw, 4, uint32_t, DO_UQADD_W)
DO_2OP_SAT_SCALAR(vqadds_scalarb, 1, int8_t, DO_SQADD_B)
DO_2OP_SAT_SCALAR(vqadds_scalarh, 2, int16_t, DO_SQADD_H)
DO_2OP_SAT_SCALAR(vqadds_scalarw, 4, int32_t, DO_SQADD_W)
DO_2OP_SAT_SCALAR(vqsubu_scalarb, 1, uint8_t, DO_UQSUB_B)
DO_2OP_SAT_SCALAR(vqsubu_scalarh, 2, uint16_t, DO_UQSUB_H)
DO_2OP_SAT_SCALAR(vqsubu_scalarw, 4, uint32_t, DO_UQSUB_W)
DO_2OP_SAT_SCALAR(vqsubs_scalarb, 1, int8_t, DO_SQSUB_B)
DO_2OP_SAT_SCALAR(vqsubs_scalarh, 2, int16_t, DO_SQSUB_H)
DO_2OP_SAT_SCALAR(vqsubs_scalarw, 4, int32_t, DO_SQSUB_W)
DO_2OP_SAT_SCALAR(vqdmulh_scalarb, 1, int8_t, DO_QDMULH_B)
DO_2OP_SAT_SCALAR(vqdmulh_scalarh, 2, int16_t, DO_QDMULH_H)
DO_2OP_SAT_SCALAR(vqdmulh_scalarw, 4, int32_t, DO_QDMULH_W)
DO_2OP_SAT_SCALAR(vqrdmulh_scalarb, 1, int8_t, DO_QRDMULH_B)
DO_2OP_SAT_SCALAR(vqrdmulh_scalarh, 2, int16_t, DO_QRDMULH_H)
DO_2OP_SAT_SCALAR(vqrdmulh_scalarw, 4, int32_t, DO_QRDMULH_W)
/*
* Long saturating scalar ops. As with DO_2OP_L, TYPE and H are for the
* input (smaller) type and LESIZE, LTYPE, LH for the output (long) type.
* SATMASK specifies which bits of the predicate mask matter for determining
* whether to propagate a saturation indication into FPSCR.QC -- for
* the 16x16->32 case we must check only the bit corresponding to the T or B
* half that we used, but for the 32x32->64 case we propagate if the mask
* bit is set for either half.
*/
#define DO_2OP_SAT_SCALAR_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK) \
void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \
uint32_t rm) \
{ \
LTYPE *d = vd; \
TYPE *n = vn; \
TYPE m = rm; \
uint16_t mask = mve_element_mask(env); \
unsigned le; \
bool qc = false; \
for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
bool sat = false; \
LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], m, &sat); \
mergemask(&d[H##LESIZE(le)], r, mask); \
qc |= sat && (mask & SATMASK); \
} \
if (qc) { \
env->vfp.qc[0] = qc; \
} \
mve_advance_vpt(env); \
}
static inline int32_t do_qdmullh(int16_t n, int16_t m, bool *sat)
{
int64_t r = ((int64_t)n * m) * 2;
return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat);
}
static inline int64_t do_qdmullw(int32_t n, int32_t m, bool *sat)
{
/* The multiply can't overflow, but the doubling might */
int64_t r = (int64_t)n * m;
if (r > INT64_MAX / 2) {
*sat = true;
return INT64_MAX;
} else if (r < INT64_MIN / 2) {
*sat = true;
return INT64_MIN;
} else {
return r * 2;
}
}
#define SATMASK16B 1
#define SATMASK16T (1 << 2)
#define SATMASK32 ((1 << 4) | 1)
DO_2OP_SAT_SCALAR_L(vqdmullb_scalarh, 0, 2, int16_t, 4, int32_t, \
do_qdmullh, SATMASK16B)
DO_2OP_SAT_SCALAR_L(vqdmullb_scalarw, 0, 4, int32_t, 8, int64_t, \
do_qdmullw, SATMASK32)
DO_2OP_SAT_SCALAR_L(vqdmullt_scalarh, 1, 2, int16_t, 4, int32_t, \
do_qdmullh, SATMASK16T)
DO_2OP_SAT_SCALAR_L(vqdmullt_scalarw, 1, 4, int32_t, 8, int64_t, \
do_qdmullw, SATMASK32)
/*
* Long saturating ops
*/
