/*
* Copyright (c) 2012-2014 Bastian Koppelmann C-Lab/University Paderborn
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see .
*/
#include
#include "cpu.h"
#include "qemu/host-utils.h"
#include "exec/helper-proto.h"
#include "exec/cpu_ldst.h"
/* Addressing mode helper */
static uint16_t reverse16(uint16_t val)
{
uint8_t high = (uint8_t)(val >> 8);
uint8_t low = (uint8_t)(val & 0xff);
uint16_t rh, rl;
rl = (uint16_t)((high * 0x0202020202ULL & 0x010884422010ULL) % 1023);
rh = (uint16_t)((low * 0x0202020202ULL & 0x010884422010ULL) % 1023);
return (rh << 8) | rl;
}
uint32_t helper_br_update(uint32_t reg)
{
uint32_t index = reg & 0xffff;
uint32_t incr = reg >> 16;
uint32_t new_index = reverse16(reverse16(index) + reverse16(incr));
return reg - index + new_index;
}
uint32_t helper_circ_update(uint32_t reg, uint32_t off)
{
uint32_t index = reg & 0xffff;
uint32_t length = reg >> 16;
int32_t new_index = index + off;
if (new_index < 0) {
new_index += length;
} else {
new_index %= length;
}
return reg - index + new_index;
}
static uint32_t ssov32(CPUTriCoreState *env, int64_t arg)
{
uint32_t ret;
int64_t max_pos = INT32_MAX;
int64_t max_neg = INT32_MIN;
if (arg > max_pos) {
env->PSW_USB_V = (1 << 31);
env->PSW_USB_SV = (1 << 31);
ret = (target_ulong)max_pos;
} else {
if (arg < max_neg) {
env->PSW_USB_V = (1 << 31);
env->PSW_USB_SV = (1 << 31);
ret = (target_ulong)max_neg;
} else {
env->PSW_USB_V = 0;
ret = (target_ulong)arg;
}
}
env->PSW_USB_AV = arg ^ arg * 2u;
env->PSW_USB_SAV |= env->PSW_USB_AV;
return ret;
}
static uint32_t suov32_pos(CPUTriCoreState *env, uint64_t arg)
{
uint32_t ret;
uint64_t max_pos = UINT32_MAX;
if (arg > max_pos) {
env->PSW_USB_V = (1 << 31);
env->PSW_USB_SV = (1 << 31);
ret = (target_ulong)max_pos;
} else {
env->PSW_USB_V = 0;
ret = (target_ulong)arg;
}
env->PSW_USB_AV = arg ^ arg * 2u;
env->PSW_USB_SAV |= env->PSW_USB_AV;
return ret;
}
static uint32_t suov32_neg(CPUTriCoreState *env, int64_t arg)
{
uint32_t ret;
if (arg < 0) {
env->PSW_USB_V = (1 << 31);
env->PSW_USB_SV = (1 << 31);
ret = 0;
} else {
env->PSW_USB_V = 0;
ret = (target_ulong)arg;
}
env->PSW_USB_AV = arg ^ arg * 2u;
env->PSW_USB_SAV |= env->PSW_USB_AV;
return ret;
}
static uint32_t ssov16(CPUTriCoreState *env, int32_t hw0, int32_t hw1)
{
int32_t max_pos = INT16_MAX;
int32_t max_neg = INT16_MIN;
int32_t av0, av1;
env->PSW_USB_V = 0;
av0 = hw0 ^ hw0 * 2u;
if (hw0 > max_pos) {
env->PSW_USB_V = (1 << 31);
hw0 = max_pos;
} else if (hw0 < max_neg) {
env->PSW_USB_V = (1 << 31);
hw0 = max_neg;
}
av1 = hw1 ^ hw1 * 2u;
if (hw1 > max_pos) {
env->PSW_USB_V = (1 << 31);
hw1 = max_pos;
} else if (hw1 < max_neg) {
env->PSW_USB_V = (1 << 31);
hw1 = max_neg;
}
env->PSW_USB_SV |= env->PSW_USB_V;
env->PSW_USB_AV = (av0 | av1) << 16;
env->PSW_USB_SAV |= env->PSW_USB_AV;
return (hw0 & 0xffff) | (hw1 << 16);
}
static uint32_t suov16(CPUTriCoreState *env, int32_t hw0, int32_t hw1)
{
int32_t max_pos = UINT16_MAX;
int32_t av0, av1;
env->PSW_USB_V = 0;
av0 = hw0 ^ hw0 * 2u;
if (hw0 > max_pos) {
env->PSW_USB_V = (1 << 31);
hw0 = max_pos;
} else if (hw0 < 0) {
env->PSW_USB_V = (1 << 31);
hw0 = 0;
}
av1 = hw1 ^ hw1 * 2u;
if (hw1 > max_pos) {
env->PSW_USB_V = (1 << 31);
hw1 = max_pos;
} else if (hw1 < 0) {
env->PSW_USB_V = (1 << 31);
hw1 = 0;
}
env->PSW_USB_SV |= env->PSW_USB_V;
env->PSW_USB_AV = (av0 | av1) << 16;
env->PSW_USB_SAV |= env->PSW_USB_AV;
return (hw0 & 0xffff) | (hw1 << 16);
}
target_ulong helper_add_ssov(CPUTriCoreState *env, target_ulong r1,
target_ulong r2)
{
int64_t t1 = sextract64(r1, 0, 32);
int64_t t2 = sextract64(r2, 0, 32);
int64_t result = t1 + t2;
return ssov32(env, result);
}
uint64_t helper_add64_ssov(CPUTriCoreState *env, uint64_t r1, uint64_t r2)
{
uint64_t result;
int64_t ovf;
result = r1 + r2;
ovf = (result ^ r1) & ~(r1 ^ r2);
env->PSW_USB_AV = (result ^ result * 2u) >> 32;
env->PSW_USB_SAV |= env->PSW_USB_AV;
if (ovf < 0) {
env->PSW_USB_V = (1 << 31);
env->PSW_USB_SV = (1 << 31);
/* ext_ret > MAX_INT */
if ((int64_t)r1 >= 0) {
result = INT64_MAX;
/* ext_ret < MIN_INT */
} else {
result = INT64_MIN;
}
} else {
env->PSW_USB_V = 0;
}
return result;
}
target_ulong helper_add_h_ssov(CPUTriCoreState *env, target_ulong r1,
target_ulong r2)
{
int32_t ret_hw0, ret_hw1;
ret_hw0 = sextract32(r1, 0, 16) + sextract32(r2, 0, 16);
ret_hw1 = sextract32(r1, 16, 16) + sextract32(r2, 16, 16);
return ssov16(env, ret_hw0, ret_hw1);
}
uint32_t helper_addr_h_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l,
uint32_t r2_h)
{
int64_t mul_res0 = sextract64(r1, 0, 32);
int64_t mul_res1 = sextract64(r1, 32, 32);
int64_t r2_low = sextract64(r2_l, 0, 32);
int64_t r2_high = sextract64(r2_h, 0, 32);
int64_t result0, result1;
uint32_t ovf0, ovf1;
uint32_t avf0, avf1;
ovf0 = ovf1 = 0;
result0 = r2_low + mul_res0 + 0x8000;
result1 = r2_high + mul_res1 + 0x8000;
avf0 = result0 * 2u;
avf0 = result0 ^ avf0;
avf1 = result1 * 2u;
avf1 = result1 ^ avf1;
if (result0 > INT32_MAX) {
ovf0 = (1 << 31);
result0 = INT32_MAX;
} else if (result0 < INT32_MIN) {
ovf0 = (1 << 31);
result0 = INT32_MIN;
}
if (result1 > INT32_MAX) {
ovf1 = (1 << 31);
result1 = INT32_MAX;
} else if (result1 < INT32_MIN) {
ovf1 = (1 << 31);
result1 = INT32_MIN;
}
env->PSW_USB_V = ovf0 | ovf1;
env->PSW_USB_SV |= env->PSW_USB_V;
env->PSW_USB_AV = avf0 | avf1;
env->PSW_USB_SAV |= env->PSW_USB_AV;
return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL);
}
uint32_t helper_addsur_h_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l,
uint32_t r2_h)
{
int64_t mul_res0 = sextract64(r1, 0, 32);
int64_t mul_res1 = sextract64(r1, 32, 32);
int64_t r2_low = sextract64(r2_l, 0, 32);
int64_t r2_high = sextract64(r2_h, 0, 32);
int64_t result0, result1;
uint32_t ovf0, ovf1;
uint32_t avf0, avf1;
ovf0 = ovf1 = 0;
result0 = r2_low - mul_res0 + 0x8000;
result1 = r2_high + mul_res1 + 0x8000;
avf0 = result0 * 2u;
avf0 = result0 ^ avf0;
avf1 = result1 * 2u;
avf1 = result1 ^ avf1;
if (result0 > INT32_MAX) {
ovf0 = (1 << 31);
result0 = INT32_MAX;
} else if (result0 < INT32_MIN) {
ovf0 = (1 << 31);
result0 = INT32_MIN;
}
if (result1 > INT32_MAX) {
ovf1 = (1 << 31);
result1 = INT32_MAX;
} else if (result1 < INT32_MIN) {
ovf1 = (1 << 31);
result1 = INT32_MIN;
}
env->PSW_USB_V = ovf0 | ovf1;
env->PSW_USB_SV |= env->PSW_USB_V;
env->PSW_USB_AV = avf0 | avf1;
env->PSW_USB_SAV |= env->PSW_USB_AV;
return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL);
}
target_ulong helper_add_suov(CPUTriCoreState *env, target_ulong r1,
target_ulong r2)
{
int64_t t1 = extract64(r1, 0, 32);
int64_t t2 = extract64(r2, 0, 32);
int64_t result = t1 + t2;
return suov32_pos(env, result);
}
target_ulong helper_add_h_suov(CPUTriCoreState *env, target_ulong r1,
target_ulong r2)
{
int32_t ret_hw0, ret_hw1;
ret_hw0 = extract32(r1, 0, 16) + extract32(r2, 0, 16);
ret_hw1 = extract32(r1, 16, 16) + extract32(r2, 16, 16);
return suov16(env, ret_hw0, ret_hw1);
}
target_ulong helper_sub_ssov(CPUTriCoreState *env, target_ulong r1,
target_ulong r2)
{
int64_t t1 = sextract64(r1, 0, 32);
int64_t t2 = sextract64(r2, 0, 32);
int64_t result = t1 - t2;
return ssov32(env, result);
}
uint64_t helper_sub64_ssov(CPUTriCoreState *env, uint64_t r1, uint64_t r2)
{
uint64_t result;
int64_t ovf;
result = r1 - r2;
ovf = (result ^ r1) & (r1 ^ r2);
env->PSW_USB_AV = (result ^ result * 2u) >> 32;
env->PSW_USB_SAV |= env->PSW_USB_AV;
if (ovf < 0) {
