/* * Arm "Angel" semihosting syscalls * * Copyright (c) 2005, 2007 CodeSourcery. * Copyright (c) 2019 Linaro * Written by Paul Brook. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * ARM Semihosting is documented in: * Semihosting for AArch32 and AArch64 Release 2.0 * https://static.docs.arm.com/100863/0200/semihosting.pdf */ #include "qemu/osdep.h" #include "cpu.h" #include "hw/semihosting/semihost.h" #include "hw/semihosting/console.h" #include "qemu/log.h" #ifdef CONFIG_USER_ONLY #include "qemu.h" #define ARM_ANGEL_HEAP_SIZE (128 * 1024 * 1024) #else #include "qemu-common.h" #include "exec/gdbstub.h" #include "qemu/cutils.h" #endif #define TARGET_SYS_OPEN 0x01 #define TARGET_SYS_CLOSE 0x02 #define TARGET_SYS_WRITEC 0x03 #define TARGET_SYS_WRITE0 0x04 #define TARGET_SYS_WRITE 0x05 #define TARGET_SYS_READ 0x06 #define TARGET_SYS_READC 0x07 #define TARGET_SYS_ISTTY 0x09 #define TARGET_SYS_SEEK 0x0a #define TARGET_SYS_FLEN 0x0c #define TARGET_SYS_TMPNAM 0x0d #define TARGET_SYS_REMOVE 0x0e #define TARGET_SYS_RENAME 0x0f #define TARGET_SYS_CLOCK 0x10 #define TARGET_SYS_TIME 0x11 #define TARGET_SYS_SYSTEM 0x12 #define TARGET_SYS_ERRNO 0x13 #define TARGET_SYS_GET_CMDLINE 0x15 #define TARGET_SYS_HEAPINFO 0x16 #define TARGET_SYS_EXIT 0x18 #define TARGET_SYS_SYNCCACHE 0x19 /* ADP_Stopped_ApplicationExit is used for exit(0), * anything else is implemented as exit(1) */ #define ADP_Stopped_ApplicationExit (0x20026) #ifndef O_BINARY #define O_BINARY 0 #endif #define GDB_O_RDONLY 0x000 #define GDB_O_WRONLY 0x001 #define GDB_O_RDWR 0x002 #define GDB_O_APPEND 0x008 #define GDB_O_CREAT 0x200 #define GDB_O_TRUNC 0x400 #define GDB_O_BINARY 0 static int gdb_open_modeflags[12] = { GDB_O_RDONLY, GDB_O_RDONLY | GDB_O_BINARY, GDB_O_RDWR, GDB_O_RDWR | GDB_O_BINARY, GDB_O_WRONLY | GDB_O_CREAT | GDB_O_TRUNC, GDB_O_WRONLY | GDB_O_CREAT | GDB_O_TRUNC | GDB_O_BINARY, GDB_O_RDWR | GDB_O_CREAT | GDB_O_TRUNC, GDB_O_RDWR | GDB_O_CREAT | GDB_O_TRUNC | GDB_O_BINARY, GDB_O_WRONLY | GDB_O_CREAT | GDB_O_APPEND, GDB_O_WRONLY | GDB_O_CREAT | GDB_O_APPEND | GDB_O_BINARY, GDB_O_RDWR | GDB_O_CREAT | GDB_O_APPEND, GDB_O_RDWR | GDB_O_CREAT | GDB_O_APPEND | GDB_O_BINARY }; static int open_modeflags[12] = { O_RDONLY, O_RDONLY | O_BINARY, O_RDWR, O_RDWR | O_BINARY, O_WRONLY | O_CREAT | O_TRUNC, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, O_RDWR | O_CREAT | O_TRUNC, O_RDWR | O_CREAT | O_TRUNC | O_BINARY, O_WRONLY | O_CREAT | O_APPEND, O_WRONLY | O_CREAT | O_APPEND | O_BINARY, O_RDWR | O_CREAT | O_APPEND, O_RDWR | O_CREAT | O_APPEND | O_BINARY }; #ifdef CONFIG_USER_ONLY static inline uint32_t set_swi_errno(TaskState *ts, uint32_t code) { if (code == (uint32_t)-1) ts->swi_errno = errno; return code; } #else static inline uint32_t set_swi_errno(CPUARMState *env, uint32_t code) { return code; } #include "exec/softmmu-semi.h" #endif static target_ulong arm_semi_syscall_len; #if !defined(CONFIG_USER_ONLY) static target_ulong syscall_err; #endif static void arm_semi_cb(CPUState *cs, target_ulong ret, target_ulong err) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; #ifdef CONFIG_USER_ONLY TaskState *ts = cs->opaque; #endif target_ulong reg0 = is_a64(env) ? env->xregs[0] : env->regs[0]; if (ret == (target_ulong)-1) { #ifdef CONFIG_USER_ONLY ts->swi_errno = err; #else syscall_err = err; #endif reg0 = ret; } else { /* Fixup syscalls that use nonstardard return conventions. */ switch (reg0) { case TARGET_SYS_WRITE: case TARGET_SYS_READ: reg0 = arm_semi_syscall_len - ret; break; case TARGET_SYS_SEEK: reg0 = 0; break; default: reg0 = ret; break; } } if (is_a64(env)) { env->xregs[0] = reg0; } else { env->regs[0] = reg0; } } static target_ulong arm_flen_buf(ARMCPU *cpu) { /* Return an address in target memory of 64 bytes where the remote * gdb should write its stat struct. (The format of this structure * is defined by GDB's remote protocol and is not target-specific.) * We put this on the guest's stack just below SP. */ CPUARMState *env = &cpu->env; target_ulong sp; if (is_a64(env)) { sp = env->xregs[31]; } else { sp = env->regs[13]; } return sp - 64; } static void arm_semi_flen_cb(CPUState *cs, target_ulong ret, target_ulong err) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; /* The size is always stored in big-endian order, extract the value. We assume the size always fit in 32 bits. */ uint32_t size; cpu_memory_rw_debug(cs, arm_flen_buf(cpu) + 32, (uint8_t *)&size, 4, 0); size = be32_to_cpu(size); if (is_a64(env)) { env->xregs[0] = size; } else { env->regs[0] = size; } #ifdef CONFIG_USER_ONLY ((TaskState *)cs->opaque)->swi_errno = err; #else syscall_err = err; #endif } static target_ulong arm_gdb_syscall(ARMCPU *cpu, gdb_syscall_complete_cb cb, const char *fmt, ...) { va_list va; CPUARMState *env = &cpu->env; va_start(va, fmt); gdb_do_syscallv(cb, fmt, va); va_end(va); /* FIXME: we are implicitly relying on the syscall completing * before this point, which is not guaranteed. We should * put in an explicit synchronization between this and * the callback function. */ return is_a64(env) ? env->xregs[0] : env->regs[0]; } /* Read the input value from the argument block; fail the semihosting * call if the memory read fails. */ #define GET_ARG(n) do { \ if (is_a64(env)) { \ if (get_user_u64(arg ## n, args + (n) * 8)) { \ return -1; \ } \ } else { \ if (get_user_u32(arg ## n, args + (n) * 4)) { \ return -1; \ } \ } \ } while (0) #define SET_ARG(n, val) \ (is_a64(env) ? \ put_user_u64(val, args + (n) * 8) : \ put_user_u32(val, args + (n) * 4)) /* * Do a semihosting call. * * The specification always says that the "return register" either * returns a specific value or is corrupted, so we don't need to * report to our caller whether we are returning a value or trying to * leave the register unchanged. We use 0xdeadbeef as the return value * when there isn't a defined return value for the call. */ target_ulong do_arm_semihosting(CPUARMState *env) { ARMCPU *cpu = arm_env_get_cpu(env); CPUState *cs = CPU(cpu); target_ulong args; target_ulong arg0, arg1, arg2, arg3; char * s; int nr; uint32_t ret; uint32_t len; #ifdef CONFIG_USER_ONLY TaskState *ts = cs->opaque; #else CPUARMState *ts = env; #endif if (is_a64(env)) { /* Note that the syscall number is in W0, not X0 */ nr = env->xregs[0] & 0xffffffffU; args = env->xregs[1]; } else { nr = env->regs[0]; args = env->regs[1]; } switch (nr) { case TARGET_SYS_OPEN: GET_ARG(0); GET_ARG(1); GET_ARG(2); s = lock_user_string(arg0); if (!s) { /* FIXME - should this error code be -TARGET_EFAULT ? */ return (uint32_t)-1; } if (arg1 >= 12) { unlock_user(s, arg0, 0); return (uint32_t)-1; } if (strcmp(s, ":tt") == 0) { int result_fileno = arg1 < 4 ? STDIN_FILENO : STDOUT_FILENO; unlock_user(s, arg0, 0); return result_fileno; } if (use_gdb_syscalls()) { ret = arm_gdb_syscall(cpu, arm_semi_cb, "open,%s,%x,1a4", arg0, (int)arg2+1, gdb_open_modeflags[arg1]); } else { ret = set_swi_errno(ts, open(s, open_modeflags[arg1], 0644)); } unlock_user(s, arg0, 0); return ret; case TARGET_SYS_CLOSE: GET_ARG(0); if (use_gdb_syscalls()) { return arm_gdb_syscall(cpu, arm_semi_cb, "close,%x", arg0); } else { return set_swi_errno(ts, close(arg0)); } case TARGET_SYS_WRITEC: qemu_semihosting_console_out(env, args, 1); return 0xdeadbeef; case TARGET_SYS_WRITE0: return