/* * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the Open Source and Linux Lab nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "cpu.h" #include "exec-all.h" #include "gdbstub.h" #include "qemu-common.h" #include "host-utils.h" #if !defined(CONFIG_USER_ONLY) #include "hw/loader.h" #endif #define XTREG(idx, ofs, bi, sz, al, no, flags, cp, typ, grp, name, \ a1, a2, a3, a4, a5, a6) \ { .targno = (no), .type = (typ), .group = (grp) }, static void reset_mmu(CPUState *env); void cpu_reset(CPUXtensaState *env) { env->exception_taken = 0; env->pc = env->config->exception_vector[EXC_RESET]; env->sregs[LITBASE] &= ~1; env->sregs[PS] = xtensa_option_enabled(env->config, XTENSA_OPTION_INTERRUPT) ? 0x1f : 0x10; env->sregs[VECBASE] = env->config->vecbase; env->pending_irq_level = 0; reset_mmu(env); } static const XtensaConfig core_config[] = { { .name = "sample-xtensa-core", .options = -1 ^ (XTENSA_OPTION_BIT(XTENSA_OPTION_HW_ALIGNMENT) | XTENSA_OPTION_BIT(XTENSA_OPTION_MMU)), .gdb_regmap = { .num_regs = 176, .num_core_regs = 117, .reg = { #include "gdb-config-sample-xtensa-core.c" } }, .nareg = 64, .ndepc = 1, .excm_level = 16, .vecbase = 0x5fff8400, .exception_vector = { [EXC_RESET] = 0x5fff8000, [EXC_WINDOW_OVERFLOW4] = 0x5fff8400, [EXC_WINDOW_UNDERFLOW4] = 0x5fff8440, [EXC_WINDOW_OVERFLOW8] = 0x5fff8480, [EXC_WINDOW_UNDERFLOW8] = 0x5fff84c0, [EXC_WINDOW_OVERFLOW12] = 0x5fff8500, [EXC_WINDOW_UNDERFLOW12] = 0x5fff8540, [EXC_KERNEL] = 0x5fff861c, [EXC_USER] = 0x5fff863c, [EXC_DOUBLE] = 0x5fff865c, }, .ninterrupt = 13, .nlevel = 6, .interrupt_vector = { 0, 0, 0x5fff857c, 0x5fff859c, 0x5fff85bc, 0x5fff85dc, 0x5fff85fc, }, .level_mask = { [4] = 1, }, .interrupt = { [0] = { .level = 4, .inttype = INTTYPE_TIMER, }, }, .nccompare = 1, .timerint = { [0] = 0, }, .clock_freq_khz = 912000, }, { .name = "dc232b", .options = -1 ^ (XTENSA_OPTION_BIT(XTENSA_OPTION_HW_ALIGNMENT) | XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) | XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION)), .gdb_regmap = { .num_regs = 120, .num_core_regs = 52, .reg = { #include "gdb-config-dc232b.c" } }, .nareg = 32, .ndepc = 1, .excm_level = 3, .vecbase = 0xd0000000, .exception_vector = { [EXC_RESET] = 0xfe000000, [EXC_WINDOW_OVERFLOW4] = 0xd0000000, [EXC_WINDOW_UNDERFLOW4] = 0xd0000040, [EXC_WINDOW_OVERFLOW8] = 0xd0000080, [EXC_WINDOW_UNDERFLOW8] = 0xd00000c0, [EXC_WINDOW_OVERFLOW12] = 0xd0000100, [EXC_WINDOW_UNDERFLOW12] = 0xd0000140, [EXC_KERNEL] = 0xd0000300, [EXC_USER] = 0xd0000340, [EXC_DOUBLE] = 0xd00003c0, }, .ninterrupt = 22, .nlevel = 6, .interrupt_vector = { 0, 0, 0xd0000180, 0xd00001c0, 0xd0000200, 0xd0000240, 0xd0000280, 0xd00002c0, }, .level_mask = { [1] = 0x1f80ff, [2] = 0x000100, [3] = 0x200e00, [4] = 0x001000, [5] = 0x002000, [6] = 0x000000, [7] = 0x004000, }, .inttype_mask = { [INTTYPE_EDGE] = 0x3f8000, [INTTYPE_NMI] = 0x4000, [INTTYPE_SOFTWARE] = 0x880, }, .interrupt = { [0] = { .level = 1, .inttype = INTTYPE_LEVEL, }, [1] = { .level = 1, .inttype = INTTYPE_LEVEL, }, [2] = { .level = 1, .inttype = INTTYPE_LEVEL, }, [3] = { .level = 1, .inttype = INTTYPE_LEVEL, }, [4] = { .level = 1, .inttype = INTTYPE_LEVEL, }, [5] = { .level = 1, .inttype = INTTYPE_LEVEL, }, [6] = { .level = 1, .inttype = INTTYPE_TIMER, }, [7] = { .level = 1, .inttype = INTTYPE_SOFTWARE, }, [8] = { .level = 2, .inttype = INTTYPE_LEVEL, }, [9] = { .level = 3, .inttype = INTTYPE_LEVEL, }, [10] = { .level = 3, .inttype = INTTYPE_TIMER, }, [11] = { .level = 3, .inttype = INTTYPE_SOFTWARE, }, [12] = { .level = 4, .inttype = INTTYPE_LEVEL, }, [13] = { .level = 5, .inttype = INTTYPE_TIMER, }, [14] = { .level = 7, .inttype = INTTYPE_NMI, }, [15] = { .level = 1, .inttype = INTTYPE_EDGE, }, [16] = { .level = 1, .inttype = INTTYPE_EDGE, }, [17] = { .level = 1, .inttype = INTTYPE_EDGE, }, [18] = { .level = 1, .inttype = INTTYPE_EDGE, }, [19] = { .level = 1, .inttype = INTTYPE_EDGE, }, [20] = { .level = 1, .inttype = INTTYPE_EDGE, }, [21] = { .level = 3, .inttype = INTTYPE_EDGE, }, }, .nccompare = 3, .timerint = { [0] = 6, [1] = 10, [2] = 13, }, .clock_freq_khz = 912000, .itlb = { .nways = 7, .way_size = { 4, 4, 4, 4, 4, 2, 2, }, .varway56 = false, .nrefillentries = 16, }, .dtlb = { .nways = 10, .way_size = { 4, 4, 4, 4, 4, 2, 2, 1, 1, 1, }, .varway56 = false, .nrefillentries = 16, }, }, }; CPUXtensaState *cpu_xtensa_init(const char *cpu_model) { static int tcg_inited; CPUXtensaState *env; const XtensaConfig *config = NULL; int i; for (i = 0; i < ARRAY_SIZE(core_config); ++i) if (strcmp(core_config[i].name, cpu_model) == 0) { config = core_config + i; break; } if (config == NULL) { return NULL; } env = g_malloc0(sizeof(*env)); env->config = config; cpu_exec_init(env); if (!tcg_inited) { tcg_inited = 1; xtensa_translate_init(); } xtensa_irq_init(env); qemu_init_vcpu(env); return env; } void xtensa_cpu_list(FILE *f, fprintf_function cpu_fprintf) { int i; cpu_fprintf(f, "Available CPUs:\n"); for (i = 0; i < ARRAY_SIZE(core_config); ++i) { cpu_fprintf(f, " %s\n", core_config[i].name); } } target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr) { uint32_t paddr; uint32_t page_size; unsigned access; if (xtensa_get_physical_addr(env, addr, 0, 0, &paddr, &page_size, &access) == 0) { return paddr; } if (xtensa_get_physical_addr(env, addr, 2, 0, &paddr, &page_size, &access) == 0) { return paddr; } return ~0; } static uint32_t relocated_vector(CPUState *env, uint32_t vector) { if (xtensa_option_enabled(env->config, XTENSA_OPTION_RELOCATABLE_VECTOR)) { return vector - env->config->vecbase + env->sregs[VECBASE]; } else { return vector; } } /*! * Handle penging IRQ. * For the high priority interrupt jump to the corresponding interrupt vector. * For the level-1 interrupt convert it to either user, kernel or double * exception with the 'level-1 interrupt' exception cause. */ static void handle_interrupt(CPUState *env) { int level = env->pending_irq_level; if (level > xtensa_get_cintlevel(env) && level <= env->config->nlevel && (env->config->level_mask[level] & env->sregs[INTSET] & env->sregs[INTENABLE])) { if (level > 1) { env->sregs[EPC1 + level - 1] = env->pc; env->sregs[EPS2 + level - 2] = env->sregs[PS]; env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | level | PS_EXCM; env->pc = relocated_vector(env, env->config->interrupt_vector[level]); } else { env->sregs[EXCCAUSE] = LEVEL1_INTERRUPT_CAUSE; if (env->sregs[PS] & PS_EXCM) { if (env->config->ndepc) { env->sregs[DEPC] = env->pc; } else { env->sregs[EPC1] = env->pc; } env->exception_index = EXC_DOUBLE; } else { env->sregs[EPC1] = env->pc; env->exception_index = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL; } env->sregs[PS] |= PS_EXCM; } env->exception_taken = 1; } } void do_interrupt(CPUState *env) { if (env->exception_index == EXC_IRQ) { qemu_log_mask(CPU_LOG_INT, "%s(EXC_IRQ) level = %d, cintlevel = %d, " "pc = %08x, a0 = %08x, ps = %08x, " "intset = %08x, intenable = %08x, " "ccount = %08x\n", __func__, env->pending_irq_level, xtensa_get_cintlevel(env), env->pc, env->regs[0], env->sregs[PS], env->sregs[INTSET], env->sregs[INTENABLE], env->sregs[CCOUNT]); handle_interrupt(env); } switch (env->exception_index) { case EXC_WINDOW_OVERFLOW4: case EXC_WINDOW_UNDERFLOW4: case EXC_WINDOW_OVERFLOW8: case EXC_WINDOW_UNDERFLOW8: case EXC_WINDOW_OVERFLOW12: case EXC_WINDOW_UNDERFLOW12: case EXC_KERNEL: case EXC_USER: case EXC_DOUBLE: qemu_log_mask(CPU_LOG_INT, "%s(%d) " "pc = %08x, a0 = %08x, ps = %08x, ccount = %08x\n", __func__, env->exception_index, env->pc, env->regs[0], env->sregs[PS], env->sregs[CCOUNT]); if (env->config->exception_vector[env->exception_index]) { env->pc = relocated_vector(env, env->config->exception_vector[env->exception_index]); env->exception_taken = 1; } else { qemu_log("%s(pc = %08x) bad exception_index: %d\n", __func__, env->pc, env->exception_index); } break; case EXC_IRQ: break; default: qemu_log("%s(pc = %08x) unknown exception_index: %d\n", __func__, env->pc, env->exception_index); break; } check_interrupts(env); } static void reset_tlb_mmu_all_ways(CPUState *env, const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE]) { unsigned wi, ei; for (wi = 0; wi < tlb->nways; ++wi) { for (ei = 0; ei < tlb->way_size[wi]; ++ei) { entry[wi][ei].asid = 0; entry[wi][ei].variable = true; } } } static void reset_tlb_mmu_ways56(CPUState *env, const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE]) { if (!tlb->varway56) { static const xtensa_tlb_entry way5[] = { { .vaddr = 0xd0000000, .paddr = 0, .asid = 1, .attr = 7, .variable = false, }, { .vaddr = 0xd8000000, .paddr = 0, .asid = 1, .attr = 3, .variable = false, } }; static const xtensa_tlb_entry way6[] = { { .vaddr = 0xe0000000, .paddr = 0xf0000000, .asid = 1, .attr = 7, .variable = false, }, { .vaddr = 0xf0000000, .paddr = 0xf0000000, .asid = 1, .attr = 3, .variable = false, } }; memcpy(entry[5], way5, sizeof(way5)); memcpy(entry[6], way6, sizeof(way6)); } else { uint32_t ei; for (ei = 0; ei < 8; ++ei) { entry[6][ei].vaddr = ei << 29; entry[6][ei].paddr = ei << 29; entry[6][ei].asid = 1; entry[6][ei].attr = 2; } } } static void reset_tlb_region_way0(CPUState *env, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE]) { unsigned ei; for (ei = 0; ei < 8; ++ei) { entry[0][ei].vaddr = ei << 29; entry[0][ei].paddr = ei << 29; entry[0][ei].asid = 1; entry[0][ei].attr = 2; entry[0][ei].variable = true; } } static void reset_mmu(CPUState *env) { if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { env->sregs[RASID] = 0x04030201; env->sregs[ITLBCFG] = 0; env->sregs[DTLBCFG] = 0; env->autorefill_idx = 0; reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb); reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb); reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb); reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb); } else { reset_tlb_region_way0(env, env->itlb); reset_tlb_region_way0(env, env->dtlb); } } static unsigned get_ring(const CPUState *env, uint8_t asid) { unsigned i; for (i = 0; i < 4; ++i) { if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) { return i; } } return 0xff; } /*! * Lookup xtensa TLB for the given virtual address. * See ISA, 4.6.2.2 * * \param pwi: [out] way index * \param pei: [out] entry index * \param pring: [out] access ring * \return 0 if ok, exception cause code otherwise */ int xtensa_tlb_lookup(const CPUState *env, uint32_t addr, bool dtlb, uint32_t *pwi, uint32_t *pei, uint8_t *pring) { const xtensa_tlb *tlb = dtlb ? &env->config->dtlb : &env->config->itlb; const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ? env->dtlb : env->itlb; int nhits = 0; unsigned wi; for (wi = 0; wi < tlb->nways; ++wi) { uint32_t vpn; uint32_t ei; split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei); if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) { unsigned ring = get_ring(env, entry[wi][ei].asid); if (ring < 4) { if (++nhits > 1) { return dtlb ? LOAD_STORE_TLB_MULTI_HIT_CAUSE : INST_TLB_MULTI_HIT_CAUSE; } *pwi = wi; *pei = ei; *pring = ring; } } } return nhits ? 