env->PSW_USB_V = (1 << 31);
env->PSW_USB_SV = (1 << 31);
/* ext_ret > MAX_INT */
if ((int64_t)r1 >= 0) {
result = INT64_MAX;
/* ext_ret < MIN_INT */
} else {
result = INT64_MIN;
}
} else {
env->PSW_USB_V = 0;
}
return result;
}
target_ulong helper_sub_h_ssov(CPUTriCoreState *env, target_ulong r1,
target_ulong r2)
{
int32_t ret_hw0, ret_hw1;
ret_hw0 = sextract32(r1, 0, 16) - sextract32(r2, 0, 16);
ret_hw1 = sextract32(r1, 16, 16) - sextract32(r2, 16, 16);
return ssov16(env, ret_hw0, ret_hw1);
}
uint32_t helper_subr_h_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l,
uint32_t r2_h)
{
int64_t mul_res0 = sextract64(r1, 0, 32);
int64_t mul_res1 = sextract64(r1, 32, 32);
int64_t r2_low = sextract64(r2_l, 0, 32);
int64_t r2_high = sextract64(r2_h, 0, 32);
int64_t result0, result1;
uint32_t ovf0, ovf1;
uint32_t avf0, avf1;
ovf0 = ovf1 = 0;
result0 = r2_low - mul_res0 + 0x8000;
result1 = r2_high - mul_res1 + 0x8000;
avf0 = result0 * 2u;
avf0 = result0 ^ avf0;
avf1 = result1 * 2u;
avf1 = result1 ^ avf1;
if (result0 > INT32_MAX) {
ovf0 = (1 << 31);
result0 = INT32_MAX;
} else if (result0 < INT32_MIN) {
ovf0 = (1 << 31);
result0 = INT32_MIN;
}
if (result1 > INT32_MAX) {
ovf1 = (1 << 31);
result1 = INT32_MAX;
} else if (result1 < INT32_MIN) {
ovf1 = (1 << 31);
result1 = INT32_MIN;
}
env->PSW_USB_V = ovf0 | ovf1;
env->PSW_USB_SV |= env->PSW_USB_V;
env->PSW_USB_AV = avf0 | avf1;
env->PSW_USB_SAV |= env->PSW_USB_AV;
return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL);
}
uint32_t helper_subadr_h_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l,
uint32_t r2_h)
{
int64_t mul_res0 = sextract64(r1, 0, 32);
int64_t mul_res1 = sextract64(r1, 32, 32);
int64_t r2_low = sextract64(r2_l, 0, 32);
int64_t r2_high = sextract64(r2_h, 0, 32);
int64_t result0, result1;
uint32_t ovf0, ovf1;
uint32_t avf0, avf1;
ovf0 = ovf1 = 0;
result0 = r2_low + mul_res0 + 0x8000;
result1 = r2_high - mul_res1 + 0x8000;
avf0 = result0 * 2u;
avf0 = result0 ^ avf0;
avf1 = result1 * 2u;
avf1 = result1 ^ avf1;
if (result0 > INT32_MAX) {
ovf0 = (1 << 31);
result0 = INT32_MAX;
} else if (result0 < INT32_MIN) {
ovf0 = (1 << 31);
result0 = INT32_MIN;
}
if (result1 > INT32_MAX) {
ovf1 = (1 << 31);
result1 = INT32_MAX;
} else if (result1 < INT32_MIN) {
ovf1 = (1 << 31);
result1 = INT32_MIN;
}
env->PSW_USB_V = ovf0 | ovf1;
env->PSW_USB_SV |= env->PSW_USB_V;
env->PSW_USB_AV = avf0 | avf1;
env->PSW_USB_SAV |= env->PSW_USB_AV;
return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL);
}
target_ulong helper_sub_suov(CPUTriCoreState *env, target_ulong r1,
target_ulong r2)
{
int64_t t1 = extract64(r1, 0, 32);
int64_t t2 = extract64(r2, 0, 32);
int64_t result = t1 - t2;
return suov32_neg(env, result);
}
target_ulong helper_sub_h_suov(CPUTriCoreState *env, target_ulong r1,
target_ulong r2)
{
int32_t ret_hw0, ret_hw1;
ret_hw0 = extract32(r1, 0, 16) - extract32(r2, 0, 16);
ret_hw1 = extract32(r1, 16, 16) - extract32(r2, 16, 16);
return suov16(env, ret_hw0, ret_hw1);
}
target_ulong helper_mul_ssov(CPUTriCoreState *env, target_ulong r1,
target_ulong r2)
{
int64_t t1 = sextract64(r1, 0, 32);
int64_t t2 = sextract64(r2, 0, 32);
int64_t result = t1 * t2;
return ssov32(env, result);
}
target_ulong helper_mul_suov(CPUTriCoreState *env, target_ulong r1,
target_ulong r2)
{
int64_t t1 = extract64(r1, 0, 32);
int64_t t2 = extract64(r2, 0, 32);
int64_t result = t1 * t2;
return suov32_pos(env, result);
}
target_ulong helper_sha_ssov(CPUTriCoreState *env, target_ulong r1,
target_ulong r2)
{
int64_t t1 = sextract64(r1, 0, 32);
int32_t t2 = sextract64(r2, 0, 6);
int64_t result;
if (t2 == 0) {
result = t1;
} else if (t2 > 0) {
result = t1 << t2;
} else {
result = t1 >> -t2;
}
return ssov32(env, result);
}
uint32_t helper_abs_ssov(CPUTriCoreState *env, target_ulong r1)
{
target_ulong result;
result = ((int32_t)r1 >= 0) ? r1 : (0 - r1);
return ssov32(env, result);
}
uint32_t helper_abs_h_ssov(CPUTriCoreState *env, target_ulong r1)
{
int32_t ret_h0, ret_h1;
ret_h0 = sextract32(r1, 0, 16);
ret_h0 = (ret_h0 >= 0) ? ret_h0 : (0 - ret_h0);
ret_h1 = sextract32(r1, 16, 16);
ret_h1 = (ret_h1 >= 0) ? ret_h1 : (0 - ret_h1);
return ssov16(env, ret_h0, ret_h1);
}
target_ulong helper_absdif_ssov(CPUTriCoreState *env, target_ulong r1,
target_ulong r2)
{
int64_t t1 = sextract64(r1, 0, 32);
int64_t t2 = sextract64(r2, 0, 32);
int64_t result;
if (t1 > t2) {
result = t1 - t2;
} else {
result = t2 - t1;
}
return ssov32(env, result);
}
uint32_t helper_absdif_h_ssov(CPUTriCoreState *env, target_ulong r1,
target_ulong r2)
{
int32_t t1, t2;
int32_t ret_h0, ret_h1;
t1 = sextract32(r1, 0, 16);
t2 = sextract32(r2, 0, 16);
if (t1 > t2) {
ret_h0 = t1 - t2;
} else {
ret_h0 = t2 - t1;
}
t1 = sextract32(r1, 16, 16);
t2 = sextract32(r2, 16, 16);
if (t1 > t2) {
ret_h1 = t1 - t2;
} else {
ret_h1 = t2 - t1;
}
return ssov16(env, ret_h0, ret_h1);
}
target_ulong helper_madd32_ssov(CPUTriCoreState *env, target_ulong r1,
target_ulong r2, target_ulong r3)
{
int64_t t1 = sextract64(r1, 0, 32);
int64_t t2 = sextract64(r2, 0, 32);
int64_t t3 = sextract64(r3, 0, 32);
int64_t result;
result = t2 + (t1 * t3);
return ssov32(env, result);
}
target_ulong helper_madd32_suov(CPUTriCoreState *env, target_ulong r1,
target_ulong r2, target_ulong r3)
{
uint64_t t1 = extract64(r1, 0, 32);
uint64_t t2 = extract64(r2, 0, 32);
uint64_t t3 = extract64(r3, 0, 32);
int64_t result;
result = t2 + (t1 * t3);
return suov32_pos(env, result);
}
uint64_t helper_madd64_ssov(CPUTriCoreState *env, target_ulong r1,
uint64_t r2, target_ulong r3)
{
uint64_t ret, ovf;
int64_t t1 = sextract64(r1, 0, 32);
int64_t t3 = sextract64(r3, 0, 32);
int64_t mul;
mul = t1 * t3;
ret = mul + r2;
ovf = (ret ^ mul) & ~(mul ^ r2);
t1 = ret >> 32;
env->PSW_USB_AV = t1 ^ t1 * 2u;
env->PSW_USB_SAV |= env->PSW_USB_AV;
if ((int64_t)ovf < 0) {
env->PSW_USB_V = (1 << 31);
env->PSW_USB_SV = (1 << 31);
/* ext_ret > MAX_INT */
if (mul >= 0) {
ret = INT64_MAX;
/* ext_ret < MIN_INT */
} else {
ret = INT64_MIN;
}
} else {
env->PSW_USB_V = 0;
}
return ret;
}
uint32_t
helper_madd32_q_add_ssov(CPUTriCoreState *env, uint64_t r1, uint64_t r2)
{
int64_t result;
result = (r1 + r2);
env->PSW_USB_AV = (result ^ result * 2u);
env->PSW_USB_SAV |= env->PSW_USB_AV;
/* we do the saturation by hand, since we produce an overflow on the host
if the mul before was (0x80000000 * 0x80000000) << 1). If this is the
case, we flip the saturated value. */
if (r2 == 0x8000000000000000LL) {
if (result > 0x7fffffffLL) {
env->PSW_USB_V = (1 << 31);
env->PSW_USB_SV = (1 << 31);
result = INT32_MIN;
} else if (result < -0x80000000LL) {
env->PSW_USB_V = (1 << 31);
env->PSW_USB_SV = (1 << 31);
result = INT32_MAX;
} else {
env->PSW_USB_V = 0;
}
} else {
if (result > 0x7fffffffLL) {
env->PSW_USB_V = (1 << 31);
env->PSW_USB_SV = (1 << 31);
result = INT32_MAX;
} else if (result < -0x80000000LL) {
env->PSW_USB_V = (1 << 31);
env->PSW_USB_SV = (1 << 31);
result = INT32_MIN;
} else {
env->PSW_USB_V = 0;
}
}
return (uint32_t)result;
}
uint64_t helper_madd64_q_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2,
uint32_t r3, uint32_t n)
{
int64_t t1 = (int64_t)r1;
int64_t t2 = sextract64(r2, 0, 32);
int64_t t3 = sextract64(r3, 0, 32);
int64_t result, mul;
int64_t ovf;
mul = (t2 * t3) << n;
result = mul + t1;
env->PSW_USB_AV = (result ^ result * 2u) >> 32;
env->PSW_USB_SAV |= env->PSW_USB_AV;
ovf = (result ^ mul) & ~(mul ^ t1);
