#include "exec.h" #include "host-utils.h" #include "helper.h" #if !defined(CONFIG_USER_ONLY) #include "softmmu_exec.h" #endif /* !defined(CONFIG_USER_ONLY) */ //#define DEBUG_MMU //#define DEBUG_MXCC //#define DEBUG_UNALIGNED //#define DEBUG_UNASSIGNED //#define DEBUG_ASI #ifdef DEBUG_MMU #define DPRINTF_MMU(fmt, args...) \ do { printf("MMU: " fmt , ##args); } while (0) #else #define DPRINTF_MMU(fmt, args...) do {} while (0) #endif #ifdef DEBUG_MXCC #define DPRINTF_MXCC(fmt, args...) \ do { printf("MXCC: " fmt , ##args); } while (0) #else #define DPRINTF_MXCC(fmt, args...) do {} while (0) #endif #ifdef DEBUG_ASI #define DPRINTF_ASI(fmt, args...) \ do { printf("ASI: " fmt , ##args); } while (0) #else #define DPRINTF_ASI(fmt, args...) do {} while (0) #endif #ifdef TARGET_SPARC64 #ifndef TARGET_ABI32 #define AM_CHECK(env1) ((env1)->pstate & PS_AM) #else #define AM_CHECK(env1) (1) #endif #endif static inline void address_mask(CPUState *env1, target_ulong *addr) { #ifdef TARGET_SPARC64 if (AM_CHECK(env1)) *addr &= 0xffffffffULL; #endif } void raise_exception(int tt) { env->exception_index = tt; cpu_loop_exit(); } void helper_trap(target_ulong nb_trap) { env->exception_index = TT_TRAP + (nb_trap & 0x7f); cpu_loop_exit(); } void helper_trapcc(target_ulong nb_trap, target_ulong do_trap) { if (do_trap) { env->exception_index = TT_TRAP + (nb_trap & 0x7f); cpu_loop_exit(); } } void helper_check_align(target_ulong addr, uint32_t align) { if (addr & align) { #ifdef DEBUG_UNALIGNED printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx "\n", addr, env->pc); #endif raise_exception(TT_UNALIGNED); } } #define F_HELPER(name, p) void helper_f##name##p(void) #define F_BINOP(name) \ F_HELPER(name, s) \ { \ FT0 = float32_ ## name (FT0, FT1, &env->fp_status); \ } \ F_HELPER(name, d) \ { \ DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \ } \ F_HELPER(name, q) \ { \ QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \ } F_BINOP(add); F_BINOP(sub); F_BINOP(mul); F_BINOP(div); #undef F_BINOP void helper_fsmuld(void) { DT0 = float64_mul(float32_to_float64(FT0, &env->fp_status), float32_to_float64(FT1, &env->fp_status), &env->fp_status); } void helper_fdmulq(void) { QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status), float64_to_float128(DT1, &env->fp_status), &env->fp_status); } F_HELPER(neg, s) { FT0 = float32_chs(FT1); } #ifdef TARGET_SPARC64 F_HELPER(neg, d) { DT0 = float64_chs(DT1); } F_HELPER(neg, q) { QT0 = float128_chs(QT1); } #endif /* Integer to float conversion. */ F_HELPER(ito, s) { FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status); } F_HELPER(ito, d) { DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status); } F_HELPER(ito, q) { QT0 = int32_to_float128(*((int32_t *)&FT1), &env->fp_status); } #ifdef TARGET_SPARC64 F_HELPER(xto, s) { FT0 = int64_to_float32(*((int64_t *)&DT1), &env->fp_status); } F_HELPER(xto, d) { DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status); } F_HELPER(xto, q) { QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status); } #endif #undef F_HELPER /* floating point conversion */ void helper_fdtos(void) { FT0 = float64_to_float32(DT1, &env->fp_status); } void helper_fstod(void) { DT0 = float32_to_float64(FT1, &env->fp_status); } void helper_fqtos(void) { FT0 = float128_to_float32(QT1, &env->fp_status); } void helper_fstoq(void) { QT0 = float32_to_float128(FT1, &env->fp_status); } void helper_fqtod(void) { DT0 = float128_to_float64(QT1, &env->fp_status); } void helper_fdtoq(void) { QT0 = float64_to_float128(DT1, &env->fp_status); } /* Float to integer conversion. */ void helper_fstoi(void) { *((int32_t *)&FT0) = float32_to_int32_round_to_zero(FT1, &env->fp_status); } void helper_fdtoi(void) { *((int32_t *)&FT0) = float64_to_int32_round_to_zero(DT1, &env->fp_status); } void helper_fqtoi(void) { *((int32_t *)&FT0) = float128_to_int32_round_to_zero(QT1, &env->fp_status); } #ifdef TARGET_SPARC64 void helper_fstox(void) { *((int64_t *)&DT0) = float32_to_int64_round_to_zero(FT1, &env->fp_status); } void helper_fdtox(void) { *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status); } void helper_fqtox(void) { *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status); } void helper_faligndata(void) { uint64_t tmp; tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8); tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8); *((uint64_t *)&DT0) = tmp; } void helper_movl_FT0_0(void) { *((uint32_t *)&FT0) = 0; } void helper_movl_DT0_0(void) { *((uint64_t *)&DT0) = 0; } void helper_movl_FT0_1(void) { *((uint32_t *)&FT0) = 0xffffffff; } void helper_movl_DT0_1(void) { *((uint64_t *)&DT0) = 0xffffffffffffffffULL; } void helper_fnot(void) { *(uint64_t *)&DT0 = ~*(uint64_t *)&DT1; } void helper_fnots(void) { *(uint32_t *)&FT0 = ~*(uint32_t *)&FT1; } void helper_fnor(void) { *(uint64_t *)&DT0 = ~(*(uint64_t *)&DT0 | *(uint64_t *)&DT1); } void helper_fnors(void) { *(uint32_t *)&FT0 = ~(*(uint32_t *)&FT0 | *(uint32_t *)&FT1); } void helper_for(void) { *(uint64_t *)&DT0 |= *(uint64_t *)&DT1; } void helper_fors(void) { *(uint32_t *)&FT0 |= *(uint32_t *)&FT1; } void helper_fxor(void) { *(uint64_t *)&DT0 ^= *(uint64_t *)&DT1; } void helper_fxors(void) { *(uint32_t *)&FT0 ^= *(uint32_t *)&FT1; } void helper_fand(void) { *(uint64_t *)&DT0 &= *(uint64_t *)&DT1; } void helper_fands(void) { *(uint32_t *)&FT0 &= *(uint32_t *)&FT1; } void helper_fornot(void) { *(uint64_t *)&DT0 = *(uint64_t *)&DT0 | ~*(uint64_t *)&DT1; } void helper_fornots(void) { *(uint32_t *)&FT0 = *(uint32_t *)&FT0 | ~*(uint32_t *)&FT1; } void helper_fandnot(void) { *(uint64_t *)&DT0 = *(uint64_t *)&DT0 & ~*(uint64_t *)&DT1; } void helper_fandnots(void) { *(uint32_t *)&FT0 = *(uint32_t *)&FT0 & ~*(uint32_t *)&FT1; } void helper_fnand(void) { *(uint64_t *)&DT0 = ~(*(uint64_t *)&DT0 & *(uint64_t *)&DT1); } void helper_fnands(void) { *(uint32_t *)&FT0 = ~(*(uint32_t *)&FT0 & *(uint32_t *)&FT1); } void helper_fxnor(void) { *(uint64_t *)&DT0 ^= ~*(uint64_t *)&DT1; } void helper_fxnors(void) { *(uint32_t *)&FT0 ^= ~*(uint32_t *)&FT1; } #ifdef WORDS_BIGENDIAN #define VIS_B64(n) b[7 - (n)] #define VIS_W64(n) w[3 - (n)] #define VIS_SW64(n) sw[3 - (n)] #define VIS_L64(n) l[1 - (n)] #define VIS_B32(n) b[3 - (n)] #define VIS_W32(n) w[1 - (n)] #else #define VIS_B64(n) b[n] #define VIS_W64(n) w[n] #define VIS_SW64(n) sw[n] #define VIS_L64(n) l[n] #define VIS_B32(n) b[n] #define VIS_W32(n) w[n] #endif typedef union { uint8_t b[8]; uint16_t w[4]; int16_t sw[4]; uint32_t l[2]; float64 d; } vis64; typedef union { uint8_t b[4]; uint16_t w[2]; uint32_t l; float32 f; } vis32; void helper_fpmerge(void) { vis64 s, d; s.d = DT0; d.d = DT1; // Reverse calculation order to handle overlap d.VIS_B64(7) = s.VIS_B64(3); d.VIS_B64(6) = d.VIS_B64(3); d.VIS_B64(5) = s.VIS_B64(2); d.VIS_B64(4) = d.VIS_B64(2); d.VIS_B64(3) = s.VIS_B64(1); d.VIS_B64(2) = d.VIS_B64(1); d.VIS_B64(1) = s.VIS_B64(0); //d.VIS_B64(0) = d.VIS_B64(0); DT0 = d.d; } void helper_fmul8x16(void) { vis64 s, d; uint32_t tmp; s.d = DT0; d.d = DT1; #define PMUL(r) \ tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \ if ((tmp & 0xff) > 0x7f) \ tmp += 0x100; \ d.VIS_W64(r) = tmp >> 8; PMUL(0); PMUL(1); PMUL(2); PMUL(3); #undef PMUL DT0 = d.d; } void helper_fmul8x16al(void) { vis64 s, d; uint32_t tmp; s.d = DT0; d.d = DT1; #define PMUL(r) \ tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \ if ((tmp & 0xff) > 0x7f) \ tmp += 0x100; \ d.VIS_W64(r) = tmp >> 8; PMUL(0); PMUL(1); PMUL(2); PMUL(3); #undef PMUL DT0 = d.d; } void helper_fmul8x16au(void) { vis64 s, d; uint32_t tmp; s.d = DT0; d.d = DT1; #define PMUL(r) \ tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \ if ((tmp & 0xff) > 0x7f) \ tmp += 0x100; \ d.VIS_W64(r) = tmp >> 8; PMUL(0); PMUL(1); PMUL(2); PMUL(3); #undef PMUL DT0 = d.d; } void helper_fmul8sux16(void) { vis64 s, d; uint32_t tmp; s.d = DT0; d.d = DT1; #define PMUL(r) \ tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \ if ((tmp & 0xff) > 0x7f) \ tmp += 0x100; \ d.VIS_W64(r) = tmp >> 8; PMUL(0); PMUL(1); PMUL(2); PMUL(3); #undef PMUL DT0 = d.d; } void helper_fmul8ulx16(void) { vis64 s, d; uint32_t tmp; s.d = DT0; d.d = DT1; #define PMUL(r) \ tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \ if ((tmp & 0xff) > 0x7f) \ tmp += 0x100; \ d.VIS_W64(r) = tmp >> 8; PMUL(0); PMUL(1); PMUL(2); PMUL(3); #undef PMUL DT0 = d.d; } void helper_fmuld8sux16(void) { vis64 s, d; uint32_t tmp; s.d = DT0; d.d = DT1; #define PMUL(r) \ tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \ if ((tmp & 0xff) > 0x7f) \ tmp += 0x100; \ d.VIS_L64(r) = tmp; // Reverse calculation order to handle overlap PMUL(1); PMUL(0); #undef PMUL DT0 = d.d; } void helper_fmuld8ulx16(void) { vis64 s, d; uint32_t tmp; s.d = DT0; d.d = DT1; #define PMUL(r) \ tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \ if ((tmp & 0xff) > 0x7f) \ tmp += 0x100; \ d.VIS_L64(r) = tmp; // Reverse calculation order to handle overlap PMUL(1); PMUL(0); #undef PMUL DT0 = d.d; } void helper_fexpand(void) { vis32 s; vis64 d; s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff); d.d = DT1; d.VIS_L64(0) = s.VIS_W32(0) << 4; d.VIS_L64(1) = s.VIS_W32(1) << 4; d.VIS_L64(2) = s.VIS_W32(2) << 4; d.VIS_L64(3) = s.VIS_W32(3) << 4; DT0 = d.d; } #define VIS_HELPER(name, F) \ void name##16(void) \ { \ vis64 s, d; \ \ s.d = DT0; \ d.d = DT1; \ \ d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \ d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \ d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \ d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \ \ DT0 = d.d; \ } \ \ void name##16s(void) \ { \ vis32 s, d; \ \ s.f = FT0; \ d.f = FT1; \ \ d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \ d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \ \ FT0 = d.f; \ } \ \ void name##32(void) \ { \ vis64 s, d; \ \ s.d = DT0; \ d.d = DT1; \ \ d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \ d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \ \ DT0 = d.d; \ } \ \ void name##32s(void) \ { \ vis32 s, d; \ \ s.f = FT0; \ d.f = FT1; \ \ d.l = F(d.l, s.l); \ \ FT0 = d.f; \ } #define FADD(a, b) ((a) + (b)) #define FSUB(a, b) ((a) - (b)) VIS_HELPER(helper_fpadd, FADD) VIS_HELPER(helper_fpsub, FSUB) #define VIS_CMPHELPER(name, F) \ void name##16(void) \ { \ vis64 s, d; \ \ s.d = DT0; \ d.d = DT1; \ \ d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0; \ d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0; \ d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0; \ d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0; \ \ DT0 = d.d; \ } \ \ void name##32(void) \ { \ vis64 s, d; \ \ s.d = DT0; \ d.d = DT1; \ \ d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0; \ d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0; \ \ DT0 = d.d; \ } #define FCMPGT(a, b) ((a) > (b)) #define FCMPEQ(a, b) ((a) == (b)) #define FCMPLE(a, b) ((a) <= (b)) #define FCMPNE(a, b) ((a) != (b)) VIS_CMPHELPER(helper_fcmpgt, FCMPGT) VIS_CMPHELPER(helper_fcmpeq, FCMPEQ) VIS_CMPHELPER(helper_fcmple, FCMPLE) VIS_CMPHELPER(helper_fcmpne, FCMPNE) #endif void helper_check_ieee_exceptions(void) { target_ulong status; status = get_float_exception_flags(&env->fp_status); if (status) { /* Copy IEEE 754 flags into FSR */ if (status & float_flag_invalid) env->fsr |= FSR_NVC; if (status & float_flag_overflow) env->fsr |= FSR_OFC; if (status & float_flag_underflow) env->fsr |= FSR_UFC; if (status & float_flag_divbyzero) env->fsr |= FSR_DZC; if (status & float_flag_inexact) env->fsr |= FSR_NXC; if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) { /* Unmasked exception, generate a trap */ env->fsr |= FSR_FTT_IEEE_EXCP; raise_exception(TT_FP_EXCP); } else { /* Accumulate exceptions */ env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5; } } } void helper_clear_float_exceptions(void) { set_float_exception_flags(0, &env->fp_status); } void helper_fabss(void) { FT0 = float32_abs(FT1); } #ifdef TARGET_SPARC64 void helper_fabsd(void) { DT0 = float64_abs(DT1); } void helper_fabsq(void) { QT0 = float128_abs(QT1); } #endif void helper_fsqrts(void) { FT0 = float32_sqrt(FT1, &env->fp_status); } void helper_fsqrtd(void) { DT0 = float64_sqrt(DT1, &env->fp_status); } void helper_fsqrtq(void) { QT0 = float128_sqrt(QT1, &env->fp_status); } #define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \ void glue(helper_, name) (void) \ { \ target_ulong new_fsr; \ \ env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \ case float_relation_unordered: \ new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \ if ((env->fsr & FSR_NVM) || TRAP) { \ env->fsr |= new_fsr; \ env->fsr |= FSR_NVC; \ env->fsr |= FSR_FTT_IEEE_EXCP; \ raise_exception(TT_FP_EXCP); \ } else { \ env->fsr |= FSR_NVA; \ } \ break; \ case float_relation_less: \ new_fsr = FSR_FCC0 << FS; \ break; \ case float_relation_greater: \ new_fsr = FSR_FCC1 << FS; \ break; \ default: \ new_fsr = 0; \ break; \ } \ env->fsr |= new_fsr; \ } GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0); GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0); GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1); GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1); GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0); GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1); #ifdef TARGET_SPARC64 GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0); GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0); GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0); GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0); GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0); GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0); GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0); GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0); GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0); GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1); GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1); GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1); GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1); GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1); GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1); GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1); GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1); GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1); #endif #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \ defined(DEBUG_MXCC) static void dump_mxcc(CPUState *env) { printf("mxccdata: %016llx %016llx %016llx %016llx\n", env->mxccdata[0], env->mxccdata[1], env->mxccdata[2], env->mxccdata[3]); printf("mxccregs: %016llx %016llx %016llx %016llx\n" " %016llx %016llx %016llx %016llx\n", env->mxccregs[0], env->mxccregs[1], env->mxccregs[2], env->mxccregs[3], env->mxccregs[4], env->mxccregs[5], env->mxccregs[6], env->mxccregs[7]); } #endif #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \ && defined(DEBUG_ASI) static void dump_asi(const char *txt, target_ulong addr, int asi, int size, uint64_t r1) { switch (size) { case 1: DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt, addr, asi, r1 & 0xff); break; case 2: DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt, addr, asi, r1 & 0xffff); break; case 4: DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt, addr, asi, r1 & 0xffffffff); break; case 8: DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt, addr, asi, r1); break; } } #endif #ifndef TARGET_SPARC64 #ifndef CONFIG_USER_ONLY uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) { uint64_t ret = 0; #if defined(DEBUG_MXCC) || defined(DEBUG_ASI) uint32_t last_addr = addr; #endif helper_check_align(addr, size - 1); switch (asi) { case 2: /* SuperSparc MXCC registers */ switch (addr) { case 0x01c00a00: /* MXCC control register */ if (size == 8) ret = env->mxccregs[3]; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; case 0x01c00a04: /* MXCC control register */ if (size == 4) ret = env->mxccregs[3]; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; case 0x01c00c00: /* Module reset register */ if (size == 8) { ret = env->mxccregs[5]; // should we do something here? } else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; case 0x01c00f00: /* MBus port address register */ if (size == 8) ret = env->mxccregs[7]; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; default: DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr, size); break; } DPRINTF_MXCC("asi = %d, size = %d, sign = %d, " "addr = %08x -> ret = %08x," "addr = %08x\n", asi, size, sign, last_addr, ret, addr); #ifdef DEBUG_MXCC dump_mxcc(env); #endif break; case 3: /* MMU probe */ { int mmulev; mmulev = (addr >> 8) & 15; if (mmulev > 4) ret = 0; else ret = mmu_probe(env, addr, mmulev); DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n", addr, mmulev, ret); } break; case 4: /* read MMU regs */ { int reg = (addr >> 8) & 0x1f; ret = env->mmuregs[reg]; if (reg == 3) /* Fault status cleared on read */ env->mmuregs[3] = 0; else if (reg == 0x13) /* Fault status read */ ret = env->mmuregs[3]; else if (reg == 0x14) /* Fault address read */ ret = env->mmuregs[4]; DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret); } break; case 5: // Turbosparc ITLB Diagnostic case 6: // Turbosparc DTLB Diagnostic case 7: // Turbosparc IOTLB Diagnostic break; case 9: /* Supervisor code access */ switch(size) { case 1: ret = ldub_code(addr); break; case 2: ret = lduw_code(addr); break; default: case 4: ret = ldl_code(addr); break; case 8: ret = ldq_code(addr); break; } break; case 0xa: /* User data access */ switch(size) { case 1: ret = ldub_user(addr); break; case 2: ret = lduw_user(addr); break; default: case 4: ret = ldl_user(addr); break; case 8: ret = ldq_user(addr); break; } break; case 0xb: /* Supervisor data access */ switch(size) { case 1: ret = ldub_kernel(addr); break; case 2: ret = lduw_kernel(addr); break; default: case 4: ret = ldl_kernel(addr); break; case 8: ret = ldq_kernel(addr); break; } break; case 0xc: /* I-cache tag */ case 0xd: /* I-cache data */ case 0xe: /* D-cache tag */ case 0xf: /* D-cache data */ break; case 0x20: /* MMU passthrough */ switch(size) { case 1: ret = ldub_phys(addr); break; case 2: ret = lduw_phys(addr); break; default: case 4: ret = ldl_phys(addr); break; case 8: ret = ldq_phys(addr); break; } break; case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */ switch(size) { case 1: ret = ldub_phys((target_phys_addr_t)addr | ((target_phys_addr_t)(asi & 0xf) << 32)); break; case 2: ret = lduw_phys((target_phys_addr_t)addr | ((target_phys_addr_t)(asi & 0xf) << 32)); break; default: case 4: ret = ldl_phys((target_phys_addr_t)addr | ((target_phys_addr_t)(asi & 0xf) << 32)); break; case 8: ret = ldq_phys((target_phys_addr_t)addr | ((target_phys_addr_t)(asi & 0xf) << 32)); break; } break; case 0x30: // Turbosparc secondary cache diagnostic case 0x31: // Turbosparc RAM snoop case 0x32: // Turbosparc page table descriptor diagnostic case 0x39: /* data cache diagnostic register */ ret = 0; break; case 8: /* User code access, XXX */ default: do_unassigned_access(addr, 0, 0, asi); ret = 0; break; } if (sign) { switch(size) { case 1: ret = (int8_t) ret; break; case 2: ret = (int16_t) ret; break; case 4: ret = (int32_t) ret; break; default: break; } } #ifdef DEBUG_ASI dump_asi("read ", last_addr, asi, size, ret); #endif return ret; } void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size) { helper_check_align(addr, size - 1); switch(asi) { case 2: /* SuperSparc MXCC registers */ switch (addr) { case 0x01c00000: /* MXCC stream data register 0 */ if (size == 8) env->mxccdata[0] = val; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; case 0x01c00008: /* MXCC stream data register 1 */ if (size == 8) env->mxccdata[1] = val; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; case 0x01c00010: /* MXCC stream data register 2 */ if (size == 8) env->mxccdata[2] = val; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; case 0x01c00018: /* MXCC stream data register 3 */ if (size == 8) env->mxccdata[3] = val; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; case 0x01c00100: /* MXCC stream source */ if (size == 8) env->mxccregs[0] = val; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 0); env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 8); env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 16); env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 24); break; case 0x01c00200: /* MXCC stream destination */ if (size == 8) env->mxccregs[1] = val; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0, env->mxccdata[0]); stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8, env->mxccdata[1]); stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16, env->mxccdata[2]); stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24, env->mxccdata[3]); break; case 0x01c00a00: /* MXCC control register */ if (size == 8) env->mxccregs[3] = val; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; case 0x01c00a04: /* MXCC control register */ if (size == 4) env->mxccregs[3] = (env->mxccregs[0xa] & 0xffffffff00000000ULL) | val; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; case 0x01c00e00: /* MXCC error register */ // writing a 1 bit clears the error if (size == 8) env->mxccregs[6] &= ~val; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; case 0x01c00f00: /* MBus port address register */ if (size == 8) env->mxccregs[7] = val; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; default: DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr, size); break; } DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %08x\n", asi, size, addr, val); #ifdef DEBUG_MXCC dump_mxcc(env); #endif break; case 3: /* MMU flush */ { int mmulev; mmulev = (addr >> 8) & 15; DPRINTF_MMU("mmu flush level %d\n", mmulev); switch (mmulev) { case 0: // flush page tlb_flush_page(env, addr & 0xfffff000); break; case 1: // flush segment (256k) case 2: // flush region (16M) case 3: // flush context (4G) case 4: // flush entire tlb_flush(env, 1); break; default: break; } #ifdef DEBUG_MMU dump_mmu(env); #endif } break; case 4: /* write MMU regs */ { int reg = (addr >> 8) & 0x1f; uint32_t oldreg; oldreg = env->mmuregs[reg]; switch(reg) { case 0: // Control Register env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) | (val & 0x00ffffff); // Mappings generated during no-fault mode or MMU // disabled mode are invalid in normal mode if ((oldreg & (MMU_E | MMU_NF | env->mmu_bm)) != (env->mmuregs[reg] & (MMU_E | MMU_NF | env->mmu_bm))) tlb_flush(env, 1); break; case 1: // Context Table Pointer Register env->mmuregs[reg] = val & env->mmu_ctpr_mask; break; case 2: // Context Register env->mmuregs[reg] = val & env->mmu_cxr_mask; if (oldreg != env->mmuregs[reg]) { /* we flush when the MMU context changes because QEMU has no MMU context support */ tlb_flush(env, 1); } break; case 3: // Synchronous Fault Status Register with Clear case 4: // Synchronous Fault Address Register break; case 0x10: // TLB Replacement Control Register env->mmuregs[reg] = val & env->mmu_trcr_mask; break; case 0x13: // Synchronous Fault Status Register with Read and Clear env->mmuregs[3] = val & env->mmu_sfsr_mask; break; case 0x14: // Synchronous Fault Address Register env->mmuregs[4] = val; break; default: env->mmuregs[reg] = val; break; } if (oldreg != env->mmuregs[reg]) { DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]); } #ifdef DEBUG_MMU dump_mmu(env); #endif } break; case 5: // Turbosparc ITLB Diagnostic case 6: // Turbosparc DTLB Diagnostic case 7: // Turbosparc IOTLB Diagnostic break; case 0xa: /* User data access */ switch(size) { case 1: stb_user(addr, val); break; case 2: stw_user(addr, val); break; default: case 4: stl_user(addr, val); break; case 8: stq_user(addr, val); break; } break; case 0xb: /* Supervisor data access */ switch(size) { case 1: stb_kernel(addr, val); break; case 2: stw_kernel(addr, val); break; default: case 4: stl_kernel(addr, val); break; case 8: stq_kernel(addr, val); break; } break; case 0xc: /* I-cache tag */ case 0xd: /* I-cache data */ case 0xe: /* D-cache tag */ case 0xf: /* D-cache data */ case 0x10: /* I/D-cache flush page */ case 0x11: /* I/D-cache flush segment */ case 0x12: /* I/D-cache flush region */ case 0x13: /* I/D-cache flush context */ case 0x14: /* I/D-cache flush user */ break; case 0x17: /* Block copy, sta access */ { // val = src // addr = dst // copy 32 bytes unsigned int i; uint32_t src = val & ~3, dst = addr & ~3, temp; for (i = 0; i < 32; i += 4, src += 4, dst += 4) { temp = ldl_kernel(src); stl_kernel(dst, temp); } } break; case 0x1f: /* Block fill, stda access */ { // addr = dst // fill 32 bytes with val unsigned int i; uint32_t dst = addr & 7; for (i = 0; i < 32; i += 8, dst += 8) stq_kernel(dst, val); } break; case 0x20: /* MMU passthrough */ { switch(size) { case 1: stb_phys(addr, val); break; case 2: stw_phys(addr, val); break; case 4: default: stl_phys(addr, val); break; case 8: stq_phys(addr, val); break; } } break; case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */ { switch(size) { case 1: stb_phys((target_phys_addr_t)addr | ((target_phys_addr_t)(asi & 0xf) << 32), val); break; case 2: stw_phys((target_phys_addr_t)addr | ((target_phys_addr_t)(asi & 0xf) << 32), val); break; case 4: default: stl_phys((target_phys_addr_t)addr | ((target_phys_addr_t)(asi & 0xf) << 32), val); break; case 8: stq_phys((target_phys_addr_t)addr | ((target_phys_addr_t)(asi & 0xf) << 32), val); break; } } break; case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic case 0x31: // store buffer data, Ross RT620 I-cache flush or // Turbosparc snoop RAM case 0x32: // store buffer control or Turbosparc page table // descriptor diagnostic case 0x36: /* I-cache flash clear */ case 0x37: /* D-cache flash clear */ case 0x38: /* breakpoint diagnostics */ case 0x4c: /* breakpoint action */ break; case 8: /* User code access, XXX */ case 9: /* Supervisor code access, XXX */ default: do_unassigned_access(addr, 1, 0, asi); break; } #ifdef DEBUG_ASI dump_asi("write", addr, asi, size, val); #endif } #endif /* CONFIG_USER_ONLY */ #else /* TARGET_SPARC64 */ #ifdef CONFIG_USER_ONLY uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) { uint64_t ret = 0; #if defined(DEBUG_ASI) target_ulong last_addr = addr; #endif if (asi < 0x80) raise_exception(TT_PRIV_ACT); helper_check_align(addr, size - 1); address_mask(env, &addr); switch (asi) { case 0x80: // Primary case 0x82: // Primary no-fault case 0x88: // Primary LE case 0x8a: // Primary no-fault LE { switch(size) { case 1: ret = ldub_raw(addr); break; case 2: ret = lduw_raw(addr); break; case 4: ret = ldl_raw(addr); break; default: case 8: ret = ldq_raw(addr); break; } } break; case 0x81: // Secondary case 0x83: // Secondary no-fault case 0x89: // Secondary LE case 0x8b: // Secondary no-fault LE // XXX break; default: break; } /* Convert from little endian */ switch (asi) { case 0x88: // Primary LE case 0x89: // Secondary LE case 0x8a: // Primary no-fault LE case 0x8b: // Secondary no-fault LE switch(size) { case 2: ret = bswap16(ret); break; case 4: ret = bswap32(ret); break; case 8: ret = bswap64(ret); break; default: break; } default: break; } /* Convert to signed number */ if (sign) { switch(size) { case 1: ret = (int8_t) ret; break; case 2: ret = (int16_t) ret; break; case 