#include "exec.h" //#define DEBUG_PCALL //#define DEBUG_MMU void raise_exception(int tt) { env->exception_index = tt; cpu_loop_exit(); } #ifdef USE_INT_TO_FLOAT_HELPERS void do_fitos(void) { FT0 = (float) *((int32_t *)&FT1); } void do_fitod(void) { DT0 = (double) *((int32_t *)&FT1); } #endif void do_fabss(void) { FT0 = float32_abs(FT1); } #ifdef TARGET_SPARC64 void do_fabsd(void) { DT0 = float64_abs(DT1); } #endif void do_fsqrts(void) { FT0 = float32_sqrt(FT1, &env->fp_status); } void do_fsqrtd(void) { DT0 = float64_sqrt(DT1, &env->fp_status); } #define FS 0 void do_fcmps (void) { env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); if (isnan(FT0) || isnan(FT1)) { T0 = (FSR_FCC1 | FSR_FCC0) << FS; if (env->fsr & FSR_NVM) { env->fsr |= T0; raise_exception(TT_FP_EXCP); } else { env->fsr |= FSR_NVA; } } else if (FT0 < FT1) { T0 = FSR_FCC0 << FS; } else if (FT0 > FT1) { T0 = FSR_FCC1 << FS; } else { T0 = 0; } env->fsr |= T0; } void do_fcmpd (void) { env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); if (isnan(DT0) || isnan(DT1)) { T0 = (FSR_FCC1 | FSR_FCC0) << FS; if (env->fsr & FSR_NVM) { env->fsr |= T0; raise_exception(TT_FP_EXCP); } else { env->fsr |= FSR_NVA; } } else if (DT0 < DT1) { T0 = FSR_FCC0 << FS; } else if (DT0 > DT1) { T0 = FSR_FCC1 << FS; } else { T0 = 0; } env->fsr |= T0; } #ifdef TARGET_SPARC64 #undef FS #define FS 22 void do_fcmps_fcc1 (void) { env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); if (isnan(FT0) || isnan(FT1)) { T0 = (FSR_FCC1 | FSR_FCC0) << FS; if (env->fsr & FSR_NVM) { env->fsr |= T0; raise_exception(TT_FP_EXCP); } else { env->fsr |= FSR_NVA; } } else if (FT0 < FT1) { T0 = FSR_FCC0 << FS; } else if (FT0 > FT1) { T0 = FSR_FCC1 << FS; } else { T0 = 0; } env->fsr |= T0; } void do_fcmpd_fcc1 (void) { env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); if (isnan(DT0) || isnan(DT1)) { T0 = (FSR_FCC1 | FSR_FCC0) << FS; if (env->fsr & FSR_NVM) { env->fsr |= T0; raise_exception(TT_FP_EXCP); } else { env->fsr |= FSR_NVA; } } else if (DT0 < DT1) { T0 = FSR_FCC0 << FS; } else if (DT0 > DT1) { T0 = FSR_FCC1 << FS; } else { T0 = 0; } env->fsr |= T0; } #undef FS #define FS 24 void do_fcmps_fcc2 (void) { env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); if (isnan(FT0) || isnan(FT1)) { T0 = (FSR_FCC1 | FSR_FCC0) << FS; if (env->fsr & FSR_NVM) { env->fsr |= T0; raise_exception(TT_FP_EXCP); } else { env->fsr |= FSR_NVA; } } else if (FT0 < FT1) { T0 = FSR_FCC0 << FS; } else if (FT0 > FT1) { T0 = FSR_FCC1 << FS; } else { T0 = 0; } env->fsr |= T0; } void do_fcmpd_fcc2 (void) { env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); if (isnan(DT0) || isnan(DT1)) { T0 = (FSR_FCC1 | FSR_FCC0) << FS; if (env->fsr & FSR_NVM) { env->fsr |= T0; raise_exception(TT_FP_EXCP); } else { env->fsr |= FSR_NVA; } } else if (DT0 < DT1) { T0 = FSR_FCC0 << FS; } else if (DT0 > DT1) { T0 = FSR_FCC1 << FS; } else { T0 = 0; } env->fsr |= T0; } #undef FS #define FS 26 void do_fcmps_fcc3 (void) { env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); if (isnan(FT0) || isnan(FT1)) { T0 = (FSR_FCC1 | FSR_FCC0) << FS; if (env->fsr & FSR_NVM) { env->fsr |= T0; raise_exception(TT_FP_EXCP); } else { env->fsr |= FSR_NVA; } } else if (FT0 < FT1) { T0 = FSR_FCC0 << FS; } else if (FT0 > FT1) { T0 = FSR_FCC1 << FS; } else { T0 = 0; } env->fsr |= T0; } void do_fcmpd_fcc3 (void) { env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); if (isnan(DT0) || isnan(DT1)) { T0 = (FSR_FCC1 | FSR_FCC0) << FS; if (env->fsr & FSR_NVM) { env->fsr |= T0; raise_exception(TT_FP_EXCP); } else { env->fsr |= FSR_NVA; } } else if (DT0 < DT1) { T0 = FSR_FCC0 << FS; } else if (DT0 > DT1) { T0 = FSR_FCC1 << FS; } else { T0 = 0; } env->fsr |= T0; } #undef FS #endif #if defined(CONFIG_USER_ONLY) void helper_ld_asi(int asi, int size, int sign) { } void helper_st_asi(int asi, int size, int sign) { } #else #ifndef TARGET_SPARC64 void helper_ld_asi(int asi, int size, int sign) { uint32_t ret = 0; switch (asi) { case 3: /* MMU probe */ { int mmulev; mmulev = (T0 >> 8) & 15; if (mmulev > 4) ret = 0; else { ret = mmu_probe(env, T0, mmulev); //bswap32s(&ret); } #ifdef DEBUG_MMU printf("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret); #endif } break; case 4: /* read MMU regs */ { int reg = (T0 >> 8) & 0xf; ret = env->mmuregs[reg]; if (reg == 3) /* Fault status cleared on read */ env->mmuregs[reg] = 0; #ifdef DEBUG_MMU printf("mmu_read: reg[%d] = 0x%08x\n", reg, ret); #endif } break; case 0x20 ... 0x2f: /* MMU passthrough */ switch(size) { case 1: ret = ldub_phys(T0); break; case 2: ret = lduw_phys(T0 & ~1); break; default: case 4: ret = ldl_phys(T0 & ~3); break; case 8: ret = ldl_phys(T0 & ~3); T0 = ldl_phys((T0 + 4) & ~3); break; } break; default: ret = 0; break; } T1 = ret; } void helper_st_asi(int asi, int size, int sign) { switch(asi) { case 3: /* MMU flush */ { int mmulev; mmulev = (T0 >> 8) & 15; #ifdef DEBUG_MMU printf("mmu flush level %d\n", mmulev); #endif switch (mmulev) { case 0: // flush page tlb_flush_page(env, T0 & 0xfffff000); break; case 1: // flush segment (256k) case 2: // flush region (16M) case 3: // flush context (4G) case 4: // flush entire tlb_flush(env, 1); break; default: break; } #ifdef DEBUG_MMU dump_mmu(env); #endif return; } case 4: /* write MMU regs */ { int reg = (T0 >> 8) & 0xf; uint32_t oldreg; oldreg = env->mmuregs[reg]; switch(reg) { case 0: env->mmuregs[reg] &= ~(MMU_E | MMU_NF); env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF); // Mappings generated during no-fault mode or MMU // disabled mode are invalid in normal mode if (oldreg != env->mmuregs[reg]) tlb_flush(env, 1); break; case 2: env->mmuregs[reg] = T1; if (oldreg != env->mmuregs[reg]) { /* we flush when the MMU context changes because QEMU has no MMU context support */ tlb_flush(env, 1); } break; case 3: case 4: break; default: env->mmuregs[reg] = T1; break; } #ifdef DEBUG_MMU if (oldreg != env->mmuregs[reg]) { printf("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]); } dump_mmu(env); #endif return; } case 0x17: /* Block copy, sta access */ { // value (T1) = src // address (T0) = dst // copy 32 bytes uint32_t src = T1, dst = T0; uint8_t temp[32]; tswap32s(&src); cpu_physical_memory_read(src, (void *) &temp, 32); cpu_physical_memory_write(dst, (void *) &temp, 32); } return; case 0x1f: /* Block fill, stda access */ { // value (T1, T2) // address (T0) = dst // fill 32 bytes int i; uint32_t dst = T0; uint64_t val; val = (((uint64_t)T1) << 32) | T2; tswap64s(&val); for (i = 0; i < 32; i += 8, dst += 8) { cpu_physical_memory_write(dst, (void *) &val, 8); } } return; case 0x20 ... 