/* we do the saturation by hand, since we produce an overflow on the host
if the mul was (0x80000000 * 0x80000000) << 1). If this is the
case, we flip the saturated value. */
if ((r2 == 0x80000000) && (r3 == 0x80000000) && (n == 1)) {
if (ovf >= 0) {
env->PSW_USB_V = (1 << 31);
env->PSW_USB_SV = (1 << 31);
/* ext_ret > MAX_INT */
if (mul < 0) {
result = INT64_MAX;
/* ext_ret < MIN_INT */
} else {
result = INT64_MIN;
}
} else {
env->PSW_USB_V = 0;
}
} else {
if (ovf < 0) {
env->PSW_USB_V = (1 << 31);
env->PSW_USB_SV = (1 << 31);
/* ext_ret > MAX_INT */
if (mul >= 0) {
result = INT64_MAX;
/* ext_ret < MIN_INT */
} else {
result = INT64_MIN;
}
} else {
env->PSW_USB_V = 0;
}
}
return (uint64_t)result;
}
uint32_t helper_maddr_q_ssov(CPUTriCoreState *env, uint32_t r1, uint32_t r2,
uint32_t r3, uint32_t n)
{
int64_t t1 = sextract64(r1, 0, 32);
int64_t t2 = sextract64(r2, 0, 32);
int64_t t3 = sextract64(r3, 0, 32);
int64_t mul, ret;
if ((t2 == -0x8000ll) && (t3 == -0x8000ll) && (n == 1)) {
mul = 0x7fffffff;
} else {
mul = (t2 * t3) << n;
}
ret = t1 + mul + 0x8000;
env->PSW_USB_AV = ret ^ ret * 2u;
env->PSW_USB_SAV |= env->PSW_USB_AV;
if (ret > 0x7fffffffll) {
env->PSW_USB_V = (1 << 31);
env->PSW_USB_SV |= env->PSW_USB_V;
ret = INT32_MAX;
} else if (ret < -0x80000000ll) {
env->PSW_USB_V = (1 << 31);
env->PSW_USB_SV |= env->PSW_USB_V;
ret = INT32_MIN;
} else {
env->PSW_USB_V = 0;
}
return ret & 0xffff0000ll;
}
uint64_t helper_madd64_suov(CPUTriCoreState *env, target_ulong r1,
uint64_t r2, target_ulong r3)
{
uint64_t ret, mul;
uint64_t t1 = extract64(r1, 0, 32);
uint64_t t3 = extract64(r3, 0, 32);
mul = t1 * t3;
ret = mul + r2;
t1 = ret >> 32;
env->PSW_USB_AV = t1 ^ t1 * 2u;
env->PSW_USB_SAV |= env->PSW_USB_AV;
if (ret < r2) {
env->PSW_USB_V = (1 << 31);
env->PSW_USB_SV = (1 << 31);
/* saturate */
ret = UINT64_MAX;
} else {
env->PSW_USB_V = 0;
}
return ret;
}
target_ulong helper_msub32_ssov(CPUTriCoreState *env, target_ulong r1,
target_ulong r2, target_ulong r3)
{
int64_t t1 = sextract64(r1, 0, 32);
int64_t t2 = sextract64(r2, 0, 32);
int64_t t3 = sextract64(r3, 0, 32);
int64_t result;
result = t2 - (t1 * t3);
return ssov32(env, result);
}
target_ulong helper_msub32_suov(CPUTriCoreState *env, target_ulong r1,
target_ulong r2, target_ulong r3)
{
uint64_t t1 = extract64(r1, 0, 32);
uint64_t t2 = extract64(r2, 0, 32);
uint64_t t3 = extract64(r3, 0, 32);
uint64_t result;
uint64_t mul;
mul = (t1 * t3);
result = t2 - mul;
env->PSW_USB_AV = result ^ result * 2u;
env->PSW_USB_SAV |= env->PSW_USB_AV;
/* we calculate ovf by hand here, because the multiplication can overflow on
the host, which would give false results if we compare to less than
zero */
if (mul > t2) {
env->PSW_USB_V = (1 << 31);
env->PSW_USB_SV = (1 << 31);
result = 0;
} else {
env->PSW_USB_V = 0;
}
return result;
}
uint64_t helper_msub64_ssov(CPUTriCoreState *env, target_ulong r1,
uint64_t r2, target_ulong r3)
{
uint64_t ret, ovf;
int64_t t1 = sextract64(r1, 0, 32);
int64_t t3 = sextract64(r3, 0, 32);
int64_t mul;
mul = t1 * t3;
ret = r2 - mul;
ovf = (ret ^ r2) & (mul ^ r2);
t1 = ret >> 32;
env->PSW_USB_AV = t1 ^ t1 * 2u;
env->PSW_USB_SAV |= env->PSW_USB_AV;
if ((int64_t)ovf < 0) {
env->PSW_USB_V = (1 << 31);
env->PSW_USB_SV = (1 << 31);
/* ext_ret > MAX_INT */
if (mul < 0) {
ret = INT64_MAX;
/* ext_ret < MIN_INT */
} else {
ret = INT64_MIN;
}
} else {
env->PSW_USB_V = 0;
}
return ret;
}
uint64_t helper_msub64_suov(CPUTriCoreState *env, target_ulong r1,
uint64_t r2, target_ulong r3)
{
uint64_t ret, mul;
uint64_t t1 = extract64(r1, 0, 32);
uint64_t t3 = extract64(r3, 0, 32);
mul = t1 * t3;
ret = r2 - mul;
t1 = ret >> 32;
env->PSW_USB_AV = t1 ^ t1 * 2u;
env->PSW_USB_SAV |= env->PSW_USB_AV;
if (ret > r2) {
env->PSW_USB_V = (1 << 31);
env->PSW_USB_SV = (1 << 31);
/* saturate */
ret = 0;
} else {
env->PSW_USB_V = 0;
}
return ret;
}
uint32_t
helper_msub32_q_sub_ssov(CPUTriCoreState *env, uint64_t r1, uint64_t r2)
{
int64_t result;
int64_t t1 = (int64_t)r1;
int64_t t2 = (int64_t)r2;
result = t1 - t2;
env->PSW_USB_AV = (result ^ result * 2u);
env->PSW_USB_SAV |= env->PSW_USB_AV;
/* we do the saturation by hand, since we produce an overflow on the host
if the mul before was (0x80000000 * 0x80000000) << 1). If this is the
case, we flip the saturated value. */
if (r2 == 0x8000000000000000LL) {
if (result > 0x7fffffffLL) {
env->PSW_USB_V = (1 << 31);
env->PSW_USB_SV = (1 << 31);
result = INT32_MIN;
} else if (result < -0x80000000LL) {
env->PSW_USB_V = (1 << 31);
env->PSW_USB_SV = (1 << 31);
result = INT32_MAX;
} else {
env->PSW_USB_V = 0;
}
} else {
if (result > 0x7fffffffLL) {
env->PSW_USB_V = (1 << 31);
env->PSW_USB_SV = (1 << 31);
result = INT32_MAX;
} else if (result < -0x80000000LL) {
env->PSW_USB_V = (1 << 31);
env->PSW_USB_SV = (1 << 31);
result = INT32_MIN;
} else {
env->PSW_USB_V = 0;
}
}
return (uint32_t)result;
}
uint64_t helper_msub64_q_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2,
uint32_t r3, uint32_t n)
{
int64_t t1 = (int64_t)r1;
int64_t t2 = sextract64(r2, 0, 32);
int64_t t3 = sextract64(r3, 0, 32);
int64_t result, mul;
int64_t ovf;
mul = (t2 * t3) << n;
result = t1 - mul;
env->PSW_USB_AV = (result ^ result * 2u) >> 32;
env->PSW_USB_SAV |= env->PSW_USB_AV;
ovf = (result ^ t1) & (t1 ^ mul);
/* we do the saturation by hand, since we produce an overflow on the host
if the mul before was (0x80000000 * 0x80000000) << 1). If this is the
case, we flip the saturated value. */
if (mul == 0x8000000000000000LL) {
if (ovf >= 0) {
env->PSW_USB_V = (1 << 31);
env->PSW_USB_SV = (1 << 31);
/* ext_ret > MAX_INT */
if (mul >= 0) {
result = INT64_MAX;
/* ext_ret < MIN_INT */
} else {
result = INT64_MIN;
}
}
} else {
if (ovf < 0) {
env->PSW_USB_V = (1 << 31);
env->PSW_USB_SV = (1 << 31);
/* ext_ret > MAX_INT */
if (mul < 0) {
result = INT64_MAX;
/* ext_ret < MIN_INT */
} else {
result = INT64_MIN;
}
} else {
env->PSW_USB_V = 0;
}
}
return (uint64_t)result;
}
uint32_t helper_msubr_q_ssov(CPUTriCoreState *env, uint32_t r1, uint32_t r2,
uint32_t r3, uint32_t n)
{
int64_t t1 = sextract64(r1, 0, 32);
int64_t t2 = sextract64(r2, 0, 32);
int64_t t3 = sextract64(r3, 0, 32);
int64_t mul, ret;
if ((t2 == -0x8000ll) && (t3 == -0x8000ll) && (n == 1)) {
mul = 0x7fffffff;
} else {
mul = (t2 * t3) << n;
}
ret = t1 - mul + 0x8000;
env->PSW_USB_AV = ret ^ ret * 2u;
env->PSW_USB_SAV |= env->PSW_USB_AV;
if (ret > 0x7fffffffll) {
env->PSW_USB_V = (1 << 31);
env->PSW_USB_SV |= env->PSW_USB_V;
ret = INT32_MAX;
} else if (ret < -0x80000000ll) {
env->PSW_USB_V = (1 << 31);
env->PSW_USB_SV |= env->PSW_USB_V;
ret = INT32_MIN;
} else {
env->PSW_USB_V = 0;
}
return ret & 0xffff0000ll;
}
uint32_t helper_abs_b(CPUTriCoreState *env, target_ulong arg)
{
int32_t b, i;
int32_t ovf = 0;
int32_t avf = 0;
int32_t ret = 0;
for (i = 0; i < 4; i++) {
b = sextract32(arg, i * 8, 8);
b = (b >= 0) ? b : (0 - b);
ovf |= (b > 0x7F) || (b < -0x80);
avf |= b ^ b * 2u;
ret |= (b & 0xff) << (i * 8);
}
env->PSW_USB_V = ovf << 31;
env->PSW_USB_SV |= env->PSW_USB_V;
env->PSW_USB_AV = avf << 24;
env->PSW_USB_SAV |= env->PSW_USB_AV;
return ret;
}
uint32_t helper_abs_h(CPUTriCoreState *env, target_ulong arg)
{
int32_t h, i;
int32_t ovf = 0;
int32_t avf = 0;
int32_t ret = 0;
for (i = 0; i < 2; i++) {
h = sextract32(arg, i * 16, 16);
h = (h >= 0) ? h : (0 - h);
ovf |= (h > 0x7FFF) || (h < -0x8000);
avf |= h ^ h * 2u;