#define DO_2OP_SAT_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK) \
void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \
void *vm) \
{ \
LTYPE *d = vd; \
TYPE *n = vn, *m = vm; \
uint16_t mask = mve_element_mask(env); \
unsigned le; \
bool qc = false; \
for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
bool sat = false; \
LTYPE op1 = n[H##ESIZE(le * 2 + TOP)]; \
LTYPE op2 = m[H##ESIZE(le * 2 + TOP)]; \
mergemask(&d[H##LESIZE(le)], FN(op1, op2, &sat), mask); \
qc |= sat && (mask & SATMASK); \
} \
if (qc) { \
env->vfp.qc[0] = qc; \
} \
mve_advance_vpt(env); \
}
DO_2OP_SAT_L(vqdmullbh, 0, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16B)
DO_2OP_SAT_L(vqdmullbw, 0, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
DO_2OP_SAT_L(vqdmullth, 1, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16T)
DO_2OP_SAT_L(vqdmulltw, 1, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
static inline uint32_t do_vbrsrb(uint32_t n, uint32_t m)
{
m &= 0xff;
if (m == 0) {
return 0;
}
n = revbit8(n);
if (m < 8) {
n >>= 8 - m;
}
return n;
}
static inline uint32_t do_vbrsrh(uint32_t n, uint32_t m)
{
m &= 0xff;
if (m == 0) {
return 0;
}
n = revbit16(n);
if (m < 16) {
n >>= 16 - m;
}
return n;
}
static inline uint32_t do_vbrsrw(uint32_t n, uint32_t m)
{
m &= 0xff;
if (m == 0) {
return 0;
}
n = revbit32(n);
if (m < 32) {
n >>= 32 - m;
}
return n;
}
DO_2OP_SCALAR(vbrsrb, 1, uint8_t, do_vbrsrb)
DO_2OP_SCALAR(vbrsrh, 2, uint16_t, do_vbrsrh)
DO_2OP_SCALAR(vbrsrw, 4, uint32_t, do_vbrsrw)
/*
* Multiply add long dual accumulate ops.
*/
#define DO_LDAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC) \
uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \
void *vm, uint64_t a) \
{ \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
TYPE *n = vn, *m = vm; \
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
if (mask & 1) { \
if (e & 1) { \
a ODDACC \
(int64_t)n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)]; \
} else { \
a EVENACC \
(int64_t)n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)]; \
} \
} \
} \
mve_advance_vpt(env); \
return a; \
}
DO_LDAV(vmlaldavsh, 2, int16_t, false, +=, +=)
DO_LDAV(vmlaldavxsh, 2, int16_t, true, +=, +=)
DO_LDAV(vmlaldavsw, 4, int32_t, false, +=, +=)
DO_LDAV(vmlaldavxsw, 4, int32_t, true, +=, +=)
DO_LDAV(vmlaldavuh, 2, uint16_t, false, +=, +=)
DO_LDAV(vmlaldavuw, 4, uint32_t, false, +=, +=)
DO_LDAV(vmlsldavsh, 2, int16_t, false, +=, -=)
DO_LDAV(vmlsldavxsh, 2, int16_t, true, +=, -=)
DO_LDAV(vmlsldavsw, 4, int32_t, false, +=, -=)
DO_LDAV(vmlsldavxsw, 4, int32_t, true, +=, -=)
/*
* Rounding multiply add long dual accumulate high. In the pseudocode
* this is implemented with a 72-bit internal accumulator value of which
* the top 64 bits are returned. We optimize this to avoid having to
* use 128-bit arithmetic -- we can do this because the 74-bit accumulator
* is squashed back into 64-bits after each beat.