4: ret = (int32_t) ret; break; default: break; } } #ifdef DEBUG_ASI dump_asi("read ", last_addr, asi, size, ret); #endif return ret; } void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size) { #ifdef DEBUG_ASI dump_asi("write", addr, asi, size, val); #endif if (asi < 0x80) raise_exception(TT_PRIV_ACT); helper_check_align(addr, size - 1); address_mask(env, &addr); /* Convert to little endian */ switch (asi) { case 0x88: // Primary LE case 0x89: // Secondary LE switch(size) { case 2: addr = bswap16(addr); break; case 4: addr = bswap32(addr); break; case 8: addr = bswap64(addr); break; default: break; } default: break; } switch(asi) { case 0x80: // Primary case 0x88: // Primary LE { switch(size) { case 1: stb_raw(addr, val); break; case 2: stw_raw(addr, val); break; case 4: stl_raw(addr, val); break; case 8: default: stq_raw(addr, val); break; } } break; case 0x81: // Secondary case 0x89: // Secondary LE // XXX return; case 0x82: // Primary no-fault, RO case 0x83: // Secondary no-fault, RO case 0x8a: // Primary no-fault LE, RO case 0x8b: // Secondary no-fault LE, RO default: do_unassigned_access(addr, 1, 0, 1); return; } } #else /* CONFIG_USER_ONLY */ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) { uint64_t ret = 0; #if defined(DEBUG_ASI) target_ulong last_addr = addr; #endif if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0) || ((env->features & CPU_FEATURE_HYPV) && asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV))) raise_exception(TT_PRIV_ACT); helper_check_align(addr, size - 1); switch (asi) { case 0x10: // As if user primary case 0x18: // As if user primary LE case 0x80: // Primary case 0x82: // Primary no-fault case 0x88: // Primary LE case 0x8a: // Primary no-fault LE if ((asi & 0x80) && (env->pstate & PS_PRIV)) { if ((env->features & CPU_FEATURE_HYPV) && env->hpstate & HS_PRIV) { switch(size) { case 1: ret = ldub_hypv(addr); break; case 2: ret = lduw_hypv(addr); break; case 4: ret = ldl_hypv(addr); break; default: case 8: ret = ldq_hypv(addr); break; } } else { switch(size) { case 1: ret = ldub_kernel(addr); break; case 2: ret = lduw_kernel(addr); break; case 4: ret = ldl_kernel(addr); break; default: case 8: ret = ldq_kernel(addr); break; } } } else { switch(size) { case 1: ret = ldub_user(addr); break; case 2: ret = lduw_user(addr); break; case 4: ret = ldl_user(addr); break; default: case 8: ret = ldq_user(addr); break; } } break; case 0x14: // Bypass case 0x15: // Bypass, non-cacheable case 0x1c: // Bypass LE case 0x1d: // Bypass, non-cacheable LE { switch(size) { case 1: ret = ldub_phys(addr); break; case 2: ret = lduw_phys(addr); break; case 4: ret = ldl_phys(addr); break; default: case 8: ret = ldq_phys(addr); break; } break; } case 0x24: // Nucleus quad LDD 128 bit atomic case 0x2c: // Nucleus quad LDD 128 bit atomic LE // Only ldda allowed raise_exception(TT_ILL_INSN); return 0; case 0x04: // Nucleus case 0x0c: // Nucleus Little Endian (LE) case 0x11: // As if user secondary case 0x19: // As if user secondary LE case 0x4a: // UPA config case 0x81: // Secondary case 0x83: // Secondary no-fault case 0x89: // Secondary LE case 0x8b: // Secondary no-fault LE // XXX break; case 0x45: // LSU ret = env->lsu; break; case 0x50: // I-MMU regs { int reg = (addr >> 3) & 0xf; ret = env->immuregs[reg]; break; } case 0x51: // I-MMU 8k TSB pointer case 0x52: // I-MMU 64k TSB pointer // XXX break; case 0x55: // I-MMU data access { int reg = (addr >> 3) & 0x3f; ret = env->itlb_tte[reg]; break; } case 0x56: // I-MMU tag read { unsigned int i; for (i = 0; i < 64; i++) { // Valid, ctx match, vaddr match if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0) { uint64_t mask; switch ((env->itlb_tte[i] >> 61) & 3) { default: case 0x0: mask = 0xffffffffffffffff; break; case 0x1: mask = 0xffffffffffff0fff; break; case 0x2: mask = 0xfffffffffff80fff; break; case 0x3: mask = 0xffffffffffc00fff; break; } if ((env->itlb_tag[i] & mask) == (addr & mask)) { ret = env->itlb_tte[i]; break; } } } break; } case 0x58: // D-MMU regs { int reg = (addr >> 3) & 0xf; ret = env->dmmuregs[reg]; break; } case 0x5d: // D-MMU data access { int reg = (addr >> 3) & 0x3f; ret = env->dtlb_tte[reg]; break; } case 0x5e: // D-MMU tag read { unsigned int i; for (i = 0; i < 64; i++) { // Valid, ctx match, vaddr match if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0) { uint64_t mask; switch ((env->dtlb_tte[i] >> 61) & 3) { default: case 0x0: mask = 0xffffffffffffffff; break; case 0x1: mask = 0xffffffffffff0fff; break; case 0x2: mask = 0xfffffffffff80fff; break; case 0x3: mask = 0xffffffffffc00fff; break; } if ((env->dtlb_tag[i] & mask) == (addr & mask)) { ret = env->dtlb_tte[i]; break; } } } break; } case 0x46: // D-cache data case 0x47: // D-cache tag access case 0x4b: // E-cache error enable case 0x4c: // E-cache asynchronous fault status case 0x4d: // E-cache asynchronous fault address case 0x4e: // E-cache tag data case 0x66: // I-cache instruction access case 0x67: // I-cache tag access case 0x6e: // I-cache predecode case 0x6f: // I-cache LRU etc. case 0x76: // E-cache tag case 0x7e: // E-cache tag break; case 0x59: // D-MMU 8k TSB pointer case 0x5a: // D-MMU 64k TSB pointer case 0x5b: // D-MMU data pointer case 0x48: // Interrupt dispatch, RO case 0x49: // Interrupt data receive case 0x7f: // Incoming interrupt vector, RO // XXX break; case 0x54: // I-MMU data in, WO case 0x57: // I-MMU demap, WO case 0x5c: // D-MMU data in, WO case 0x5f: // D-MMU demap, WO case 0x77: // Interrupt vector, WO default: do_unassigned_access(addr, 0, 0, 1); ret = 0; break; } /* Convert from little endian */ switch (asi) { case 0x0c: // Nucleus Little Endian (LE) case 0x18: // As if user primary LE case 0x19: // As if user secondary LE case 0x1c: // Bypass LE case 0x1d: // Bypass, non-cacheable LE case 0x88: // Primary LE case 0x89: // Secondary LE case 0x8a: // Primary no-fault LE case 0x8b: // Secondary no-fault LE switch(size) { case 2: ret = bswap16(ret); break; case 4: ret = bswap32(ret); break; case 8: ret = bswap64(ret); break; default: break; } default: break; } /* Convert to signed number */ if (sign) { switch(size) { case 1: ret = (int8_t) ret; break; case 2: ret = (int16_t) ret; break; case 4: ret = (int32_t) ret; break; default: break; } } #ifdef DEBUG_ASI dump_asi("read ", last_addr, asi, size, ret); #endif return ret; } void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size) { #ifdef DEBUG_ASI dump_asi("write", addr, asi, size, val); #endif if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0) || ((env->features & CPU_FEATURE_HYPV) && asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV))) raise_exception(TT_PRIV_ACT); helper_check_align(addr, size - 1); /* Convert to little endian */ switch (asi) { case 0x0c: // Nucleus Little Endian (LE) case 0x18: // As if user primary