qemu_semihosting_console_out(env, args, 0); case TARGET_SYS_WRITE: GET_ARG(0); GET_ARG(1); GET_ARG(2); len = arg2; if (use_gdb_syscalls()) { arm_semi_syscall_len = len; return arm_gdb_syscall(cpu, arm_semi_cb, "write,%x,%x,%x", arg0, arg1, len); } else { s = lock_user(VERIFY_READ, arg1, len, 1); if (!s) { /* Return bytes not written on error */ return len; } ret = set_swi_errno(ts, write(arg0, s, len)); unlock_user(s, arg1, 0); if (ret == (uint32_t)-1) { ret = 0; } /* Return bytes not written */ return len - ret; } case TARGET_SYS_READ: GET_ARG(0); GET_ARG(1); GET_ARG(2); len = arg2; if (use_gdb_syscalls()) { arm_semi_syscall_len = len; return arm_gdb_syscall(cpu, arm_semi_cb, "read,%x,%x,%x", arg0, arg1, len); } else { s = lock_user(VERIFY_WRITE, arg1, len, 0); if (!s) { /* return bytes not read */ return len; } do { ret = set_swi_errno(ts, read(arg0, s, len)); } while (ret == -1 && errno == EINTR); unlock_user(s, arg1, len); if (ret == (uint32_t)-1) { ret = 0; } /* Return bytes not read */ return len - ret; } case TARGET_SYS_READC: qemu_log_mask(LOG_UNIMP, "%s: SYS_READC not implemented", __func__); return 0; case TARGET_SYS_ISTTY: GET_ARG(0); if (use_gdb_syscalls()) { return arm_gdb_syscall(cpu, arm_semi_cb, "isatty,%x", arg0); } else { return isatty(arg0); } case TARGET_SYS_SEEK: GET_ARG(0); GET_ARG(1); if (use_gdb_syscalls()) { return arm_gdb_syscall(cpu, arm_semi_cb, "lseek,%x,%x,0", arg0, arg1); } else { ret = set_swi_errno(ts, lseek(arg0, arg1, SEEK_SET)); if (ret == (uint32_t)-1) return -1; return 0; } case TARGET_SYS_FLEN: GET_ARG(0); if (use_gdb_syscalls()) { return arm_gdb_syscall(cpu, arm_semi_flen_cb, "fstat,%x,%x", arg0, arm_flen_buf(cpu)); } else { struct stat buf; ret = set_swi_errno(ts, fstat(arg0, &buf)); if (ret == (uint32_t)-1) return -1; return buf.st_size; } case TARGET_SYS_TMPNAM: qemu_log_mask(LOG_UNIMP, "%s: SYS_TMPNAM not implemented", __func__); return -1; case TARGET_SYS_REMOVE: GET_ARG(0); GET_ARG(1); if (use_gdb_syscalls()) { ret = arm_gdb_syscall(cpu, arm_semi_cb, "unlink,%s", arg0, (int)arg1+1); } else { s = lock_user_string(arg0); if (!s) { /* FIXME - should this error code be -TARGET_EFAULT ? */ return (uint32_t)-1; } ret = set_swi_errno(ts, remove(s)); unlock_user(s, arg0, 0); } return ret; case TARGET_SYS_RENAME: GET_ARG(0); GET_ARG(1); GET_ARG(2); GET_ARG(3); if (use_gdb_syscalls()) { return arm_gdb_syscall(cpu, arm_semi_cb, "rename,%s,%s", arg0, (int)arg1+1, arg2, (int)arg3+1); } else { char *s2; s = lock_user_string(arg0); s2 = lock_user_string(arg2); if (!s || !s2) /* FIXME - should this error code be -TARGET_EFAULT ? */ ret = (uint32_t)-1; else ret = set_swi_errno(ts, rename(s, s2)); if (s2) unlock_user(s2, arg2, 0); if (s) unlock_user(s, arg0, 0); return ret; } case TARGET_SYS_CLOCK: return clock() / (CLOCKS_PER_SEC / 100); case TARGET_SYS_TIME: return set_swi_errno(ts, time(NULL)); case TARGET_SYS_SYSTEM: GET_ARG(0); GET_ARG(1); if (use_gdb_syscalls()) { return arm_gdb_syscall(cpu, arm_semi_cb, "system,%s", arg0, (int)arg1+1); } else { s = lock_user_string(arg0); if (!s) { /* FIXME - should this error code be -TARGET_EFAULT ? */ return (uint32_t)-1; } ret = set_swi_errno(ts, system(s)); unlock_user(s, arg0, 0); return ret; } case TARGET_SYS_ERRNO: #ifdef CONFIG_USER_ONLY return ts->swi_errno; #else return syscall_err; #endif case TARGET_SYS_GET_CMDLINE: { /* Build a command-line from the original argv. * * The inputs are: * * arg0, pointer to a buffer of at least the size * specified in arg1. * * arg1, size of the buffer pointed to by arg0 in * bytes. * * The outputs are: * * arg0, pointer to null-terminated string of the * command