*/
#define DO_LDAVH(OP, TYPE, LTYPE, XCHG, SUB) \
uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \
void *vm, uint64_t a) \
{ \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
TYPE *n = vn, *m = vm; \
for (e = 0; e < 16 / 4; e++, mask >>= 4) { \
if (mask & 1) { \
LTYPE mul; \
if (e & 1) { \
mul = (LTYPE)n[H4(e - 1 * XCHG)] * m[H4(e)]; \
if (SUB) { \
mul = -mul; \
} \
} else { \
mul = (LTYPE)n[H4(e + 1 * XCHG)] * m[H4(e)]; \
} \
mul = (mul >> 8) + ((mul >> 7) & 1); \
a += mul; \
} \
} \
mve_advance_vpt(env); \
return a; \
}
DO_LDAVH(vrmlaldavhsw, int32_t, int64_t, false, false)
DO_LDAVH(vrmlaldavhxsw, int32_t, int64_t, true, false)
DO_LDAVH(vrmlaldavhuw, uint32_t, uint64_t, false, false)
DO_LDAVH(vrmlsldavhsw, int32_t, int64_t, false, true)
DO_LDAVH(vrmlsldavhxsw, int32_t, int64_t, true, true)
/* Vector add across vector */
#define DO_VADDV(OP, ESIZE, TYPE) \
uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
uint32_t ra) \
{ \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
TYPE *m = vm; \
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
if (mask & 1) { \
ra += m[H##ESIZE(e)]; \
} \
} \
mve_advance_vpt(env); \
return ra; \
} \
DO_VADDV(vaddvsb, 1, uint8_t)
DO_VADDV(vaddvsh, 2, uint16_t)
DO_VADDV(vaddvsw, 4, uint32_t)
DO_VADDV(vaddvub, 1, uint8_t)
DO_VADDV(vaddvuh, 2, uint16_t)
DO_VADDV(vaddvuw, 4, uint32_t)
/* Shifts by immediate */
#define DO_2SHIFT(OP, ESIZE, TYPE, FN) \
void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \
void *vm, uint32_t shift) \
{ \
TYPE *d = vd, *m = vm; \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
mergemask(&d[H##ESIZE(e)], \
FN(m[H##ESIZE(e)], shift), mask); \
} \
mve_advance_vpt(env); \
}
#define DO_2SHIFT_SAT(OP, ESIZE, TYPE, FN) \
void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \
void *vm, uint32_t shift) \
{ \
TYPE *d = vd, *m = vm; \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
bool qc = false; \
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
bool sat = false; \
mergemask(&d[H##ESIZE(e)], \
FN(m[H##ESIZE(e)], shift, &sat), mask); \
qc |= sat & mask & 1; \
} \
if (qc) { \
env->vfp.qc[0] = qc; \
} \
mve_advance_vpt(env); \
}
/* provide unsigned 2-op shift helpers for all sizes */
#define DO_2SHIFT_U(OP, FN) \
DO_2SHIFT(OP##b, 1, uint8_t, FN) \
DO_2SHIFT(OP##h, 2, uint16_t, FN) \
DO_2SHIFT(OP##w, 4, uint32_t, FN)
#define DO_2SHIFT_S(OP, FN) \
DO_2SHIFT(OP##b, 1, int8_t, FN) \
DO_2SHIFT(OP##h, 2, int16_t, FN) \
DO_2SHIFT(OP##w, 4, int32_t, FN)
#define DO_2SHIFT_SAT_U(OP, FN) \
DO_2SHIFT_SAT(OP##b, 1, uint8_t, FN) \
DO_2SHIFT_SAT(OP##h, 2, uint16_t, FN) \
DO_2SHIFT_SAT(OP##w, 4, uint32_t, FN)
#define DO_2SHIFT_SAT_S(OP, FN) \
DO_2SHIFT_SAT(OP##b, 1, int8_t, FN) \
DO_2SHIFT_SAT(OP##h, 2, int16_t, FN) \
