#include "exec.h"
#include "host-utils.h"

//#define DEBUG_PCALL
//#define DEBUG_MMU
//#define DEBUG_MXCC
//#define DEBUG_UNALIGNED
//#define DEBUG_UNASSIGNED

#ifdef DEBUG_MMU
#define DPRINTF_MMU(fmt, args...) \
do { printf("MMU: " fmt , ##args); } while (0)
#else
#define DPRINTF_MMU(fmt, args...)
#endif

#ifdef DEBUG_MXCC
#define DPRINTF_MXCC(fmt, args...) \
do { printf("MXCC: " fmt , ##args); } while (0)
#else
#define DPRINTF_MXCC(fmt, args...)
#endif

void raise_exception(int tt)
{
    env->exception_index = tt;
    cpu_loop_exit();
}

void check_ieee_exceptions()
{
     T0 = get_float_exception_flags(&env->fp_status);
     if (T0)
     {
        /* Copy IEEE 754 flags into FSR */
        if (T0 & float_flag_invalid)
            env->fsr |= FSR_NVC;
        if (T0 & float_flag_overflow)
            env->fsr |= FSR_OFC;
        if (T0 & float_flag_underflow)
            env->fsr |= FSR_UFC;
        if (T0 & float_flag_divbyzero)
            env->fsr |= FSR_DZC;
        if (T0 & float_flag_inexact)
            env->fsr |= FSR_NXC;

        if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23))
        {
            /* Unmasked exception, generate a trap */
            env->fsr |= FSR_FTT_IEEE_EXCP;
            raise_exception(TT_FP_EXCP);
        }
        else
        {
            /* Accumulate exceptions */
            env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
        }
     }
}

#ifdef USE_INT_TO_FLOAT_HELPERS
void do_fitos(void)
{
    set_float_exception_flags(0, &env->fp_status);
    FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status);
    check_ieee_exceptions();
}

void do_fitod(void)
{
    DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
}
#ifdef TARGET_SPARC64
void do_fxtos(void)
{
    set_float_exception_flags(0, &env->fp_status);
    FT0 = int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
    check_ieee_exceptions();
}

void do_fxtod(void)
{
    set_float_exception_flags(0, &env->fp_status);
    DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
    check_ieee_exceptions();
}
#endif
#endif

void do_fabss(void)
{
    FT0 = float32_abs(FT1);
}

#ifdef TARGET_SPARC64
void do_fabsd(void)
{
    DT0 = float64_abs(DT1);
}
#endif

void do_fsqrts(void)
{
    set_float_exception_flags(0, &env->fp_status);
    FT0 = float32_sqrt(FT1, &env->fp_status);
    check_ieee_exceptions();
}

void do_fsqrtd(void)
{
    set_float_exception_flags(0, &env->fp_status);
    DT0 = float64_sqrt(DT1, &env->fp_status);
    check_ieee_exceptions();
}

#define GEN_FCMP(name, size, reg1, reg2, FS, TRAP)                      \
    void glue(do_, name) (void)                                         \
    {                                                                   \
        env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                     \
        switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) {   \
        case float_relation_unordered:                                  \
            T0 = (FSR_FCC1 | FSR_FCC0) << FS;                           \
            if ((env->fsr & FSR_NVM) || TRAP) {                         \
                env->fsr |= T0;                                         \
                env->fsr |= FSR_NVC;                                    \
                env->fsr |= FSR_FTT_IEEE_EXCP;                          \
                raise_exception(TT_FP_EXCP);                            \
            } else {                                                    \
                env->fsr |= FSR_NVA;                                    \
            }                                                           \
            break;                                                      \
        case float_relation_less:                                       \
            T0 = FSR_FCC0 << FS;                                        \
            break;                                                      \
        case float_relation_greater:                                    \
            T0 = FSR_FCC1 << FS;                                        \
            break;                                                      \
        default:                                                        \
            T0 = 0;                                                     \
            break;                                                      \
        }                                                               \
        env->fsr |= T0;                                                 \
    }

GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0);
GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);

GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1);
GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);

#ifdef TARGET_SPARC64
GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0);
GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);

GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0);
GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);

GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0);
GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);

GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1);
GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);

GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1);
GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);

GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1);
GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
#endif