LE case 0x19: // As if user secondary LE case 0x1c: // Bypass LE case 0x1d: // Bypass, non-cacheable LE case 0x88: // Primary LE case 0x89: // Secondary LE switch(size) { case 2: addr = bswap16(addr); break; case 4: addr = bswap32(addr); break; case 8: addr = bswap64(addr); break; default: break; } default: break; } switch(asi) { case 0x10: // As if user primary case 0x18: // As if user primary LE case 0x80: // Primary case 0x88: // Primary LE if ((asi & 0x80) && (env->pstate & PS_PRIV)) { if ((env->features & CPU_FEATURE_HYPV) && env->hpstate & HS_PRIV) { switch(size) { case 1: stb_hypv(addr, val); break; case 2: stw_hypv(addr, val); break; case 4: stl_hypv(addr, val); break; case 8: default: stq_hypv(addr, val); break; } } else { switch(size) { case 1: stb_kernel(addr, val); break; case 2: stw_kernel(addr, val); break; case 4: stl_kernel(addr, val); break; case 8: default: stq_kernel(addr, val); break; } } } else { switch(size) { case 1: stb_user(addr, val); break; case 2: stw_user(addr, val); break; case 4: stl_user(addr, val); break; case 8: default: stq_user(addr, val); break; } } break; case 0x14: // Bypass case 0x15: // Bypass, non-cacheable case 0x1c: // Bypass LE case 0x1d: // Bypass, non-cacheable LE { switch(size) { case 1: stb_phys(addr, val); break; case 2: stw_phys(addr, val); break; case 4: stl_phys(addr, val); break; case 8: default: stq_phys(addr, val); break; } } return; case 0x24: // Nucleus quad LDD 128 bit atomic case 0x2c: // Nucleus quad LDD 128 bit atomic LE // Only ldda allowed raise_exception(TT_ILL_INSN); return; case 0x04: // Nucleus case 0x0c: // Nucleus Little Endian (LE) case 0x11: // As if user secondary case 0x19: // As if user secondary LE case 0x4a: // UPA config case 0x81: // Secondary case 0x89: // Secondary LE // XXX return; case 0x45: // LSU { uint64_t oldreg; oldreg = env->lsu; env->lsu = val & (DMMU_E | IMMU_E); // Mappings generated during D/I MMU disabled mode are // invalid in normal mode if (oldreg != env->lsu) { DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", oldreg, env->lsu); #ifdef DEBUG_MMU dump_mmu(env); #endif tlb_flush(env, 1); } return; } case 0x50: // I-MMU regs { int reg = (addr >> 3) & 0xf; uint64_t oldreg; oldreg = env->immuregs[reg]; switch(reg) { case 0: // RO case 4: return; case 1: // Not in I-MMU case 2: case 7: case 8: return; case 3: // SFSR if ((val & 1) == 0) val = 0; // Clear SFSR break; case 5: // TSB access case 6: // Tag access default: break; } env->immuregs[reg] = val; if (oldreg != env->immuregs[reg]) { DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->immuregs[reg]); } #ifdef DEBUG_MMU dump_mmu(env); #endif return; } case 0x54: // I-MMU data in { unsigned int i; // Try finding an invalid entry for (i = 0; i < 64; i++) { if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) { env->itlb_tag[i] = env->immuregs[6]; env->itlb_tte[i] = val; return; } } // Try finding an unlocked entry for (i = 0; i < 64; i++) { if ((env->itlb_tte[i] & 0x40) == 0) { env->itlb_tag[i] = env->immuregs[6]; env->itlb_tte[i] = val; return; } } // error state? return; } case 0x55: // I-MMU data access { unsigned int i = (addr >> 3) & 0x3f; env->itlb_tag[i] = env->immuregs[6]; env->itlb_tte[i] = val; return; } case 0x57: // I-MMU demap // XXX return; case 0x58: // D-MMU regs { int reg = (addr >> 3) & 0xf; uint64_t oldreg; oldreg = env->dmmuregs[reg]; switch(reg) { case 0: // RO case 4: return; case 3: // SFSR if ((val & 1) == 0) { val = 0; // Clear SFSR, Fault address env->dmmuregs[4] = 0; } env->dmmuregs[reg] = val; break; case 1: // Primary context case 2: // Secondary context case 5: // TSB access case 6: // Tag access case 7: // Virtual Watchpoint case 8: // Physical Watchpoint default: break; } env->dmmuregs[reg] = val; if (oldreg != env->dmmuregs[reg]) { DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]); } #ifdef DEBUG_MMU dump_mmu(env); #endif return; } case 0x5c: // D-MMU data in { unsigned int i; // Try finding an invalid entry for (i = 0; i < 64; i++) { if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) { env->dtlb_tag[i] = env->dmmuregs[6]; env->dtlb_tte[i] = val; return; } } // Try finding an unlocked entry for (i = 0; i < 64; i++) { if ((env->dtlb_tte[i] & 0x40) == 0) { env->dtlb_tag[i] = env->dmmuregs[6]; env->dtlb_tte[i] = val; return; } } // error state? return; } case 0x5d: // D-MMU data access { unsigned int i = (addr >> 3) & 0x3f; env->dtlb_tag[i] = env->dmmuregs[6]; env->dtlb_tte[i] = val; return; } case 0x5f: // D-MMU demap case 0x49: // Interrupt data receive // XXX return; case 0x46: // D-cache data case 0x47: // D-cache tag access case 0x4b: // E-cache error enable case 0x4c: // E-cache asynchronous fault status case 0x4d: // E-cache asynchronous fault address case 0x4e: // E-cache tag data case 0x66: // I-cache instruction access case 0x67: // I-cache tag access case 0x6e: // I-cache predecode case 0x6f: // I-cache LRU etc. case 0x76: // E-cache tag case 0x7e: // E-cache tag return; case 0x51: // I-MMU 8k TSB pointer, RO case 0x52: // I-MMU 64k TSB pointer, RO case 0x56: // I-MMU tag read, RO case 0x59: // D-MMU 8k TSB pointer, RO case 0x5a: // D-MMU 64k TSB pointer, RO case 0x5b: // D-MMU data pointer, RO case 0x5e: // D-MMU tag read, RO case 0x48: // Interrupt dispatch, RO case 0x7f: // Incoming interrupt vector, RO case 0x82: // Primary no-fault, RO case 0x83: // Secondary no-fault, RO case 0x8a: // Primary no-fault LE, RO case 0x8b: // Secondary no-fault LE, RO default: do_unassigned_access(addr, 1, 0, 1); return; } } #endif /* CONFIG_USER_ONLY */ void helper_ldda_asi(target_ulong addr, int asi, int rd) { if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0) || ((env->features & CPU_FEATURE_HYPV) && asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV))) raise_exception(TT_PRIV_ACT); switch (asi) { case 0x24: // Nucleus quad LDD 128 bit atomic case 0x2c: // Nucleus quad LDD 128 bit atomic LE helper_check_align(addr, 0xf); if (rd == 0) { env->gregs[1] = ldq_kernel(addr + 8); if (asi == 0x2c) bswap64s(&env->gregs[1]); } else if (rd < 8) { env->gregs[rd] = ldq_kernel(addr); env->gregs[rd + 1] = ldq_kernel(addr + 8); if (asi == 0x2c) { bswap64s(&env->gregs[rd]); bswap64s(&env->gregs[rd + 1]); } } else { env->regwptr[rd] = ldq_kernel(addr); env->regwptr[rd + 1] = ldq_kernel(addr + 8); if (asi == 0x2c) { bswap64s(&env->regwptr[rd]); bswap64s(&env->regwptr[rd + 1]); } } break; default: helper_check_align(addr, 0x3); if (rd == 0) env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0); else if (rd < 8) { env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0); env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0); } else { env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0); env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0); } break; } } void helper_ldf_asi(target_ulong