ret |= (h & 0xffff) << (i * 16);
}
env->PSW_USB_V = ovf << 31;
env->PSW_USB_SV |= env->PSW_USB_V;
env->PSW_USB_AV = avf << 16;
env->PSW_USB_SAV |= env->PSW_USB_AV;
return ret;
}
uint32_t helper_absdif_b(CPUTriCoreState *env, target_ulong r1, target_ulong r2)
{
int32_t b, i;
int32_t extr_r2;
int32_t ovf = 0;
int32_t avf = 0;
int32_t ret = 0;
for (i = 0; i < 4; i++) {
extr_r2 = sextract32(r2, i * 8, 8);
b = sextract32(r1, i * 8, 8);
b = (b > extr_r2) ? (b - extr_r2) : (extr_r2 - b);
ovf |= (b > 0x7F) || (b < -0x80);
avf |= b ^ b * 2u;
ret |= (b & 0xff) << (i * 8);
}
env->PSW_USB_V = ovf << 31;
env->PSW_USB_SV |= env->PSW_USB_V;
env->PSW_USB_AV = avf << 24;
env->PSW_USB_SAV |= env->PSW_USB_AV;
return ret;
}
uint32_t helper_absdif_h(CPUTriCoreState *env, target_ulong r1, target_ulong r2)
{
int32_t h, i;
int32_t extr_r2;
int32_t ovf = 0;
int32_t avf = 0;
int32_t ret = 0;
for (i = 0; i < 2; i++) {
extr_r2 = sextract32(r2, i * 16, 16);
h = sextract32(r1, i * 16, 16);
h = (h > extr_r2) ? (h - extr_r2) : (extr_r2 - h);
ovf |= (h > 0x7FFF) || (h < -0x8000);
avf |= h ^ h * 2u;
ret |= (h & 0xffff) << (i * 16);
}
env->PSW_USB_V = ovf << 31;
env->PSW_USB_SV |= env->PSW_USB_V;
env->PSW_USB_AV = avf << 16;
env->PSW_USB_SAV |= env->PSW_USB_AV;
return ret;
}
uint32_t helper_addr_h(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l,
uint32_t r2_h)
{
int64_t mul_res0 = sextract64(r1, 0, 32);
int64_t mul_res1 = sextract64(r1, 32, 32);
int64_t r2_low = sextract64(r2_l, 0, 32);
int64_t r2_high = sextract64(r2_h, 0, 32);
int64_t result0, result1;
uint32_t ovf0, ovf1;
uint32_t avf0, avf1;
ovf0 = ovf1 = 0;
result0 = r2_low + mul_res0 + 0x8000;
result1 = r2_high + mul_res1 + 0x8000;
if ((result0 > INT32_MAX) || (result0 < INT32_MIN)) {
ovf0 = (1 << 31);
}
if ((result1 > INT32_MAX) || (result1 < INT32_MIN)) {
ovf1 = (1 << 31);
}
env->PSW_USB_V = ovf0 | ovf1;
env->PSW_USB_SV |= env->PSW_USB_V;
avf0 = result0 * 2u;
avf0 = result0 ^ avf0;
avf1 = result1 * 2u;
avf1 = result1 ^ avf1;
env->PSW_USB_AV = avf0 | avf1;
env->PSW_USB_SAV |= env->PSW_USB_AV;
return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL);
}
uint32_t helper_addsur_h(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l,
uint32_t r2_h)
{
int64_t mul_res0 = sextract64(r1, 0, 32);
int64_t mul_res1 = sextract64(r1, 32, 32);
int64_t r2_low = sextract64(r2_l, 0, 32);
int64_t r2_high = sextract64(r2_h, 0, 32);
int64_t result0, result1;
uint32_t ovf0, ovf1;
uint32_t avf0, avf1;
ovf0 = ovf1 = 0;
result0 = r2_low - mul_res0 + 0x8000;
result1 = r2_high + mul_res1 + 0x8000;
if ((result0 > INT32_MAX) || (result0 < INT32_MIN)) {
ovf0 = (1 << 31);
}
if ((result1 > INT32_MAX) || (result1 < INT32_MIN)) {
ovf1 = (1 << 31);
}
env->PSW_USB_V = ovf0 | ovf1;
env->PSW_USB_SV |= env->PSW_USB_V;
avf0 = result0 * 2u;
avf0 = result0 ^ avf0;
avf1 = result1 * 2u;
avf1 = result1 ^ avf1;
env->PSW_USB_AV = avf0 | avf1;
env->PSW_USB_SAV |= env->PSW_USB_AV;
return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL);
}
uint32_t helper_maddr_q(CPUTriCoreState *env, uint32_t r1, uint32_t r2,
uint32_t r3, uint32_t n)
{
int64_t t1 = sextract64(r1, 0, 32);
int64_t t2 = sextract64(r2, 0, 32);
int64_t t3 = sextract64(r3, 0, 32);
int64_t mul, ret;
if ((t2 == -0x8000ll) && (t3 == -0x8000ll) && (n == 1)) {
mul = 0x7fffffff;
} else {
mul = (t2 * t3) << n;
}
ret = t1 + mul + 0x8000;
if ((ret > 0x7fffffffll) || (ret < -0x80000000ll)) {
env->PSW_USB_V = (1 << 31);
env->PSW_USB_SV |= env->PSW_USB_V;
} else {
env->PSW_USB_V = 0;
}
env->PSW_USB_AV = ret ^ ret * 2u;
env->PSW_USB_SAV |= env->PSW_USB_AV;
return ret & 0xffff0000ll;
}
uint32_t helper_add_b(CPUTriCoreState *env, target_ulong r1, target_ulong r2)
{
int32_t b, i;
int32_t extr_r1, extr_r2;
int32_t ovf = 0;
int32_t avf = 0;
uint32_t ret = 0;
for (i = 0; i < 4; i++) {
extr_r1 = sextract32(r1, i * 8, 8);
extr_r2 = sextract32(r2, i * 8, 8);
b = extr_r1 + extr_r2;
ovf |= ((b > 0x7f) || (b < -0x80));
avf |= b ^ b * 2u;
ret |= ((b & 0xff) << (i*8));
}
env->PSW_USB_V = (ovf << 31);
env->PSW_USB_SV |= env->PSW_USB_V;
env->PSW_USB_AV = avf << 24;
env->PSW_USB_SAV |= env->PSW_USB_AV;
return ret;
}
uint32_t helper_add_h(CPUTriCoreState *env, target_ulong r1, target_ulong r2)
{
int32_t h, i;
int32_t extr_r1, extr_r2;
int32_t ovf = 0;
int32_t avf = 0;
int32_t ret = 0;
for (i = 0; i < 2; i++) {
extr_r1 = sextract32(r1, i * 16, 16);
extr_r2 = sextract32(r2, i * 16, 16);
h = extr_r1 + extr_r2;
ovf |= ((h > 0x7fff) || (h < -0x8000));
avf |= h ^ h * 2u;
ret |= (h & 0xffff) << (i * 16);
}
env->PSW_USB_V = (ovf << 31);
env->PSW_USB_SV |= env->PSW_USB_V;
env->PSW_USB_AV = (avf << 16);
env->PSW_USB_SAV |= env->PSW_USB_AV;
return ret;
}
uint32_t helper_subr_h(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l,
uint32_t r2_h)
{
int64_t mul_res0 = sextract64(r1, 0, 32);
int64_t mul_res1 = sextract64(r1, 32, 32);
int64_t r2_low = sextract64(r2_l, 0, 32);
int64_t r2_high = sextract64(r2_h, 0, 32);
int64_t result0, result1;
uint32_t ovf0, ovf1;
uint32_t avf0, avf1;
ovf0 = ovf1 = 0;
result0 = r2_low - mul_res0 + 0x8000;
result1 = r2_high - mul_res1 + 0x8000;
if ((result0 > INT32_MAX) || (result0 < INT32_MIN)) {
ovf0 = (1 << 31);
}
if ((result1 > INT32_MAX) || (result1 < INT32_MIN)) {
ovf1 = (1 << 31);
}
env->PSW_USB_V = ovf0 | ovf1;
env->PSW_USB_SV |= env->PSW_USB_V;
avf0 = result0 * 2u;
avf0 = result0 ^ avf0;
avf1 = result1 * 2u;
avf1 = result1 ^ avf1;
env->PSW_USB_AV = avf0 | avf1;
env->PSW_USB_SAV |= env->PSW_USB_AV;
return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL);
}
uint32_t helper_subadr_h(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l,
uint32_t r2_h)
{
int64_t mul_res0 = sextract64(r1, 0, 32);
int64_t mul_res1 = sextract64(r1, 32, 32);
int64_t r2_low = sextract64(r2_l, 0, 32);
int64_t r2_high = sextract64(r2_h, 0, 32);
int64_t result0, result1;
uint32_t ovf0, ovf1;
uint32_t avf0, avf1;
ovf0 = ovf1 = 0;
result0 = r2_low + mul_res0 + 0x8000;
result1 = r2_high - mul_res1 + 0x8000;
if ((result0 > INT32_MAX) || (result0 < INT32_MIN)) {
ovf0 = (1 << 31);
}
if ((result1 > INT32_MAX) || (result1 < INT32_MIN)) {
ovf1 = (1 << 31);
}
env->PSW_USB_V = ovf0 | ovf1;
env->PSW_USB_SV |= env->PSW_USB_V;
avf0 = result0 * 2u;
avf0 = result0 ^ avf0;
avf1 = result1 * 2u;
avf1 = result1 ^ avf1;
env->PSW_USB_AV = avf0 | avf1;
env->PSW_USB_SAV |= env->PSW_USB_AV;
return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL);
}
uint32_t helper_msubr_q(CPUTriCoreState *env, uint32_t r1, uint32_t r2,
uint32_t r3, uint32_t n)
{
int64_t t1 = sextract64(r1, 0, 32);
int64_t t2 = sextract64(r2, 0, 32);
int64_t t3 = sextract64(r3, 0, 32);
int64_t mul, ret;
if ((t2 == -0x8000ll) && (t3 == -0x8000ll) && (n == 1)) {
mul = 0x7fffffff;
} else {
mul = (t2 * t3) << n;
}
ret = t1 - mul + 0x8000;
if ((ret > 0x7fffffffll) || (ret < -0x80000000ll)) {
env->PSW_USB_V = (1 << 31);
env->PSW_USB_SV |= env->PSW_USB_V;
} else {
env->PSW_USB_V = 0;
}
env->PSW_USB_AV = ret ^ ret * 2u;
env->PSW_USB_SAV |= env->PSW_USB_AV;
return ret & 0xffff0000ll;
}
uint32_t helper_sub_b(CPUTriCoreState *env, target_ulong r1, target_ulong r2)
{
int32_t b, i;
int32_t extr_r1, extr_r2;
int32_t ovf = 0;
int32_t avf = 0;
uint32_t ret = 0;
for (i = 0; i < 4; i++) {
extr_r1 = sextract32(r1, i * 8, 8);
extr_r2 = sextract32(r2, i * 8, 8);
b = extr_r1 - extr_r2;
ovf |= ((b > 0x7f) || (b < -0x80));
avf |= b ^ b * 2u;