#ifndef TARGET_SPARC64
#ifndef CONFIG_USER_ONLY

#ifdef DEBUG_MXCC
static void dump_mxcc(CPUState *env)
{
    printf("mxccdata: %016llx %016llx %016llx %016llx\n",
        env->mxccdata[0], env->mxccdata[1], env->mxccdata[2], env->mxccdata[3]);
    printf("mxccregs: %016llx %016llx %016llx %016llx\n"
           "          %016llx %016llx %016llx %016llx\n",
        env->mxccregs[0], env->mxccregs[1], env->mxccregs[2], env->mxccregs[3],
        env->mxccregs[4], env->mxccregs[5], env->mxccregs[6], env->mxccregs[7]);
}
#endif

void helper_ld_asi(int asi, int size, int sign)
{
    uint32_t ret = 0;
    uint64_t tmp;
#ifdef DEBUG_MXCC
    uint32_t last_T0 = T0;
#endif

    switch (asi) {
    case 2: /* SuperSparc MXCC registers */
        switch (T0) {
        case 0x01c00a00: /* MXCC control register */
            if (size == 8) {
                ret = env->mxccregs[3];
                T0 = env->mxccregs[3] >> 32;
            } else
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
            break;
        case 0x01c00a04: /* MXCC control register */
            if (size == 4)
                ret = env->mxccregs[3];
            else
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
            break;
        case 0x01c00f00: /* MBus port address register */
            if (size == 8) {
                ret = env->mxccregs[7];
                T0 = env->mxccregs[7] >> 32;
            } else
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
            break;
        default:
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", T0, size);
            break;
        }
        DPRINTF_MXCC("asi = %d, size = %d, sign = %d, T0 = %08x -> ret = %08x,"
                     "T0 = %08x\n", asi, size, sign, last_T0, ret, T0);
#ifdef DEBUG_MXCC
        dump_mxcc(env);
#endif
        break;
    case 3: /* MMU probe */
        {
            int mmulev;

            mmulev = (T0 >> 8) & 15;
            if (mmulev > 4)
                ret = 0;
            else {
                ret = mmu_probe(env, T0, mmulev);
                //bswap32s(&ret);
            }
            DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret);
        }
        break;
    case 4: /* read MMU regs */
        {
            int reg = (T0 >> 8) & 0xf;

            ret = env->mmuregs[reg];
            if (reg == 3) /* Fault status cleared on read */
                env->mmuregs[reg] = 0;
            DPRINTF_MMU("mmu_read: reg[%d] = 0x%08x\n", reg, ret);
        }
        break;
    case 9: /* Supervisor code access */
        switch(size) {
        case 1:
            ret = ldub_code(T0);
            break;
        case 2:
            ret = lduw_code(T0 & ~1);
            break;
        default:
        case 4:
            ret = ldl_code(T0 & ~3);
            break;
        case 8:
            tmp = ldq_code(T0 & ~7);
            ret = tmp >> 32;
            T0 = tmp & 0xffffffff;
            break;
        }
        break;
    case 0xa: /* User data access */
        switch(size) {
        case 1:
            ret = ldub_user(T0);
            break;
        case 2:
            ret = lduw_user(T0 & ~1);
            break;
        default:
        case 4:
            ret = ldl_user(T0 & ~3);
            break;
        case 8:
            tmp = ldq_user(T0 & ~7);
            ret = tmp >> 32;
            T0 = tmp & 0xffffffff;
            break;
        }
        break;
    case 0xb: /* Supervisor data access */
        switch(size) {
        case 1:
            ret = ldub_kernel(T0);
            break;
        case 2:
            ret = lduw_kernel(T0 & ~1);
            break;
        default:
        case 4:
            ret = ldl_kernel(T0 & ~3);
            break;
        case 8:
            tmp = ldq_kernel(T0 & ~7);
            ret = tmp >> 32;
            T0 = tmp & 0xffffffff;
            break;
        }
        break;
    case 0xc: /* I-cache tag */
    case 0xd: /* I-cache data */
    case 0xe: /* D-cache tag */
    case 0xf: /* D-cache data */
        break;
    case 0x20: /* MMU passthrough */
        switch(size) {
        case 1:
            ret = ldub_phys(T0);
            break;
        case 2:
            ret = lduw_phys(T0 & ~1);
            break;
        default:
        case 4:
            ret = ldl_phys(T0 & ~3);
            break;
        case 8:
            tmp = ldq_phys(T0 & ~7);
            ret = tmp >> 32;
            T0 = tmp & 0xffffffff;
            break;
        }
        break;
    case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
    case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
        switch(size) {
        case 1:
            ret = ldub_phys((target_phys_addr_t)T0
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
            break;
        case 2:
            ret = lduw_phys((target_phys_addr_t)(T0 & ~1)
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
            break;
        default:
        case 4:
            ret = ldl_phys((target_phys_addr_t)(T0 & ~3)
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
            break;
        case 8:
            tmp = ldq_phys((target_phys_addr_t)(T0 & ~7)
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
            ret = tmp >> 32;
            T0 = tmp & 0xffffffff;
            break;
        }
        break;
    case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
    default:
        do_unassigned_access(T0, 0, 0, 1);
        ret = 0;
        break;
    }
    if (sign) {
        switch(size) {
        case 1:
            T1 = (int8_t) ret;
            break;
        case 2:
            T1 = (int16_t) ret;
            break;
        default:
            T1 = ret;
            break;
        }
    }
    else
        T1 = ret;
}