0 : (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE); } /*! * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask. * See ISA, 4.6.5.10 */ static unsigned mmu_attr_to_access(uint32_t attr) { unsigned access = 0; if (attr < 12) { access |= PAGE_READ; if (attr & 0x1) { access |= PAGE_EXEC; } if (attr & 0x2) { access |= PAGE_WRITE; } } else if (attr == 13) { access |= PAGE_READ | PAGE_WRITE; } return access; } /*! * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask. * See ISA, 4.6.3.3 */ static unsigned region_attr_to_access(uint32_t attr) { unsigned access = 0; if ((attr < 6 && attr != 3) || attr == 14) { access |= PAGE_READ | PAGE_WRITE; } if (attr > 0 && attr < 6) { access |= PAGE_EXEC; } return access; } static bool is_access_granted(unsigned access, int is_write) { switch (is_write) { case 0: return access & PAGE_READ; case 1: return access & PAGE_WRITE; case 2: return access & PAGE_EXEC; default: return 0; } } static int autorefill_mmu(CPUState *env, uint32_t vaddr, bool dtlb, uint32_t *wi, uint32_t *ei, uint8_t *ring); static int get_physical_addr_mmu(CPUState *env, uint32_t vaddr, int is_write, int mmu_idx, uint32_t *paddr, uint32_t *page_size, unsigned *access) { bool dtlb = is_write != 2; uint32_t wi; uint32_t ei; uint8_t ring; int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring); if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) && (mmu_idx != 0 || ((vaddr ^ env->sregs[PTEVADDR]) & 0xffc00000)) && autorefill_mmu(env, vaddr, dtlb, &wi, &ei, &ring) == 0) { ret = 0; } if (ret != 0) { return ret; } const xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei); if (ring < mmu_idx) { return dtlb ? LOAD_STORE_PRIVILEGE_CAUSE : INST_FETCH_PRIVILEGE_CAUSE; } *access = mmu_attr_to_access(entry->attr); if (!is_access_granted(*access, is_write)) { return dtlb ? (is_write ? STORE_PROHIBITED_CAUSE : LOAD_PROHIBITED_CAUSE) : INST_FETCH_PROHIBITED_CAUSE; } *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi)); *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1; return 0; } static int autorefill_mmu(CPUState *env, uint32_t vaddr, bool dtlb, uint32_t *wi, uint32_t *ei, uint8_t *ring) { uint32_t paddr; uint32_t page_size; unsigned access; uint32_t pt_vaddr = (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc; int ret = get_physical_addr_mmu(env, pt_vaddr, 0, 0, &paddr, &page_size, &access); qemu_log("%s: trying autorefill(%08x) -> %08x\n", __func__, vaddr, ret ? ~0 : paddr); if (ret == 0) { uint32_t vpn; uint32_t pte = ldl_phys(paddr); *ring = (pte >> 4) & 0x3; *wi = (++env->autorefill_idx) & 0x3; split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, *wi, ei); xtensa_tlb_set_entry(env, dtlb, *wi, *ei, vpn, pte); qemu_log("%s: autorefill(%08x): %08x -> %08x\n", __func__, vaddr, vpn, pte); } return ret; } static int get_physical_addr_region(CPUState *env, uint32_t vaddr, int is_write, int mmu_idx, uint32_t *paddr, uint32_t *page_size, unsigned *access) { bool dtlb = is_write != 2; uint32_t wi = 0; uint32_t ei = (vaddr >> 29) & 0x7; const xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei); *access = region_attr_to_access(entry->attr); if (!is_access_granted(*access, is_write)) { return dtlb ? (is_write ? STORE_PROHIBITED_CAUSE : LOAD_PROHIBITED_CAUSE) : INST_FETCH_PROHIBITED_CAUSE; } *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK); *page_size = ~REGION_PAGE_MASK + 1; return 0; } /*! * Convert virtual address to physical addr. * MMU may issue pagewalk and change xtensa autorefill TLB way entry. * * \return 0 if ok, exception cause code otherwise */ int xtensa_get_physical_addr(CPUState *env, uint32_t vaddr, int is_write, int mmu_idx, uint32_t *paddr, uint32_t *page_size, unsigned *access) { if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { return get_physical_addr_mmu(env, vaddr, is_write, mmu_idx, paddr, page_size, access); } else if (xtensa_option_bits_enabled(env->config, XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) | XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) { return get_physical_addr_region(env, vaddr, is_write, mmu_idx, paddr, page_size, access); } else { *paddr = vaddr; *page_size = TARGET_PAGE_SIZE; *access = PAGE_READ | PAGE_WRITE | PAGE_EXEC; return 0; } }