ret |= ((b & 0xff) << (i*8));
}
env->PSW_USB_V = (ovf << 31);
env->PSW_USB_SV |= env->PSW_USB_V;
env->PSW_USB_AV = avf << 24;
env->PSW_USB_SAV |= env->PSW_USB_AV;
return ret;
}
uint32_t helper_sub_h(CPUTriCoreState *env, target_ulong r1, target_ulong r2)
{
int32_t h, i;
int32_t extr_r1, extr_r2;
int32_t ovf = 0;
int32_t avf = 0;
int32_t ret = 0;
for (i = 0; i < 2; i++) {
extr_r1 = sextract32(r1, i * 16, 16);
extr_r2 = sextract32(r2, i * 16, 16);
h = extr_r1 - extr_r2;
ovf |= ((h > 0x7fff) || (h < -0x8000));
avf |= h ^ h * 2u;
ret |= (h & 0xffff) << (i * 16);
}
env->PSW_USB_V = (ovf << 31);
env->PSW_USB_SV |= env->PSW_USB_V;
env->PSW_USB_AV = avf << 16;
env->PSW_USB_SAV |= env->PSW_USB_AV;
return ret;
}
uint32_t helper_eq_b(target_ulong r1, target_ulong r2)
{
int32_t ret;
int32_t i, msk;
ret = 0;
msk = 0xff;
for (i = 0; i < 4; i++) {
if ((r1 & msk) == (r2 & msk)) {
ret |= msk;
}
msk = msk << 8;
}
return ret;
}
uint32_t helper_eq_h(target_ulong r1, target_ulong r2)
{
int32_t ret = 0;
if ((r1 & 0xffff) == (r2 & 0xffff)) {
ret = 0xffff;
}
if ((r1 & 0xffff0000) == (r2 & 0xffff0000)) {
ret |= 0xffff0000;
}
return ret;
}
uint32_t helper_eqany_b(target_ulong r1, target_ulong r2)
{
int32_t i;
uint32_t ret = 0;
for (i = 0; i < 4; i++) {
ret |= (sextract32(r1, i * 8, 8) == sextract32(r2, i * 8, 8));
}
return ret;
}
uint32_t helper_eqany_h(target_ulong r1, target_ulong r2)
{
uint32_t ret;
ret = (sextract32(r1, 0, 16) == sextract32(r2, 0, 16));
ret |= (sextract32(r1, 16, 16) == sextract32(r2, 16, 16));
return ret;
}
uint32_t helper_lt_b(target_ulong r1, target_ulong r2)
{
int32_t i;
uint32_t ret = 0;
for (i = 0; i < 4; i++) {
if (sextract32(r1, i * 8, 8) < sextract32(r2, i * 8, 8)) {
ret |= (0xff << (i * 8));
}
}
return ret;
}
uint32_t helper_lt_bu(target_ulong r1, target_ulong r2)
{
int32_t i;
uint32_t ret = 0;
for (i = 0; i < 4; i++) {
if (extract32(r1, i * 8, 8) < extract32(r2, i * 8, 8)) {
ret |= (0xff << (i * 8));
}
}
return ret;
}
uint32_t helper_lt_h(target_ulong r1, target_ulong r2)
{
uint32_t ret = 0;
if (sextract32(r1, 0, 16) < sextract32(r2, 0, 16)) {
ret |= 0xffff;
}
if (sextract32(r1, 16, 16) < sextract32(r2, 16, 16)) {
ret |= 0xffff0000;
}
return ret;
}
uint32_t helper_lt_hu(target_ulong r1, target_ulong r2)
{
uint32_t ret = 0;
if (extract32(r1, 0, 16) < extract32(r2, 0, 16)) {
ret |= 0xffff;
}
if (extract32(r1, 16, 16) < extract32(r2, 16, 16)) {
ret |= 0xffff0000;
}
return ret;
}
#define EXTREMA_H_B(name, op) \
uint32_t helper_##name ##_b(target_ulong r1, target_ulong r2) \
{ \
int32_t i, extr_r1, extr_r2; \
uint32_t ret = 0; \
\
for (i = 0; i < 4; i++) { \
extr_r1 = sextract32(r1, i * 8, 8); \
extr_r2 = sextract32(r2, i * 8, 8); \
extr_r1 = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \
ret |= (extr_r1 & 0xff) << (i * 8); \
} \
return ret; \
} \
\
uint32_t helper_##name ##_bu(target_ulong r1, target_ulong r2)\
{ \
int32_t i; \
uint32_t extr_r1, extr_r2; \
uint32_t ret = 0; \
\
for (i = 0; i < 4; i++) { \
extr_r1 = extract32(r1, i * 8, 8); \
extr_r2 = extract32(r2, i * 8, 8); \
extr_r1 = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \
ret |= (extr_r1 & 0xff) << (i * 8); \
} \
return ret; \
} \
\
uint32_t helper_##name ##_h(target_ulong r1, target_ulong r2) \
{ \
int32_t extr_r1, extr_r2; \
uint32_t ret = 0; \
\
extr_r1 = sextract32(r1, 0, 16); \
extr_r2 = sextract32(r2, 0, 16); \
ret = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \
ret = ret & 0xffff; \
\
extr_r1 = sextract32(r1, 16, 16); \
extr_r2 = sextract32(r2, 16, 16); \
extr_r1 = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \
ret |= extr_r1 << 16; \
\
return ret; \
} \
\
uint32_t helper_##name ##_hu(target_ulong r1, target_ulong r2)\
{ \
uint32_t extr_r1, extr_r2; \
uint32_t ret = 0; \
\
extr_r1 = extract32(r1, 0, 16); \
extr_r2 = extract32(r2, 0, 16); \
ret = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \
ret = ret & 0xffff; \
\
extr_r1 = extract32(r1, 16, 16); \
extr_r2 = extract32(r2, 16, 16); \
extr_r1 = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \
ret |= extr_r1 << (16); \
\
return ret; \
} \
\
uint64_t helper_ix##name(uint64_t r1, uint32_t r2) \
{ \
int64_t r2l, r2h, r1hl; \
uint64_t ret = 0; \
\
ret = ((r1 + 2) & 0xffff); \
r2l = sextract64(r2, 0, 16); \
r2h = sextract64(r2, 16, 16); \
r1hl = sextract64(r1, 32, 16); \
\
if ((r2l op ## = r2h) && (r2l op r1hl)) { \
ret |= (r2l & 0xffff) << 32; \
ret |= extract64(r1, 0, 16) << 16; \
} else if ((r2h op r2l) && (r2h op r1hl)) { \
ret |= extract64(r2, 16, 16) << 32; \
ret |= extract64(r1 + 1, 0, 16) << 16; \
} else { \
ret |= r1 & 0xffffffff0000ull; \
} \
return ret; \
} \
\
uint64_t helper_ix##name ##_u(uint64_t r1, uint32_t r2) \
{ \
int64_t r2l, r2h, r1hl; \
uint64_t ret = 0; \
\
ret = ((r1 + 2) & 0xffff); \
r2l = extract64(r2, 0, 16); \
r2h = extract64(r2, 16, 16); \
r1hl = extract64(r1, 32, 16); \
\
if ((r2l op ## = r2h) && (r2l op r1hl)) { \
ret |= (r2l & 0xffff) << 32; \
ret |= extract64(r1, 0, 16) << 16; \
} else if ((r2h op r2l) && (r2h op r1hl)) { \
ret |= extract64(r2, 16, 16) << 32; \
ret |= extract64(r1 + 1, 0, 16) << 16; \
} else { \
ret |= r1 & 0xffffffff0000ull; \
} \
return ret; \
}
EXTREMA_H_B(max, >)
EXTREMA_H_B(min, <)
#undef EXTREMA_H_B
uint32_t helper_clo(target_ulong r1)
{
return clo32(r1);
}
uint32_t helper_clo_h(target_ulong r1)
{
uint32_t ret_hw0 = extract32(r1, 0, 16);
uint32_t ret_hw1 = extract32(r1, 16, 16);
ret_hw0 = clo32(ret_hw0 << 16);
ret_hw1 = clo32(ret_hw1 << 16);
if (ret_hw0 > 16) {
ret_hw0 = 16;
}
if (ret_hw1 > 16) {
ret_hw1 = 16;
}
return ret_hw0 | (ret_hw1 << 16);
}
uint32_t helper_clz(target_ulong r1)
{
return clz32(r1);
}
uint32_t helper_clz_h(target_ulong r1)
{
uint32_t ret_hw0 = extract32(r1, 0, 16);
uint32_t ret_hw1 = extract32(r1, 16, 16);
ret_hw0 = clz32(ret_hw0 << 16);
ret_hw1 = clz32(ret_hw1 << 16);
if (ret_hw0 > 16) {
ret_hw0 = 16;
}
if (ret_hw1 > 16) {
ret_hw1 = 16;
}
return ret_hw0 | (ret_hw1 << 16);
}
uint32_t helper_cls(target_ulong r1)
{
return clrsb32(r1);
}
uint32_t helper_cls_h(target_ulong r1)
{
uint32_t ret_hw0 = extract32(r1, 0, 16);
uint32_t ret_hw1 = extract32(r1, 16, 16);
ret_hw0 = clrsb32(ret_hw0 << 16);
ret_hw1 = clrsb32(ret_hw1 << 16);
if (ret_hw0 > 15) {
ret_hw0 = 15;
}
if (ret_hw1 > 15) {
ret_hw1 = 15;
}
return ret_hw0 | (ret_hw1 << 16);
}
uint32_t helper_sh(target_ulong r1, target_ulong r2)
{
int32_t shift_count = sextract32(r2, 0, 6);
if (shift_count == -32) {
return 0;
} else if (shift_count < 0) {
return r1 >> -shift_count;
} else {
return r1 << shift_count;
}
}
uint32_t helper_sh_h(target_ulong r1, target_ulong r2)
{
int32_t ret_hw0, ret_hw1;
int32_t shift_count;
shift_count = sextract32(r2, 0, 5);
if (shift_count == -16) {
return 0;
} else if (shift_count < 0) {
ret_hw0 = extract32(r1, 0, 16) >> -shift_count;
ret_hw1 = extract32(r1, 16, 16) >> -shift_count;
return (ret_hw0 & 0xffff) | (ret_hw1 << 16);
} else {
ret_hw0 = extract32(r1, 0, 16) << shift_count;
ret_hw1 = extract32(r1, 16, 16) << shift_count;
return (ret_hw0 & 0xffff) | (ret_hw1 << 16);
}
}
uint32_t helper_sha(CPUTriCoreState *env, target_ulong r1, target_ulong r2)
{
int32_t shift_count;
int64_t result, t1;
uint32_t ret;
shift_count = sextract32(r2, 0, 6);
t1 = sextract32(r1, 0, 32);
if (shift_count == 0) {
env->PSW_USB_C = env->PSW_USB_V = 0;
ret = r1;
} else if (shift_count == -32) {
env->PSW_USB_C = r1;
env->PSW_USB_V = 0;