line. * * arg1, length of the string pointed to by arg0. */ char *output_buffer; size_t input_size; size_t output_size; int status = 0; #if !defined(CONFIG_USER_ONLY) const char *cmdline; #endif GET_ARG(0); GET_ARG(1); input_size = arg1; /* Compute the size of the output string. */ #if !defined(CONFIG_USER_ONLY) cmdline = semihosting_get_cmdline(); if (cmdline == NULL) { cmdline = ""; /* Default to an empty line. */ } output_size = strlen(cmdline) + 1; /* Count terminating 0. */ #else unsigned int i; output_size = ts->info->arg_end - ts->info->arg_start; if (!output_size) { /* * We special-case the "empty command line" case (argc==0). * Just provide the terminating 0. */ output_size = 1; } #endif if (output_size > input_size) { /* Not enough space to store command-line arguments. */ return -1; } /* Adjust the command-line length. */ if (SET_ARG(1, output_size - 1)) { /* Couldn't write back to argument block */ return -1; } /* Lock the buffer on the ARM side. */ output_buffer = lock_user(VERIFY_WRITE, arg0, output_size, 0); if (!output_buffer) { return -1; } /* Copy the command-line arguments. */ #if !defined(CONFIG_USER_ONLY) pstrcpy(output_buffer, output_size, cmdline); #else if (output_size == 1) { /* Empty command-line. */ output_buffer[0] = '\0'; goto out; } if (copy_from_user(output_buffer, ts->info->arg_start, output_size)) { status = -1; goto out; } /* Separate arguments by white spaces. */ for (i = 0; i < output_size - 1; i++) { if (output_buffer[i] == 0) { output_buffer[i] = ' '; } } out: #endif /* Unlock the buffer on the ARM side. */ unlock_user(output_buffer, arg0, output_size); return status; } case TARGET_SYS_HEAPINFO: { target_ulong retvals[4]; target_ulong limit; int i; GET_ARG(0); #ifdef CONFIG_USER_ONLY /* * Some C libraries assume the heap immediately follows .bss, so * allocate it using sbrk. */ if (!ts->heap_limit) { abi_ulong ret; ts->heap_base = do_brk(0); limit = ts->heap_base + ARM_ANGEL_HEAP_SIZE; /* Try a big heap, and reduce the size if that fails. */ for (;;) { ret = do_brk(limit); if (ret >= limit) { break; } limit = (ts->heap_base >> 1) + (limit >> 1); } ts->heap_limit = limit; } retvals[0] = ts->heap_base; retvals[1] = ts->heap_limit; retvals[2] = ts->stack_base; retvals[3] = 0; /* Stack limit. */ #else limit = ram_size; /* TODO: Make this use the limit of the loaded application. */ retvals[0] = limit / 2; retvals[1] = limit; retvals[2] = limit; /* Stack base */ retvals[3] = 0; /* Stack limit. */ #endif for (i = 0; i < ARRAY_SIZE(retvals); i++) { bool fail; if (is_a64(env)) { fail = put_user_u64(retvals[i], arg0 + i * 8); } else { fail = put_user_u32(retvals[i], arg0 + i * 4); } if (fail) { /* Couldn't write back to argument block */ return -1; } } return 0; } case TARGET_SYS_EXIT: if (is_a64(env)) { /* * The A64 version of this call takes a parameter block, * so the application-exit type can return a subcode which * is the exit status code from the application. */ GET_ARG(0); GET_ARG(1); if (arg0 == ADP_Stopped_ApplicationExit) { ret = arg1; } else { ret = 1; } } else { /* * ARM specifies only Stopped_ApplicationExit as normal * exit, everything else is considered an error */ ret = (args == ADP_Stopped_ApplicationExit) ? 0 : 1; } gdb_exit(env, ret); exit(ret); case TARGET_SYS_SYNCCACHE: /* * Clean the D-cache and invalidate the I-cache for the specified * virtual address range. This is a nop for us since we don't * implement caches. This is only present on A64. */ if (is_a64(env)) { return 0; } /* fall through -- invalid for A32/T32 */ default: fprintf(stderr, "qemu: Unsupported SemiHosting SWI 0x%02x\n", nr); cpu_dump_state(cs, stderr, 0); abort(); } }