DO_2SHIFT_SAT(OP##w, 4, int32_t, FN)
DO_2SHIFT_U(vshli_u, DO_VSHLU)
DO_2SHIFT_S(vshli_s, DO_VSHLS)
DO_2SHIFT_SAT_U(vqshli_u, DO_UQSHL_OP)
DO_2SHIFT_SAT_S(vqshli_s, DO_SQSHL_OP)
DO_2SHIFT_SAT_S(vqshlui_s, DO_SUQSHL_OP)
DO_2SHIFT_U(vrshli_u, DO_VRSHLU)
DO_2SHIFT_S(vrshli_s, DO_VRSHLS)
/* Shift-and-insert; we always work with 64 bits at a time */
#define DO_2SHIFT_INSERT(OP, ESIZE, SHIFTFN, MASKFN) \
void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \
void *vm, uint32_t shift) \
{ \
uint64_t *d = vd, *m = vm; \
uint16_t mask; \
uint64_t shiftmask; \
unsigned e; \
if (shift == 0 || shift == ESIZE * 8) { \
/* \
* Only VSLI can shift by 0; only VSRI can shift by
. \
* The generic logic would give the right answer for 0 but \
* fails for . \
*/ \
goto done; \
} \
assert(shift < ESIZE * 8); \
mask = mve_element_mask(env); \
/* ESIZE / 2 gives the MO_* value if ESIZE is in [1,2,4] */ \
shiftmask = dup_const(ESIZE / 2, MASKFN(ESIZE * 8, shift)); \
for (e = 0; e < 16 / 8; e++, mask >>= 8) { \
uint64_t r = (SHIFTFN(m[H8(e)], shift) & shiftmask) | \
(d[H8(e)] & ~shiftmask); \
mergemask(&d[H8(e)], r, mask); \
} \
done: \
mve_advance_vpt(env); \
}
#define DO_SHL(N, SHIFT) ((N) << (SHIFT))
#define DO_SHR(N, SHIFT) ((N) >> (SHIFT))
#define SHL_MASK(EBITS, SHIFT) MAKE_64BIT_MASK((SHIFT), (EBITS) - (SHIFT))
#define SHR_MASK(EBITS, SHIFT) MAKE_64BIT_MASK(0, (EBITS) - (SHIFT))
DO_2SHIFT_INSERT(vsrib, 1, DO_SHR, SHR_MASK)
DO_2SHIFT_INSERT(vsrih, 2, DO_SHR, SHR_MASK)
DO_2SHIFT_INSERT(vsriw, 4, DO_SHR, SHR_MASK)
DO_2SHIFT_INSERT(vslib, 1, DO_SHL, SHL_MASK)
DO_2SHIFT_INSERT(vslih, 2, DO_SHL, SHL_MASK)
DO_2SHIFT_INSERT(vsliw, 4, DO_SHL, SHL_MASK)
/*
* Long shifts taking half-sized inputs from top or bottom of the input
* vector and producing a double-width result. ESIZE, TYPE are for
* the input, and LESIZE, LTYPE for the output.
* Unlike the normal shift helpers, we do not handle negative shift counts,
* because the long shift is strictly left-only.
*/
#define DO_VSHLL(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE) \
void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \
void *vm, uint32_t shift) \
{ \
LTYPE *d = vd; \
TYPE *m = vm; \
uint16_t mask = mve_element_mask(env); \
unsigned le; \
assert(shift <= 16); \
for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
LTYPE r = (LTYPE)m[H##ESIZE(le * 2 + TOP)] << shift; \
mergemask(&d[H##LESIZE(le)], r, mask); \
} \
mve_advance_vpt(env); \
}
#define DO_VSHLL_ALL(OP, TOP) \
DO_VSHLL(OP##sb, TOP, 1, int8_t, 2, int16_t) \
DO_VSHLL(OP##ub, TOP, 1, uint8_t, 2, uint16_t) \
DO_VSHLL(OP##sh, TOP, 2, int16_t, 4, int32_t) \
DO_VSHLL(OP##uh, TOP, 2, uint16_t, 4, uint32_t) \
DO_VSHLL_ALL(vshllb, false)
DO_VSHLL_ALL(vshllt, true)