0x2f: /* MMU passthrough */ { switch(size) { case 1: stb_phys(T0, T1); break; case 2: stw_phys(T0 & ~1, T1); break; case 4: default: stl_phys(T0 & ~3, T1); break; case 8: stl_phys(T0 & ~3, T1); stl_phys((T0 + 4) & ~3, T2); break; } } return; default: return; } } #else void helper_ld_asi(int asi, int size, int sign) { uint64_t ret = 0; if (asi < 0x80 && (env->pstate & PS_PRIV) == 0) raise_exception(TT_PRIV_ACT); switch (asi) { case 0x14: // Bypass case 0x15: // Bypass, non-cacheable { switch(size) { case 1: ret = ldub_phys(T0); break; case 2: ret = lduw_phys(T0 & ~1); break; case 4: ret = ldl_phys(T0 & ~3); break; default: case 8: ret = ldq_phys(T0 & ~7); break; } break; } case 0x04: // Nucleus case 0x0c: // Nucleus Little Endian (LE) case 0x10: // As if user primary case 0x11: // As if user secondary case 0x18: // As if user primary LE case 0x19: // As if user secondary LE case 0x1c: // Bypass LE case 0x1d: // Bypass, non-cacheable LE case 0x24: // Nucleus quad LDD 128 bit atomic case 0x2c: // Nucleus quad LDD 128 bit atomic case 0x4a: // UPA config case 0x82: // Primary no-fault case 0x83: // Secondary no-fault case 0x88: // Primary LE case 0x89: // Secondary LE case 0x8a: // Primary no-fault LE case 0x8b: // Secondary no-fault LE // XXX break; case 0x45: // LSU ret = env->lsu; break; case 0x50: // I-MMU regs { int reg = (T0 >> 3) & 0xf; ret = env->immuregs[reg]; break; } case 0x51: // I-MMU 8k TSB pointer case 0x52: // I-MMU 64k TSB pointer case 0x55: // I-MMU data access // XXX break; case 0x56: // I-MMU tag read { unsigned int i; for (i = 0; i < 64; i++) { // Valid, ctx match, vaddr match if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 && env->itlb_tag[i] == T0) { ret = env->itlb_tag[i]; break; } } break; } case 0x58: // D-MMU regs { int reg = (T0 >> 3) & 0xf; ret = env->dmmuregs[reg]; break; } case 0x5e: // D-MMU tag read { unsigned int i; for (i = 0; i < 64; i++) { // Valid, ctx match, vaddr match if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 && env->dtlb_tag[i] == T0) { ret = env->dtlb_tag[i]; break; } } break; } case 0x59: // D-MMU 8k TSB pointer case 0x5a: // D-MMU 64k TSB pointer case 0x5b: // D-MMU data pointer case 0x5d: // D-MMU data access case 0x48: // Interrupt dispatch, RO case 0x49: // Interrupt data receive case 0x7f: // Incoming interrupt vector, RO // XXX break; case 0x54: // I-MMU data in, WO case 0x57: // I-MMU demap, WO case 0x5c: // D-MMU data in, WO case 0x5f: // D-MMU demap, WO case 0x77: // Interrupt vector, WO default: ret = 0; break; } T1 = ret; } void helper_st_asi(int asi, int size, int sign) { if (asi < 0x80 && (env->pstate & PS_PRIV) == 0) raise_exception(TT_PRIV_ACT); switch(asi) { case 0x14: // Bypass case 0x15: // Bypass, non-cacheable { switch(size) { case 1: stb_phys(T0, T1); break; case 2: stw_phys(T0 & ~1, T1); break; case 4: stl_phys(T0 & ~3, T1); break; case 8: default: stq_phys(T0 & ~7, T1); break; } } return; case 0x04: // Nucleus case 0x0c: // Nucleus Little Endian (LE) case 0x10: // As if user primary case 0x11: // As if user secondary case 0x18: // As if user primary LE case 0x19: // As if user secondary LE case 0x1c: // Bypass LE case 0x1d: // Bypass, non-cacheable LE case 0x24: // Nucleus quad LDD 128 bit atomic case 0x2c: // Nucleus quad LDD 128 bit atomic case 0x4a: // UPA config case 0x88: // Primary LE case 0x89: // Secondary LE // XXX return; case 0x45: // LSU { uint64_t oldreg; oldreg = env->lsu; env->lsu = T1 & (DMMU_E | IMMU_E); // Mappings generated during D/I MMU disabled mode are // invalid in normal mode if (oldreg != env->lsu) { #ifdef DEBUG_MMU printf("LSU change: 0x%llx -> 0x%llx\n", oldreg, env->lsu); dump_mmu(env); #endif tlb_flush(env, 1); } return; } case 0x50: // I-MMU regs { int reg = (T0 >> 3) & 0xf; uint64_t oldreg; oldreg = env->immuregs[reg]; switch(reg) { case 0: // RO case 4: return; case 1: // Not in I-MMU case 2: case 7: case 8: return; case 3: // SFSR if ((T1 & 1) == 0) T1 = 0; // Clear SFSR break; case 5: // TSB access case 6: // Tag access default: break; } env->immuregs[reg] = T1; #ifdef DEBUG_MMU if (oldreg != env->immuregs[reg]) { printf("mmu change reg[%d]: 0x%08llx -> 0x%08llx\n", reg, oldreg, env->immuregs[reg]); } dump_mmu(env); #endif return; } case 0x54: // I-MMU data in { unsigned int i; // Try finding an invalid entry for (i = 0; i < 64; i++) { if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) { env->itlb_tag[i] = env->immuregs[6]; env->itlb_tte[i] = T1; return; } } // Try finding an unlocked entry for (i = 0; i < 64; i++) { if ((env->itlb_tte[i] & 0x40) == 0) { env->itlb_tag[i] = env->immuregs[6]; env->itlb_tte[i] = T1; return; } } // error state? return; } case 0x55: // I-MMU data access { unsigned int i = (T0 >> 3) & 0x3f; env->itlb_tag[i] = env->immuregs[6]; env->itlb_tte[i] = T1; return; } case 0x57: // I-MMU demap // XXX return; case 0x58: // D-MMU regs { int reg = (T0 >> 3) & 0xf; uint64_t oldreg; oldreg = env->dmmuregs[reg]; switch(reg) { case 0: // RO case 4: return; case 3: // SFSR if ((T1 & 1) == 0) { T1 = 0; // Clear SFSR, Fault address env->dmmuregs[4] = 0; } env->dmmuregs[reg] = T1; break; case 1: // Primary context case 2: // Secondary context case 5: // TSB access case 6: // Tag access case 7: // Virtual Watchpoint case 8: // Physical Watchpoint default: break; } env->dmmuregs[reg] = T1; #ifdef DEBUG_MMU if (oldreg != env->dmmuregs[reg]) { printf("mmu change reg[%d]: 0x%08llx -> 0x%08llx\n", reg, oldreg, env->dmmuregs[reg]); } dump_mmu(env); #endif return; } case 0x5c: // D-MMU data in { unsigned int i; // Try finding an invalid entry for (i = 0; i < 64; i++) { if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) { env->dtlb_tag[i] = env->dmmuregs[6]; env->dtlb_tte[i] = T1; return; } } // Try finding an unlocked entry for (i = 0; i < 64; i++) { if ((env->dtlb_tte[i] & 0x40) == 0) { env->dtlb_tag[i] = env->dmmuregs[6]; env->dtlb_tte[i] = T1; return; } } // error state? return; } case 0x5d: // D-MMU data access { unsigned int i = (T0 >> 3) & 0x3f; env->dtlb_tag[i] = env->dmmuregs[6]; env->dtlb_tte[i] = T1; return; } case 0x5f: // D-MMU demap case 0x49: // Interrupt data receive // XXX return; case 0x51: // I-MMU 8k TSB pointer, RO case 0x52: // I-MMU 64k TSB pointer, RO case 0x56: // I-MMU tag read, RO case 0x59: // D-MMU 8k TSB pointer, RO case 0x5a: // D-MMU 64k TSB pointer, RO case 0x5b: // D-MMU data pointer, RO case 0x5e: // D-MMU tag read, RO case 0x48: // Interrupt dispatch, RO case 0x7f: // Incoming interrupt vector, RO case 0x82: // Primary no-fault, RO case 0x83: // Secondary no-fault, RO case 0x8a: // Primary no-fault LE, RO case 0x8b: // Secondary no-fault LE, RO default: return; } } #endif #endif /* !CONFIG_USER_ONLY */ #ifndef TARGET_SPARC64 void helper_rett() { unsigned int cwp; env->psret = 1; cwp = (env->cwp + 1) & (NWINDOWS - 1); if (env->wim & (1 << cwp)) { raise_exception(TT_WIN_UNF); } set_cwp(cwp); env->psrs = env->psrps; } #endif void helper_ldfsr(void) { int rnd_mode; switch (env->fsr & FSR_RD_MASK) { case FSR_RD_NEAREST: rnd_mode = float_round_nearest_even; break; default: case FSR_RD_ZERO: rnd_mode = float_round_to_zero; break; case FSR_RD_POS: rnd_mode = float_round_up; break; case FSR_RD_NEG: rnd_mode = float_round_down; break; } set_float_rounding_mode(rnd_mode, &env->fp_status); } void cpu_get_fp64(uint64_t *pmant, uint16_t *pexp, double f) { int exptemp; *pmant = ldexp(frexp(f, &exptemp), 53); *pexp = exptemp; } double cpu_put_fp64(uint64_t mant, uint16_t exp) { return ldexp((double) mant, exp - 53); } void helper_debug() { env->exception_index = EXCP_DEBUG; cpu_loop_exit(); } #ifndef TARGET_SPARC64 void do_wrpsr() { PUT_PSR(env, T0); } void do_rdpsr() { T0 = GET_PSR(env); } #else void do_popc() { T0 = (T1 & 0x5555555555555555ULL) + ((T1 >> 1) & 0x5555555555555555ULL); T0 = (T0 & 0x3333333333333333ULL) + ((T0 >> 2) & 0x3333333333333333ULL); T0 = (T0 & 0x0f0f0f0f0f0f0f0fULL) + ((T0 >> 4) & 0x0f0f0f0f0f0f0f0fULL); T0 = (T0 & 0x00ff00ff00ff00ffULL) + ((T0 >> 8) & 0x00ff00ff00ff00ffULL); T0 = (T0 & 0x0000ffff0000ffffULL) + ((T0 >> 16) & 0x0000ffff0000ffffULL); T0 = (T0 & 0x00000000ffffffffULL) + ((T0 >> 32) & 0x00000000ffffffffULL); } static inline uint64_t *get_gregset(uint64_t pstate) { switch (pstate) { default: case 0: return env->bgregs; case PS_AG: return env->agregs; case PS_MG: return env->mgregs; case PS_IG: return env->igregs; } } void do_wrpstate() { uint64_t new_pstate, pstate_regs, new_pstate_regs; uint64_t *src, *dst; new_pstate = T0 & 0xf3f; pstate_regs = env->pstate & 0xc01; new_pstate_regs = new_pstate & 0xc01; if (new_pstate_regs != pstate_regs) { // Switch global register bank src = get_gregset(new_pstate_regs); dst = get_gregset(pstate_regs); memcpy32(dst, env->gregs); memcpy32(env->gregs, src); } env->pstate = new_pstate; } void do_done(void) { env->tl--; env->pc = env->tnpc[env->tl]; env->npc = env->tnpc[env->tl] + 4; PUT_CCR(env, env->tstate[env->tl] >> 32); env->asi = (env->tstate[env->tl] >> 24) & 0xff; env->pstate = (env->tstate[env->tl] >> 8) & 0xfff; set_cwp(env->tstate[env->tl] & 0xff); } void do_retry(void) { env->tl--; env->pc = env->tpc[env->tl]; env->npc = env->tnpc[env->tl]; PUT_CCR(env, env->tstate[env->tl] >> 32); env->asi = (env->tstate[env->tl] >> 24) & 0xff; env->pstate = (env->tstate[env->tl] >> 8) & 0xfff; set_cwp(env->tstate[env->tl] & 0xff); } #endif void set_cwp(int new_cwp) { /* put the modified wrap registers at their proper location */ if (env->cwp == (NWINDOWS - 1)) memcpy32(env->regbase, env->regbase + NWINDOWS * 16); env->cwp = new_cwp; /* put the wrap registers at their temporary location */ if (new_cwp == (NWINDOWS - 1)) memcpy32(env->regbase + NWINDOWS * 16, env->regbase); env->regwptr = env->regbase + (new_cwp * 16); REGWPTR = env->regwptr; } void cpu_set_cwp(CPUState *env1, int new_cwp) { CPUState *saved_env; #ifdef reg_REGWPTR target_ulong *saved_regwptr; #endif saved_env = env; #ifdef reg_REGWPTR saved_regwptr = REGWPTR; #endif env = env1; set_cwp(new_cwp); env = saved_env; #ifdef