ret = t1 >> 31;
} else if (shift_count > 0) {
result = t1 << shift_count;
/* calc carry */
env->PSW_USB_C = ((result & 0xffffffff00000000ULL) != 0);
/* calc v */
env->PSW_USB_V = (((result > 0x7fffffffLL) ||
(result < -0x80000000LL)) << 31);
/* calc sv */
env->PSW_USB_SV |= env->PSW_USB_V;
ret = (uint32_t)result;
} else {
env->PSW_USB_V = 0;
env->PSW_USB_C = (r1 & ((1 << -shift_count) - 1));
ret = t1 >> -shift_count;
}
env->PSW_USB_AV = ret ^ ret * 2u;
env->PSW_USB_SAV |= env->PSW_USB_AV;
return ret;
}
uint32_t helper_sha_h(target_ulong r1, target_ulong r2)
{
int32_t shift_count;
int32_t ret_hw0, ret_hw1;
shift_count = sextract32(r2, 0, 5);
if (shift_count == 0) {
return r1;
} else if (shift_count < 0) {
ret_hw0 = sextract32(r1, 0, 16) >> -shift_count;
ret_hw1 = sextract32(r1, 16, 16) >> -shift_count;
return (ret_hw0 & 0xffff) | (ret_hw1 << 16);
} else {
ret_hw0 = sextract32(r1, 0, 16) << shift_count;
ret_hw1 = sextract32(r1, 16, 16) << shift_count;
return (ret_hw0 & 0xffff) | (ret_hw1 << 16);
}
}
uint32_t helper_bmerge(target_ulong r1, target_ulong r2)
{
uint32_t i, ret;
ret = 0;
for (i = 0; i < 16; i++) {
ret |= (r1 & 1) << (2 * i + 1);
ret |= (r2 & 1) << (2 * i);
r1 = r1 >> 1;
r2 = r2 >> 1;
}
return ret;
}
uint64_t helper_bsplit(uint32_t r1)
{
int32_t i;
uint64_t ret;
ret = 0;
for (i = 0; i < 32; i = i + 2) {
/* even */
ret |= (r1 & 1) << (i/2);
r1 = r1 >> 1;
/* odd */
ret |= (uint64_t)(r1 & 1) << (i/2 + 32);
r1 = r1 >> 1;
}
return ret;
}
uint32_t helper_parity(target_ulong r1)
{
uint32_t ret;
uint32_t nOnes, i;
ret = 0;
nOnes = 0;
for (i = 0; i < 8; i++) {
ret ^= (r1 & 1);
r1 = r1 >> 1;
}
/* second byte */
nOnes = 0;
for (i = 0; i < 8; i++) {
nOnes ^= (r1 & 1);
r1 = r1 >> 1;
}
ret |= nOnes << 8;
/* third byte */
nOnes = 0;
for (i = 0; i < 8; i++) {
nOnes ^= (r1 & 1);
r1 = r1 >> 1;
}
ret |= nOnes << 16;
/* fourth byte */
nOnes = 0;
for (i = 0; i < 8; i++) {
nOnes ^= (r1 & 1);
r1 = r1 >> 1;
}
ret |= nOnes << 24;
return ret;
}
uint32_t helper_pack(uint32_t carry, uint32_t r1_low, uint32_t r1_high,
target_ulong r2)
{
uint32_t ret;
int32_t fp_exp, fp_frac, temp_exp, fp_exp_frac;
int32_t int_exp = r1_high;
int32_t int_mant = r1_low;
uint32_t flag_rnd = (int_mant & (1 << 7)) && (
(int_mant & (1 << 8)) ||
(int_mant & 0x7f) ||
(carry != 0));
if (((int_mant & (1<<31)) == 0) && (int_exp == 255)) {
fp_exp = 255;
fp_frac = extract32(int_mant, 8, 23);
} else if ((int_mant & (1<<31)) && (int_exp >= 127)) {
fp_exp = 255;
fp_frac = 0;
} else if ((int_mant & (1<<31)) && (int_exp <= -128)) {
fp_exp = 0;
fp_frac = 0;
} else if (int_mant == 0) {
fp_exp = 0;
fp_frac = 0;
} else {
if (((int_mant & (1 << 31)) == 0)) {
temp_exp = 0;
} else {
temp_exp = int_exp + 128;
}
fp_exp_frac = (((temp_exp & 0xff) << 23) |
extract32(int_mant, 8, 23))
+ flag_rnd;
fp_exp = extract32(fp_exp_frac, 23, 8);
fp_frac = extract32(fp_exp_frac, 0, 23);
}
ret = r2 & (1 << 31);
ret = ret + (fp_exp << 23);
ret = ret + (fp_frac & 0x7fffff);
return ret;
}
uint64_t helper_unpack(target_ulong arg1)
{
int32_t fp_exp = extract32(arg1, 23, 8);
int32_t fp_frac = extract32(arg1, 0, 23);
uint64_t ret;
int32_t int_exp, int_mant;
if (fp_exp == 255) {
int_exp = 255;
int_mant = (fp_frac << 7);
} else if ((fp_exp == 0) && (fp_frac == 0)) {
int_exp = -127;
int_mant = 0;
} else if ((fp_exp == 0) && (fp_frac != 0)) {
int_exp = -126;
int_mant = (fp_frac << 7);
} else {
int_exp = fp_exp - 127;
int_mant = (fp_frac << 7);
int_mant |= (1 << 30);
}
ret = int_exp;
ret = ret << 32;
ret |= int_mant;
return ret;
}
uint64_t helper_dvinit_b_13(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
{
uint64_t ret;
int32_t abs_sig_dividend, abs_base_dividend, abs_divisor;
int32_t quotient_sign;
ret = sextract32(r1, 0, 32);
ret = ret << 24;
quotient_sign = 0;
if (!((r1 & 0x80000000) == (r2 & 0x80000000))) {
ret |= 0xffffff;
quotient_sign = 1;
}
abs_sig_dividend = abs(r1) >> 7;
abs_base_dividend = abs(r1) & 0x7f;
abs_divisor = abs(r1);
/* calc overflow */
env->PSW_USB_V = 0;
if ((quotient_sign) && (abs_divisor)) {
env->PSW_USB_V = (((abs_sig_dividend == abs_divisor) &&
(abs_base_dividend >= abs_divisor)) ||
(abs_sig_dividend > abs_divisor));
} else {
env->PSW_USB_V = (abs_sig_dividend >= abs_divisor);
}
env->PSW_USB_V = env->PSW_USB_V << 31;
env->PSW_USB_SV |= env->PSW_USB_V;
env->PSW_USB_AV = 0;
return ret;
}
uint64_t helper_dvinit_b_131(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
{
uint64_t ret = sextract32(r1, 0, 32);
ret = ret << 24;
if (!((r1 & 0x80000000) == (r2 & 0x80000000))) {
ret |= 0xffffff;
}
/* calc overflow */
env->PSW_USB_V = ((r2 == 0) || ((r2 == 0xffffffff) && (r1 == 0xffffff80)));
env->PSW_USB_V = env->PSW_USB_V << 31;
env->PSW_USB_SV |= env->PSW_USB_V;
env->PSW_USB_AV = 0;
return ret;
}
uint64_t helper_dvinit_h_13(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
{
uint64_t ret;
int32_t abs_sig_dividend, abs_base_dividend, abs_divisor;
int32_t quotient_sign;
ret = sextract32(r1, 0, 32);
ret = ret << 16;
quotient_sign = 0;
if (!((r1 & 0x80000000) == (r2 & 0x80000000))) {
ret |= 0xffff;
quotient_sign = 1;
}
abs_sig_dividend = abs(r1) >> 7;
abs_base_dividend = abs(r1) & 0x7f;
abs_divisor = abs(r1);
/* calc overflow */
env->PSW_USB_V = 0;
if ((quotient_sign) && (abs_divisor)) {
env->PSW_USB_V = (((abs_sig_dividend == abs_divisor) &&
(abs_base_dividend >= abs_divisor)) ||
(abs_sig_dividend > abs_divisor));
} else {
env->PSW_USB_V = (abs_sig_dividend >= abs_divisor);
}
env->PSW_USB_V = env->PSW_USB_V << 31;
env->PSW_USB_SV |= env->PSW_USB_V;
env->PSW_USB_AV = 0;
return ret;
}
uint64_t helper_dvinit_h_131(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
{
uint64_t ret = sextract32(r1, 0, 32);
ret = ret << 16;
if (!((r1 & 0x80000000) == (r2 & 0x80000000))) {
ret |= 0xffff;
}
/* calc overflow */
env->PSW_USB_V = ((r2 == 0) || ((r2 == 0xffffffff) && (r1 == 0xffff8000)));
env->PSW_USB_V = env->PSW_USB_V << 31;
env->PSW_USB_SV |= env->PSW_USB_V;
env->PSW_USB_AV = 0;
return ret;
}
uint64_t helper_dvadj(uint64_t r1, uint32_t r2)
{
int32_t x_sign = (r1 >> 63);
int32_t q_sign = x_sign ^ (r2 >> 31);
int32_t eq_pos = x_sign & ((r1 >> 32) == r2);
int32_t eq_neg = x_sign & ((r1 >> 32) == -r2);
uint32_t quotient;
uint64_t ret, remainder;
if ((q_sign & ~eq_neg) | eq_pos) {
quotient = (r1 + 1) & 0xffffffff;
} else {
quotient = r1 & 0xffffffff;
}
if (eq_pos | eq_neg) {
remainder = 0;
} else {
remainder = (r1 & 0xffffffff00000000ull);
}
ret = remainder|quotient;
return ret;
}
uint64_t helper_dvstep(uint64_t r1, uint32_t r2)
{
int32_t dividend_sign = extract64(r1, 63, 1);
int32_t divisor_sign = extract32(r2, 31, 1);
int32_t quotient_sign = (dividend_sign != divisor_sign);
int32_t addend, dividend_quotient, remainder;
int32_t i, temp;
if (quotient_sign) {
addend = r2;
} else {
addend = -r2;
}
dividend_quotient = (int32_t)r1;
remainder = (int32_t)(r1 >> 32);
for (i = 0; i < 8; i++) {
remainder = (remainder << 1) | extract32(dividend_quotient, 31, 1);
dividend_quotient <<= 1;
temp = remainder + addend;
if ((temp < 0) == dividend_sign) {
remainder = temp;
}
if (((temp < 0) == dividend_sign)) {
dividend_quotient = dividend_quotient | !quotient_sign;
} else {
dividend_quotient = dividend_quotient | quotient_sign;
}
}
return ((uint64_t)remainder << 32) | (uint32_t)dividend_quotient;
}
uint64_t helper_dvstep_u(uint64_t r1, uint32_t r2)
{
int32_t dividend_quotient = extract64(r1, 0, 32);