addr, int asi, int size, int rd) { unsigned int i; target_ulong val; helper_check_align(addr, 3); switch (asi) { case 0xf0: // Block load primary case 0xf1: // Block load secondary case 0xf8: // Block load primary LE case 0xf9: // Block load secondary LE if (rd & 7) { raise_exception(TT_ILL_INSN); return; } helper_check_align(addr, 0x3f); for (i = 0; i < 16; i++) { *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4, 0); addr += 4; } return; default: break; } val = helper_ld_asi(addr, asi, size, 0); switch(size) { default: case 4: *((uint32_t *)&FT0) = val; break; case 8: *((int64_t *)&DT0) = val; break; case 16: // XXX break; } } void helper_stf_asi(target_ulong addr, int asi, int size, int rd) { unsigned int i; target_ulong val = 0; helper_check_align(addr, 3); switch (asi) { case 0xf0: // Block store primary case 0xf1: // Block store secondary case 0xf8: // Block store primary LE case 0xf9: // Block store secondary LE if (rd & 7) { raise_exception(TT_ILL_INSN); return; } helper_check_align(addr, 0x3f); for (i = 0; i < 16; i++) { val = *(uint32_t *)&env->fpr[rd++]; helper_st_asi(addr, val, asi & 0x8f, 4); addr += 4; } return; default: break; } switch(size) { default: case 4: val = *((uint32_t *)&FT0); break; case 8: val = *((int64_t *)&DT0); break; case 16: // XXX break; } helper_st_asi(addr, val, asi, size); } target_ulong helper_cas_asi(target_ulong addr, target_ulong val1, target_ulong val2, uint32_t asi) { target_ulong ret; val1 &= 0xffffffffUL; ret = helper_ld_asi(addr, asi, 4, 0); ret &= 0xffffffffUL; if (val1 == ret) helper_st_asi(addr, val2 & 0xffffffffUL, asi, 4); return ret; } target_ulong helper_casx_asi(target_ulong addr, target_ulong val1, target_ulong val2, uint32_t asi) { target_ulong ret; ret = helper_ld_asi(addr, asi, 8, 0); if (val1 == ret) helper_st_asi(addr, val2, asi, 8); return ret; } #endif /* TARGET_SPARC64 */ #ifndef TARGET_SPARC64 void helper_rett(void) { unsigned int cwp; if (env->psret == 1) raise_exception(TT_ILL_INSN); env->psret = 1; cwp = cpu_cwp_inc(env, env->cwp + 1) ; if (env->wim & (1 << cwp)) { raise_exception(TT_WIN_UNF); } set_cwp(cwp); env->psrs = env->psrps; } #endif target_ulong helper_udiv(target_ulong a, target_ulong b) { uint64_t x0; uint32_t x1; x0 = a | ((uint64_t) (env->y) << 32); x1 = b; if (x1 == 0) { raise_exception(TT_DIV_ZERO); } x0 = x0 / x1; if (x0 > 0xffffffff) { env->cc_src2 = 1; return 0xffffffff; } else { env->cc_src2 = 0; return x0; } } target_ulong helper_sdiv(target_ulong a, target_ulong b) { int64_t x0; int32_t x1; x0 = a | ((int64_t) (env->y) << 32); x1 = b; if (x1 == 0) { raise_exception(TT_DIV_ZERO); } x0 = x0 / x1; if ((int32_t) x0 != x0) { env->cc_src2 = 1; return x0 < 0? 0x80000000: 0x7fffffff; } else { env->cc_src2 = 0; return x0; } } uint64_t helper_pack64(target_ulong high, target_ulong low) { return ((uint64_t)high << 32) | (uint64_t)(low & 0xffffffff); } void helper_stdf(target_ulong addr, int mem_idx) { helper_check_align(addr, 7); #if !defined(CONFIG_USER_ONLY) switch (mem_idx) { case 0: stfq_user(addr, DT0); break; case 1: stfq_kernel(addr, DT0); break; #ifdef TARGET_SPARC64 case 2: stfq_hypv(addr, DT0); break; #endif default: break; } #else address_mask(env, &addr); stfq_raw(addr, DT0); #endif } void helper_lddf(target_ulong addr, int mem_idx) { helper_check_align(addr, 7); #if !defined(CONFIG_USER_ONLY) switch (mem_idx) { case 0: DT0 = ldfq_user(addr); break; case 1: DT0 = ldfq_kernel(addr); break; #ifdef TARGET_SPARC64 case 2: DT0 = ldfq_hypv(addr); break; #endif default: break; } #else address_mask(env, &addr); DT0 = ldfq_raw(addr); #endif } void helper_ldqf(target_ulong addr, int mem_idx) { // XXX add 128 bit load CPU_QuadU u; helper_check_align(addr, 7); #if !defined(CONFIG_USER_ONLY) switch (mem_idx) { case 0: u.ll.upper = ldq_user(addr); u.ll.lower = ldq_user(addr + 8); QT0 = u.q; break; case 1: u.ll.upper = ldq_kernel(addr); u.ll.lower = ldq_kernel(addr + 8); QT0 = u.q; break; #ifdef TARGET_SPARC64 case 2: u.ll.upper = ldq_hypv(addr); u.ll.lower = ldq_hypv(addr + 8); QT0 = u.q; break; #endif default: break; } #else address_mask(env, &addr); u.ll.upper = ldq_raw(addr); u.ll.lower = ldq_raw((addr + 8) & 0xffffffffULL); QT0 = u.q; #endif } void helper_stqf(target_ulong addr, int mem_idx) { // XXX add 128 bit store CPU_QuadU u; helper_check_align(addr, 7); #if !defined(CONFIG_USER_ONLY) switch (mem_idx) { case 0: u.q = QT0; stq_user(addr, u.ll.upper); stq_user(addr + 8, u.ll.lower); break; case 1: u.q = QT0; stq_kernel(addr, u.ll.upper); stq_kernel(addr + 8, u.ll.lower); break; #ifdef TARGET_SPARC64 case 2: u.q = QT0; stq_hypv(addr, u.ll.upper); stq_hypv(addr + 8, u.ll.lower); break; #endif default: break; } #else u.q = QT0; address_mask(env, &addr); stq_raw(addr, u.ll.upper); stq_raw((addr + 8) & 0xffffffffULL, u.ll.lower); #endif } void helper_ldfsr(void) { int rnd_mode; PUT_FSR32(env, *((uint32_t *) &FT0)); switch (env->fsr & FSR_RD_MASK) { case FSR_RD_NEAREST: rnd_mode = float_round_nearest_even; break; default: case FSR_RD_ZERO: rnd_mode = float_round_to_zero; break; case FSR_RD_POS: rnd_mode = float_round_up; break; case FSR_RD_NEG: rnd_mode = float_round_down; break; } set_float_rounding_mode(rnd_mode, &env->fp_status); } void helper_stfsr(void) { *((uint32_t *) &FT0) = GET_FSR32(env); } void helper_debug(void) { env->exception_index = EXCP_DEBUG; cpu_loop_exit(); } #ifndef TARGET_SPARC64 /* XXX: use another pointer for %iN registers to avoid slow wrapping handling ? */ void helper_save(void) { uint32_t cwp; cwp = cpu_cwp_dec(env, env->cwp - 1); if (env->wim & (1 << cwp)) { raise_exception(TT_WIN_OVF); } set_cwp(cwp); } void helper_restore(void) { uint32_t cwp; cwp = cpu_cwp_inc(env, env->cwp + 1); if (env->wim & (1 << cwp)) { raise_exception(TT_WIN_UNF); } set_cwp(cwp); } void helper_wrpsr(target_ulong new_psr) { if ((new_psr & PSR_CWP) >= env->nwindows) raise_exception(TT_ILL_INSN); else PUT_PSR(env, new_psr); } target_ulong helper_rdpsr(void) { return GET_PSR(env); } #else /* XXX: use another pointer for %iN registers to avoid slow wrapping handling ? */ void helper_save(void) { uint32_t cwp; cwp = cpu_cwp_dec(env, env->cwp - 1); if (env->cansave == 0) { raise_exception(TT_SPILL | (env->otherwin != 0 ? (TT_WOTHER | ((env->wstate & 0x38) >> 1)): ((env->wstate & 0x7) << 2))); } else { if (env->cleanwin - env->canrestore == 0) { // XXX Clean windows without trap raise_exception(TT_CLRWIN); } else { env->cansave--; env->canrestore++; set_cwp(cwp); } } } void helper_restore(void) { uint32_t cwp; cwp = cpu_cwp_inc(env, env->cwp + 1); if (env->canrestore == 0) { raise_exception(TT_FILL | (env->otherwin != 0 ? (TT_WOTHER | ((env->wstate & 0x38) >> 1)): ((env->wstate & 0x7) << 2))); } else { env->cansave++; env->canrestore--; set_cwp(cwp); } } void helper_flushw(void) { if (env->cansave != env->nwindows - 2) { raise_exception(TT_SPILL | (env->otherwin != 0 ? (TT_WOTHER | ((env->wstate & 0x38) >> 1)): ((env->wstate & 0x7) << 2))); } } void helper_saved(void) { env->cansave++; if (env->otherwin == 0) env->canrestore--; else env->otherwin--; } void helper_restored(void) { env->canrestore++; if (env->cleanwin < env->nwindows - 1) env->cleanwin++; if (env->otherwin == 0) env->cansave--; else env->otherwin--; } target_ulong helper_rdccr(void) { return GET_CCR(env); } void helper_wrccr(target_ulong new_ccr) { PUT_CCR(env, new_ccr); } // CWP handling is reversed in V9, but we still use the V8 register // order. target_ulong helper_rdcwp(void) { return GET_CWP64(env); } void helper_wrcwp(target_ulong new_cwp) { PUT_CWP64(env, new_cwp); } // This function uses non-native bit order #define GET_FIELD(X, FROM, TO) \ ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1)) // This function uses the order in the manuals, i.e. bit 0 is 2^0 #define GET_FIELD_SP(X, FROM, TO) \ GET_FIELD(X, 63 - (TO), 63 - (FROM)) target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize) { return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) | (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) | (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) | (GET_FIELD_SP(pixel_addr, 56, 59) << 13) | (GET_FIELD_SP(pixel_addr, 35, 38) << 9) | (GET_FIELD_SP(pixel_addr, 13, 16) << 5) | (((pixel_addr >> 55) & 1) << 4) | (GET_FIELD_SP(pixel_addr, 33, 34) << 2) | GET_FIELD_SP(pixel_addr, 11, 12); } target_ulong helper_alignaddr(target_ulong addr, target_ulong offset) { uint64_t tmp; tmp = addr + offset; env->gsr &= ~7ULL; env->gsr |= tmp & 7ULL; return tmp & ~7ULL; } target_ulong helper_popc(target_ulong val) { return ctpop64(val); } static inline uint64_t *get_gregset(uint64_t pstate) { switch (pstate) { default: case 0: return env->bgregs; case PS_AG: return env->agregs; case PS_MG: return env->mgregs; case PS_IG: return env->igregs; } } void change_pstate(uint64_t new_pstate) { uint64_t pstate_regs, new_pstate_regs; uint64_t *src, *dst; pstate_regs = env->pstate & 0xc01; new_pstate_regs = new_pstate & 0xc01; if (new_pstate_regs != pstate_regs) { // Switch global register bank src = get_gregset(new_pstate_regs); dst = get_gregset(pstate_regs); memcpy32(dst, env->gregs); memcpy32(env->gregs, src); } env->pstate = new_pstate; } void helper_wrpstate(target_ulong new_state) { if (!(env->features & CPU_FEATURE_GL)) change_pstate(new_state & 0xf3f); } void helper_done(void) { env->pc = env->tsptr->tpc; env->npc = env->tsptr->tnpc + 4; PUT_CCR(env, env->tsptr->tstate >> 32); env->asi = (env->tsptr->tstate >> 24) & 0xff; change_pstate((env->tsptr->tstate >> 8) & 0xf3f); PUT_CWP64(env, env->tsptr->tstate & 0xff); env->tl--; env->tsptr = &env->ts[env->tl]; } void helper_retry(void) { env->pc = env->tsptr->tpc; env->npc = env->tsptr->tnpc; PUT_CCR(env, env->tsptr->tstate >> 32); env->asi = (env->tsptr->tstate >> 24) & 0xff; change_pstate((env->tsptr->tstate >> 8) & 0xf3f); PUT_CWP64(env, env->tsptr->tstate & 0xff); env->tl--; env->tsptr = &env->ts[env->tl]; } #endif void cpu_set_cwp(CPUState *env1, int new_cwp) { /* put the modified wrap registers at their proper location */ if (env1->cwp == env1->nwindows - 1) memcpy32(env1->regbase, env1->regbase + env1->nwindows * 16); env1->cwp = new_cwp; /* put the wrap registers at their temporary location */ if (new_cwp == env1->nwindows - 1) memcpy32(env1->regbase + env1->nwindows * 16, env1->regbase); env1->regwptr = env1->regbase + (new_cwp * 16); } void set_cwp(int new_cwp) { cpu_set_cwp(env, new_cwp); } void helper_flush(target_ulong addr) { addr &= ~7; tb_invalidate_page_range(addr, addr + 8); } #if !defined(CONFIG_USER_ONLY) static void do_unaligned_access(target_ulong addr, int is_write, int is_user, void *retaddr); #define MMUSUFFIX _mmu #define ALIGNED_ONLY #define SHIFT 0 #include "softmmu_template.h" #define SHIFT 1 #include "softmmu_template.h" #define SHIFT 2 #include "softmmu_template.h" #define SHIFT 3 #include "softmmu_template.h" /* XXX: make it generic ? */ static void cpu_restore_state2(void *retaddr) { TranslationBlock *tb; unsigned long pc; if (retaddr) { /* now we have a real cpu fault */ pc = (unsigned long)retaddr; tb = tb_find_pc(pc); if (tb) { /* the PC is inside the translated code. It means that we have a virtual CPU fault */ cpu_restore_state(tb, env, pc, (void *)(long)env->cond); } } } static void do_unaligned_access(target_ulong addr, int is_write, int is_user, void *retaddr) { #ifdef DEBUG_UNALIGNED printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx "\n", addr, env->pc); #endif cpu_restore_state2(retaddr); raise_exception(TT_UNALIGNED); } /* try to fill the TLB and return an exception if error. If retaddr is NULL, it means that the function was called in C code (i.e. not from generated code or from helper.c) */ /* XXX: fix it to restore all registers */ void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr) { int ret; CPUState *saved_env; /* XXX: hack to restore env in all cases, even if not called from generated code */ saved_env = env; env = cpu_single_env; ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); if (ret) { cpu_restore_state2(retaddr); cpu_loop_exit(); } env = saved_env; } #endif #ifndef TARGET_SPARC64 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec, int is_asi) { CPUState *saved_env; /* XXX: hack to restore env in all cases, even if not called from generated code */ saved_env = env; env = cpu_single_env; #ifdef DEBUG_UNASSIGNED if (is_asi) printf("Unassigned mem %s access to " TARGET_FMT_plx " asi 0x%02x from " TARGET_FMT_lx "\n", is_exec ? "exec" : is_write ? "write" : "read", addr, is_asi, env->pc); else printf("Unassigned mem %s access to " TARGET_FMT_plx " from " TARGET_FMT_lx "\n", is_exec ? "exec" : is_write ? "write" : "read", addr, env->pc); #endif if (env->mmuregs[3]) /* Fault status register */ env->mmuregs[3] = 1; /* overflow (not read before another fault) */ if (is_asi) env->mmuregs[3] |= 1 << 16; if (env->psrs) env->mmuregs[3] |= 1 << 5; if (is_exec) env->mmuregs[3] |= 1 << 6; if (is_write) env->mmuregs[3] |= 1 << 7; env->mmuregs[3] |= (5 << 2) | 2; env->mmuregs[4] = addr; /* Fault address register */ if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) { if (is_exec) raise_exception(TT_CODE_ACCESS); else raise_exception(TT_DATA_ACCESS); } env = saved_env; } #else void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec, int is_asi) { #ifdef DEBUG_UNASSIGNED CPUState *saved_env; /* XXX: hack to restore env in all cases, even if not called from generated code */ saved_env = env; env = cpu_single_env; printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx "\n", addr, env->pc); env = saved_env; #endif if (is_exec) raise_exception(TT_CODE_ACCESS); else raise_exception(TT_DATA_ACCESS); } #endif