reg_REGWPTR REGWPTR = saved_regwptr; #endif } #ifdef TARGET_SPARC64 void do_interrupt(int intno) { #ifdef DEBUG_PCALL if (loglevel & CPU_LOG_INT) { static int count; fprintf(logfile, "%6d: v=%04x pc=%016llx npc=%016llx SP=%016llx\n", count, intno, env->pc, env->npc, env->regwptr[6]); cpu_dump_state(env, logfile, fprintf, 0); #if 0 { int i; uint8_t *ptr; fprintf(logfile, " code="); ptr = (uint8_t *)env->pc; for(i = 0; i < 16; i++) { fprintf(logfile, " %02x", ldub(ptr + i)); } fprintf(logfile, "\n"); } #endif count++; } #endif #if !defined(CONFIG_USER_ONLY) if (env->tl == MAXTL) { cpu_abort(cpu_single_env, "Trap 0x%04x while trap level is MAXTL, Error state", env->exception_index); return; } #endif env->tstate[env->tl] = ((uint64_t)GET_CCR(env) << 32) | ((env->asi & 0xff) << 24) | ((env->pstate & 0xfff) << 8) | (env->cwp & 0xff); env->tpc[env->tl] = env->pc; env->tnpc[env->tl] = env->npc; env->tt[env->tl] = intno; env->pstate = PS_PEF | PS_PRIV | PS_AG; env->tbr &= ~0x7fffULL; env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5); if (env->tl < MAXTL - 1) { env->tl++; } else { env->pstate |= PS_RED; if (env->tl != MAXTL) env->tl++; } env->pc = env->tbr; env->npc = env->pc + 4; env->exception_index = 0; } #else void do_interrupt(int intno) { int cwp; #ifdef DEBUG_PCALL if (loglevel & CPU_LOG_INT) { static int count; fprintf(logfile, "%6d: v=%02x pc=%08x npc=%08x SP=%08x\n", count, intno, env->pc, env->npc, env->regwptr[6]); cpu_dump_state(env, logfile, fprintf, 0); #if 0 { int i; uint8_t *ptr; fprintf(logfile, " code="); ptr = (uint8_t *)env->pc; for(i = 0; i < 16; i++) { fprintf(logfile, " %02x", ldub(ptr + i)); } fprintf(logfile, "\n"); } #endif count++; } #endif #if !defined(CONFIG_USER_ONLY) if (env->psret == 0) { cpu_abort(cpu_single_env, "Trap 0x%02x while interrupts disabled, Error state", env->exception_index); return; } #endif env->psret = 0; cwp = (env->cwp - 1) & (NWINDOWS - 1); set_cwp(cwp); env->regwptr[9] = env->pc; env->regwptr[10] = env->npc; env->psrps = env->psrs; env->psrs = 1; env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4); env->pc = env->tbr; env->npc = env->pc + 4; env->exception_index = 0; } #endif #if !defined(CONFIG_USER_ONLY) #define MMUSUFFIX _mmu #define GETPC() (__builtin_return_address(0)) #define SHIFT 0 #include "softmmu_template.h" #define SHIFT 1 #include "softmmu_template.h" #define SHIFT 2 #include "softmmu_template.h" #define SHIFT 3 #include "softmmu_template.h" /* try to fill the TLB and return an exception if error. If retaddr is NULL, it means that the function was called in C code (i.e. not from generated code or from helper.c) */ /* XXX: fix it to restore all registers */ void tlb_fill(target_ulong addr, int is_write, int is_user, void *retaddr) { TranslationBlock *tb; int ret; unsigned long pc; CPUState *saved_env; /* XXX: hack to restore env in all cases, even if not called from generated code */ saved_env = env; env = cpu_single_env; ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, is_user, 1); if (ret) { if (retaddr) { /* now we have a real cpu fault */ pc = (unsigned long)retaddr; tb = tb_find_pc(pc); if (tb) { /* the PC is inside the translated code. It means that we have a virtual CPU fault */ cpu_restore_state(tb, env, pc, (void *)T2); } } cpu_loop_exit(); } env = saved_env; } #endif