int64_t remainder = extract64(r1, 32, 32);
int32_t i;
int64_t temp;
for (i = 0; i < 8; i++) {
remainder = (remainder << 1) | extract32(dividend_quotient, 31, 1);
dividend_quotient <<= 1;
temp = (remainder & 0xffffffff) - r2;
if (temp >= 0) {
remainder = temp;
}
dividend_quotient = dividend_quotient | !(temp < 0);
}
return ((uint64_t)remainder << 32) | (uint32_t)dividend_quotient;
}
uint64_t helper_mul_h(uint32_t arg00, uint32_t arg01,
uint32_t arg10, uint32_t arg11, uint32_t n)
{
uint64_t ret;
uint32_t result0, result1;
int32_t sc1 = ((arg00 & 0xffff) == 0x8000) &&
((arg10 & 0xffff) == 0x8000) && (n == 1);
int32_t sc0 = ((arg01 & 0xffff) == 0x8000) &&
((arg11 & 0xffff) == 0x8000) && (n == 1);
if (sc1) {
result1 = 0x7fffffff;
} else {
result1 = (((uint32_t)(arg00 * arg10)) << n);
}
if (sc0) {
result0 = 0x7fffffff;
} else {
result0 = (((uint32_t)(arg01 * arg11)) << n);
}
ret = (((uint64_t)result1 << 32)) | result0;
return ret;
}
uint64_t helper_mulm_h(uint32_t arg00, uint32_t arg01,
uint32_t arg10, uint32_t arg11, uint32_t n)
{
uint64_t ret;
int64_t result0, result1;
int32_t sc1 = ((arg00 & 0xffff) == 0x8000) &&
((arg10 & 0xffff) == 0x8000) && (n == 1);
int32_t sc0 = ((arg01 & 0xffff) == 0x8000) &&
((arg11 & 0xffff) == 0x8000) && (n == 1);
if (sc1) {
result1 = 0x7fffffff;
} else {
result1 = (((int32_t)arg00 * (int32_t)arg10) << n);
}
if (sc0) {
result0 = 0x7fffffff;
} else {
result0 = (((int32_t)arg01 * (int32_t)arg11) << n);
}
ret = (result1 + result0);
ret = ret << 16;
return ret;
}
uint32_t helper_mulr_h(uint32_t arg00, uint32_t arg01,
uint32_t arg10, uint32_t arg11, uint32_t n)
{
uint32_t result0, result1;
int32_t sc1 = ((arg00 & 0xffff) == 0x8000) &&
((arg10 & 0xffff) == 0x8000) && (n == 1);
int32_t sc0 = ((arg01 & 0xffff) == 0x8000) &&
((arg11 & 0xffff) == 0x8000) && (n == 1);
if (sc1) {
result1 = 0x7fffffff;
} else {
result1 = ((arg00 * arg10) << n) + 0x8000;
}
if (sc0) {
result0 = 0x7fffffff;
} else {
result0 = ((arg01 * arg11) << n) + 0x8000;
}
return (result1 & 0xffff0000) | (result0 >> 16);
}
/* context save area (CSA) related helpers */
static int cdc_increment(target_ulong *psw)
{
if ((*psw & MASK_PSW_CDC) == 0x7f) {
return 0;
}
(*psw)++;
/* check for overflow */
int lo = clo32((*psw & MASK_PSW_CDC) << (32 - 7));
int mask = (1u << (7 - lo)) - 1;
int count = *psw & mask;
if (count == 0) {
(*psw)--;
return 1;
}
return 0;
}
static int cdc_decrement(target_ulong *psw)
{
if ((*psw & MASK_PSW_CDC) == 0x7f) {
return 0;
}
/* check for underflow */
int lo = clo32((*psw & MASK_PSW_CDC) << (32 - 7));
int mask = (1u << (7 - lo)) - 1;
int count = *psw & mask;
if (count == 0) {
return 1;
}
(*psw)--;
return 0;
}
static bool cdc_zero(target_ulong *psw)
{
int cdc = *psw & MASK_PSW_CDC;
/* Returns TRUE if PSW.CDC.COUNT == 0 or if PSW.CDC ==
7'b1111111, otherwise returns FALSE. */
if (cdc == 0x7f) {
return true;
}
/* find CDC.COUNT */
int lo = clo32((*psw & MASK_PSW_CDC) << (32 - 7));
int mask = (1u << (7 - lo)) - 1;
int count = *psw & mask;
return count == 0;
}
static void save_context_upper(CPUTriCoreState *env, int ea)
{
cpu_stl_data(env, ea, env->PCXI);
cpu_stl_data(env, ea+4, env->PSW);
cpu_stl_data(env, ea+8, env->gpr_a[10]);
cpu_stl_data(env, ea+12, env->gpr_a[11]);
cpu_stl_data(env, ea+16, env->gpr_d[8]);
cpu_stl_data(env, ea+20, env->gpr_d[9]);
cpu_stl_data(env, ea+24, env->gpr_d[10]);
cpu_stl_data(env, ea+28, env->gpr_d[11]);
cpu_stl_data(env, ea+32, env->gpr_a[12]);
cpu_stl_data(env, ea+36, env->gpr_a[13]);
cpu_stl_data(env, ea+40, env->gpr_a[14]);
cpu_stl_data(env, ea+44, env->gpr_a[15]);
cpu_stl_data(env, ea+48, env->gpr_d[12]);
cpu_stl_data(env, ea+52, env->gpr_d[13]);
cpu_stl_data(env, ea+56, env->gpr_d[14]);
cpu_stl_data(env, ea+60, env->gpr_d[15]);
}
static void save_context_lower(CPUTriCoreState *env, int ea)
{
cpu_stl_data(env, ea, env->PCXI);
cpu_stl_data(env, ea+4, env->gpr_a[11]);
cpu_stl_data(env, ea+8, env->gpr_a[2]);
cpu_stl_data(env, ea+12, env->gpr_a[3]);
cpu_stl_data(env, ea+16, env->gpr_d[0]);
cpu_stl_data(env, ea+20, env->gpr_d[1]);
cpu_stl_data(env, ea+24, env->gpr_d[2]);
cpu_stl_data(env, ea+28, env->gpr_d[3]);
cpu_stl_data(env, ea+32, env->gpr_a[4]);
cpu_stl_data(env, ea+36, env->gpr_a[5]);
cpu_stl_data(env, ea+40, env->gpr_a[6]);
cpu_stl_data(env, ea+44, env->gpr_a[7]);
cpu_stl_data(env, ea+48, env->gpr_d[4]);
cpu_stl_data(env, ea+52, env->gpr_d[5]);
cpu_stl_data(env, ea+56, env->gpr_d[6]);
cpu_stl_data(env, ea+60, env->gpr_d[7]);
}
static void restore_context_upper(CPUTriCoreState *env, int ea,
target_ulong *new_PCXI, target_ulong *new_PSW)
{
*new_PCXI = cpu_ldl_data(env, ea);
*new_PSW = cpu_ldl_data(env, ea+4);
env->gpr_a[10] = cpu_ldl_data(env, ea+8);
env->gpr_a[11] = cpu_ldl_data(env, ea+12);
env->gpr_d[8] = cpu_ldl_data(env, ea+16);
env->gpr_d[9] = cpu_ldl_data(env, ea+20);
env->gpr_d[10] = cpu_ldl_data(env, ea+24);
env->gpr_d[11] = cpu_ldl_data(env, ea+28);
env->gpr_a[12] = cpu_ldl_data(env, ea+32);
env->gpr_a[13] = cpu_ldl_data(env, ea+36);
env->gpr_a[14] = cpu_ldl_data(env, ea+40);
env->gpr_a[15] = cpu_ldl_data(env, ea+44);
env->gpr_d[12] = cpu_ldl_data(env, ea+48);
env->gpr_d[13] = cpu_ldl_data(env, ea+52);
env->gpr_d[14] = cpu_ldl_data(env, ea+56);
env->gpr_d[15] = cpu_ldl_data(env, ea+60);
}
static void restore_context_lower(CPUTriCoreState *env, int ea,
target_ulong *ra, target_ulong *pcxi)
{
*pcxi = cpu_ldl_data(env, ea);
*ra = cpu_ldl_data(env, ea+4);
env->gpr_a[2] = cpu_ldl_data(env, ea+8);
env->gpr_a[3] = cpu_ldl_data(env, ea+12);
env->gpr_d[0] = cpu_ldl_data(env, ea+16);
env->gpr_d[1] = cpu_ldl_data(env, ea+20);
env->gpr_d[2] = cpu_ldl_data(env, ea+24);
env->gpr_d[3] = cpu_ldl_data(env, ea+28);
env->gpr_a[4] = cpu_ldl_data(env, ea+32);
env->gpr_a[5] = cpu_ldl_data(env, ea+36);
env->gpr_a[6] = cpu_ldl_data(env, ea+40);
env->gpr_a[7] = cpu_ldl_data(env, ea+44);
env->gpr_d[4] = cpu_ldl_data(env, ea+48);
env->gpr_d[5] = cpu_ldl_data(env, ea+52);
env->gpr_d[6] = cpu_ldl_data(env, ea+56);
env->gpr_d[7] = cpu_ldl_data(env, ea+60);
}
void helper_call(CPUTriCoreState *env, uint32_t next_pc)
{
target_ulong tmp_FCX;
target_ulong ea;
target_ulong new_FCX;
target_ulong psw;
psw = psw_read(env);
/* if (FCX == 0) trap(FCU); */
if (env->FCX == 0) {
/* FCU trap */
}
/* if (PSW.CDE) then if (cdc_increment()) then trap(CDO); */
if (psw & MASK_PSW_CDE) {
if (cdc_increment(&psw)) {
/* CDO trap */
}
}
/* PSW.CDE = 1;*/
psw |= MASK_PSW_CDE;
/* tmp_FCX = FCX; */
tmp_FCX = env->FCX;
/* EA = {FCX.FCXS, 6'b0, FCX.FCXO, 6'b0}; */
ea = ((env->FCX & MASK_FCX_FCXS) << 12) +
((env->FCX & MASK_FCX_FCXO) << 6);
/* new_FCX = M(EA, word); */
new_FCX = cpu_ldl_data(env, ea);
/* M(EA, 16 * word) = {PCXI, PSW, A[10], A[11], D[8], D[9], D[10], D[11],
A[12], A[13], A[14], A[15], D[12], D[13], D[14],
D[15]}; */
save_context_upper(env, ea);
/* PCXI.PCPN = ICR.CCPN; */
env->PCXI = (env->PCXI & 0xffffff) +
((env->ICR & MASK_ICR_CCPN) << 24);
/* PCXI.PIE = ICR.IE; */
env->PCXI = ((env->PCXI & ~MASK_PCXI_PIE) +
((env->ICR & MASK_ICR_IE) << 15));
/* PCXI.UL = 1; */
env->PCXI |= MASK_PCXI_UL;
/* PCXI[19: 0] = FCX[19: 0]; */
env->PCXI = (env->PCXI & 0xfff00000) + (env->FCX & 0xfffff);
/* FCX[19: 0] = new_FCX[19: 0]; */
env->FCX = (env->FCX & 0xfff00000) + (new_FCX & 0xfffff);
/* A[11] = next_pc[31: 0]; */
env->gpr_a[11] = next_pc;
/* if (tmp_FCX == LCX) trap(FCD);*/
if (tmp_FCX == env->LCX) {
/* FCD trap */
}
psw_write(env, psw);
}
void helper_ret(CPUTriCoreState *env)
{
target_ulong ea;
target_ulong new_PCXI;
target_ulong new_PSW, psw;
psw = psw_read(env);
/* if (PSW.CDE) then if (cdc_decrement()) then trap(CDU);*/
if (env->PSW & MASK_PSW_CDE) {
if (cdc_decrement(&(env->PSW))) {
/* CDU trap */
}
}
/* if (PCXI[19: 0] == 0) then trap(CSU); */
if ((env->PCXI & 0xfffff) == 0) {
/* CSU trap */
}
/* if (PCXI.UL == 0) then trap(CTYP); */
if ((env->PCXI & MASK_PCXI_UL) == 0) {
/* CTYP trap */
}
/* PC = {A11 [31: 1], 1’b0}; */
env->PC = env->gpr_a[11] & 0xfffffffe;
/* EA = {PCXI.PCXS, 6'b0, PCXI.PCXO, 6'b0}; */
ea = ((env->PCXI & MASK_PCXI_PCXS) << 12) +
((env->PCXI & MASK_PCXI_PCXO) << 6);
/* {new_PCXI, new_PSW, A[10], A[11], D[8], D[9], D[10], D[11], A[12],
A[13], A[14], A[15], D[12], D[13], D[14], D[15]} = M(EA, 16 * word); */
restore_context_upper(env, ea, &new_PCXI, &new_PSW);
/* M(EA, word) = FCX; */
cpu_stl_data(env, ea, env->FCX);
/* FCX[19: 0] = PCXI[19: 0]; */
env->FCX = (env->FCX & 0xfff00000) + (env->PCXI & 0x000fffff);
/* PCXI = new_PCXI; */
env->PCXI = new_PCXI;
if (tricore_feature(env, TRICORE_FEATURE_13)) {
/* PSW = new_PSW */
psw_write(env, new_PSW);
} else {
/* PSW = {new_PSW[31:26], PSW[25:24], new_PSW[23:0]}; */
psw_write(env, (new_PSW & ~(0x3000000)) + (psw & (0x3000000)));
}
}
void helper_bisr(CPUTriCoreState *env, uint32_t const9)
{
target_ulong tmp_FCX;
target_ulong ea;
target_ulong new_FCX;
if (env->FCX == 0) {
/* FCU trap */
}
tmp_FCX = env->FCX;
ea = ((env->FCX & 0xf0000) << 12) + ((env->FCX & 0xffff) << 6);
/* new_FCX = M(EA, word); */
new_FCX = cpu_ldl_data(env, ea);
/* M(EA, 16 * word) = {PCXI, A[11], A[2], A[3], D[0], D[1], D[2], D[3], A[4]
, A[5], A[6], A[7], D[4], D[5], D[6], D[7]}; */
save_context_lower(env, ea);
/* PCXI.PCPN = ICR.CCPN */
env->PCXI = (env->PCXI & 0xffffff) +
((env->ICR & MASK_ICR_CCPN) << 24);
/* PCXI.PIE = ICR.IE */
env->PCXI = ((env->PCXI & ~MASK_PCXI_PIE) +
((env->ICR & MASK_ICR_IE) << 15));
/* PCXI.UL = 0 */
env->PCXI &= ~(MASK_PCXI_UL);
/* PCXI[19: 0] = FCX[19: 0] */
env->PCXI = (env->PCXI & 0xfff00000) + (env->FCX & 0xfffff);
/* FXC[19: 0] = new_FCX[19: 0] */
env->FCX = (env->FCX & 0xfff00000) + (new_FCX & 0xfffff);
/* ICR.IE = 1 */
env->ICR |= MASK_ICR_IE;
env->ICR |= const9; /* ICR.CCPN = const9[7: 0];*/
if (tmp_FCX == env->LCX) {
/* FCD trap */
}
}
void helper_rfe(CPUTriCoreState *env)
{
target_ulong ea;
target_ulong new_PCXI;
target_ulong new_PSW;
/* if (PCXI[19: 0] == 0) then trap(CSU); */
if ((env->PCXI & 0xfffff) == 0) {
/* raise csu trap */
}
/* if (PCXI.UL == 0) then trap(CTYP); */
if ((env->PCXI & MASK_PCXI_UL) == 0) {
/* raise CTYP trap */
}
/* if (!cdc_zero() AND PSW.CDE) then trap(NEST); */
if (!cdc_zero(&(env->PSW)) && (env->PSW & MASK_PSW_CDE)) {
/* raise MNG trap */
}
/* ICR.IE = PCXI.PIE; */
env->ICR = (env->ICR & ~MASK_ICR_IE) + ((env->PCXI & MASK_PCXI_PIE) >> 15);
/* ICR.CCPN = PCXI.PCPN; */
env->ICR = (env->ICR & ~MASK_ICR_CCPN) +
((env->PCXI & MASK_PCXI_PCPN) >> 24);
/*EA = {PCXI.PCXS, 6'b0, PCXI.PCXO, 6'b0};*/
ea = ((env->PCXI & MASK_PCXI_PCXS) << 12) +
((env->PCXI & MASK_PCXI_PCXO) << 6);
/*{new_PCXI, PSW, A[10], A[11], D[8], D[9], D[10], D[11], A[12],
A[13], A[14], A[15], D[12], D[13], D[14], D[15]} = M(EA, 16 * word); */
restore_context_upper(env, ea, &new_PCXI, &new_PSW);
/* M(EA, word) = FCX;*/
cpu_stl_data(env, ea, env->FCX);
/* FCX[19: 0] = PCXI[19: 0]; */
env->FCX = (env->FCX & 0xfff00000) + (env->PCXI & 0x000fffff);
/* PCXI = new_PCXI; */
env->PCXI = new_PCXI;
/* write psw */
psw_write(env, new_PSW);
}
void helper_rfm(CPUTriCoreState *env)
{
env->PC = (env->gpr_a[11] & ~0x1);
/* ICR.IE = PCXI.PIE; */
env->ICR = (env->ICR & ~MASK_ICR_IE) |
((env->PCXI & ~MASK_PCXI_PIE) >> 15);
/* ICR.CCPN = PCXI.PCPN; */
env->ICR = (env->ICR & ~MASK_ICR_CCPN) |
((env->PCXI & ~MASK_PCXI_PCPN) >> 24);
/* {PCXI, PSW, A[10], A[11]} = M(DCX, 4 * word); */
env->PCXI = cpu_ldl_data(env, env->DCX);
psw_write(env, cpu_ldl_data(env, env->DCX+4));
env->gpr_a[10] = cpu_ldl_data(env, env->DCX+8);
env->gpr_a[11] = cpu_ldl_data(env, env->DCX+12);
if (tricore_feature(env, TRICORE_FEATURE_131)) {
env->DBGTCR = 0;
}
}
void helper_ldlcx(CPUTriCoreState *env, uint32_t ea)
{
uint32_t dummy;
/* insn doesn't load PCXI and RA */
restore_context_lower(env, ea, &dummy, &dummy);
}
void helper_lducx(CPUTriCoreState *env, uint32_t ea)
{
uint32_t dummy;
/* insn doesn't load PCXI and PSW */
restore_context_upper(env, ea, &dummy, &dummy);
}
void helper_stlcx(CPUTriCoreState *env, uint32_t ea)
{
save_context_lower(env, ea);
}
void helper_stucx(CPUTriCoreState *env, uint32_t ea)
{
save_context_upper(env, ea);
}
void helper_svlcx(CPUTriCoreState *env)
{
target_ulong tmp_FCX;
target_ulong ea;
target_ulong new_FCX;
if (env->FCX == 0) {
/* FCU trap */
}
/* tmp_FCX = FCX; */
tmp_FCX = env->FCX;
/* EA = {FCX.FCXS, 6'b0, FCX.FCXO, 6'b0}; */
ea = ((env->FCX & MASK_FCX_FCXS) << 12) +
((env->FCX & MASK_FCX_FCXO) << 6);
/* new_FCX = M(EA, word); */
new_FCX = cpu_ldl_data(env, ea);
/* M(EA, 16 * word) = {PCXI, PSW, A[10], A[11], D[8], D[9], D[10], D[11],
A[12], A[13], A[14], A[15], D[12], D[13], D[14],
D[15]}; */
save_context_lower(env, ea);
/* PCXI.PCPN = ICR.CCPN; */
env->PCXI = (env->PCXI & 0xffffff) +
((env->ICR & MASK_ICR_CCPN) << 24);
/* PCXI.PIE = ICR.IE; */
env->PCXI = ((env->PCXI & ~MASK_PCXI_PIE) +
((env->ICR & MASK_ICR_IE) << 15));
/* PCXI.UL = 0; */
env->PCXI &= ~MASK_PCXI_UL;
/* PCXI[19: 0] = FCX[19: 0]; */
env->PCXI = (env->PCXI & 0xfff00000) + (env->FCX & 0xfffff);
/* FCX[19: 0] = new_FCX[19: 0]; */
env->FCX = (env->FCX & 0xfff00000) + (new_FCX & 0xfffff);
/* if (tmp_FCX == LCX) trap(FCD);*/
if (tmp_FCX == env->LCX) {
/* FCD trap */
}
}
void helper_rslcx(CPUTriCoreState *env)
{
target_ulong ea;
target_ulong new_PCXI;
/* if (PCXI[19: 0] == 0) then trap(CSU); */
if ((env->PCXI & 0xfffff) == 0) {
/* CSU trap */
}
/* if (PCXI.UL == 1) then trap(CTYP); */
if ((env->PCXI & MASK_PCXI_UL) == 1) {
/* CTYP trap */
}
/* EA = {PCXI.PCXS, 6'b0, PCXI.PCXO, 6'b0}; */
ea = ((env->PCXI & MASK_PCXI_PCXS) << 12) +
((env->PCXI & MASK_PCXI_PCXO) << 6);
/* {new_PCXI, A[11], A[10], A[11], D[8], D[9], D[10], D[11], A[12],
A[13], A[14], A[15], D[12], D[13], D[14], D[15]} = M(EA, 16 * word); */
restore_context_upper(env, ea, &new_PCXI, &env->gpr_a[11]);
/* M(EA, word) = FCX; */
cpu_stl_data(env, ea, env->FCX);
/* M(EA, word) = FCX; */
cpu_stl_data(env, ea, env->FCX);
/* FCX[19: 0] = PCXI[19: 0]; */
env->FCX = (env->FCX & 0xfff00000) + (env->PCXI & 0x000fffff);
/* PCXI = new_PCXI; */
env->PCXI = new_PCXI;
}
void helper_psw_write(CPUTriCoreState *env, uint32_t arg)
{
psw_write(env, arg);
}
uint32_t helper_psw_read(CPUTriCoreState *env)
{
return psw_read(env);
}
static inline void QEMU_NORETURN do_raise_exception_err(CPUTriCoreState *env,
uint32_t exception,
int error_code,
uintptr_t pc)
{
CPUState *cs = CPU(tricore_env_get_cpu(env));
cs->exception_index = exception;
env->error_code = error_code;
if (pc) {
/* now we have a real cpu fault */
cpu_restore_state(cs, pc);
}
cpu_loop_exit(cs);
}
void tlb_fill(CPUState *cs, target_ulong addr, int is_write, int mmu_idx,
uintptr_t retaddr)
{
int ret;
ret = cpu_tricore_handle_mmu_fault(cs, addr, is_write, mmu_idx);
if (ret) {
TriCoreCPU *cpu = TRICORE_CPU(cs);
CPUTriCoreState *env = &cpu->env;
do_raise_exception_err(env, cs->exception_index,
env->error_code, retaddr);
}
}