void helper_st_asi(int asi, int size)
{
    switch(asi) {
    case 2: /* SuperSparc MXCC registers */
        switch (T0) {
        case 0x01c00000: /* MXCC stream data register 0 */
            if (size == 8)
                env->mxccdata[0] = ((uint64_t)T1 << 32) | T2;
            else
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
            break;
        case 0x01c00008: /* MXCC stream data register 1 */
            if (size == 8)
                env->mxccdata[1] = ((uint64_t)T1 << 32) | T2;
            else
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
            break;
        case 0x01c00010: /* MXCC stream data register 2 */
            if (size == 8)
                env->mxccdata[2] = ((uint64_t)T1 << 32) | T2;
            else
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
            break;
        case 0x01c00018: /* MXCC stream data register 3 */
            if (size == 8)
                env->mxccdata[3] = ((uint64_t)T1 << 32) | T2;
            else
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
            break;
        case 0x01c00100: /* MXCC stream source */
            if (size == 8)
                env->mxccregs[0] = ((uint64_t)T1 << 32) | T2;
            else
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
            env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +  0);
            env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +  8);
            env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 16);
            env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 24);
            break;
        case 0x01c00200: /* MXCC stream destination */
            if (size == 8)
                env->mxccregs[1] = ((uint64_t)T1 << 32) | T2;
            else
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  0, env->mxccdata[0]);
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  8, env->mxccdata[1]);
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16, env->mxccdata[2]);
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24, env->mxccdata[3]);
            break;
        case 0x01c00a00: /* MXCC control register */
            if (size == 8)
                env->mxccregs[3] = ((uint64_t)T1 << 32) | T2;
            else
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
            break;
        case 0x01c00a04: /* MXCC control register */
            if (size == 4)
                env->mxccregs[3] = (env->mxccregs[0xa] & 0xffffffff00000000) | T1;
            else
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
            break;
        case 0x01c00e00: /* MXCC error register  */
            if (size == 8)
                env->mxccregs[6] = ((uint64_t)T1 << 32) | T2;
            else
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
            if (env->mxccregs[6] == 0xffffffffffffffffULL) {
                // this is probably a reset
            }
            break;
        case 0x01c00f00: /* MBus port address register */
            if (size == 8)
                env->mxccregs[7] = ((uint64_t)T1 << 32) | T2;
            else
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
            break;
        default:
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", T0, size);
            break;
        }
        DPRINTF_MXCC("asi = %d, size = %d, T0 = %08x, T1 = %08x\n", asi, size, T0, T1);
#ifdef DEBUG_MXCC
        dump_mxcc(env);
#endif
        break;
    case 3: /* MMU flush */
        {
            int mmulev;

            mmulev = (T0 >> 8) & 15;
            DPRINTF_MMU("mmu flush level %d\n", mmulev);
            switch (mmulev) {
            case 0: // flush page
                tlb_flush_page(env, T0 & 0xfffff000);
                break;
            case 1: // flush segment (256k)
            case 2: // flush region (16M)
            case 3: // flush context (4G)
            case 4: // flush entire
                tlb_flush(env, 1);
                break;
            default:
                break;
            }
#ifdef DEBUG_MMU
            dump_mmu(env);
#endif
            return;
        }
    case 4: /* write MMU regs */
        {
            int reg = (T0 >> 8) & 0xf;
            uint32_t oldreg;

            oldreg = env->mmuregs[reg];
            switch(reg) {
            case 0:
                env->mmuregs[reg] &= ~(MMU_E | MMU_NF | MMU_BM);
                env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF | MMU_BM);
                // Mappings generated during no-fault mode or MMU
                // disabled mode are invalid in normal mode
                if (oldreg != env->mmuregs[reg])
                    tlb_flush(env, 1);
                break;
            case 2:
                env->mmuregs[reg] = T1;
                if (oldreg != env->mmuregs[reg]) {
                    /* we flush when the MMU context changes because
                       QEMU has no MMU context support */
                    tlb_flush(env, 1);
                }
                break;
            case 3:
            case 4:
                break;
            default:
                env->mmuregs[reg] = T1;
                break;
            }
            if (oldreg != env->mmuregs[reg]) {
                DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]);
            }
#ifdef DEBUG_MMU
            dump_mmu(env);
#endif
            return;
        }
    case 0xa: /* User data access */
        switch(size) {
        case 1:
            stb_user(T0, T1);
            break;
        case 2:
            stw_user(T0 & ~1, T1);
            break;
        default:
        case 4:
            stl_user(T0 & ~3, T1);
            break;
        case 8:
            stq_user(T0 & ~7, ((uint64_t)T1 << 32) | T2);
            break;
        }
        break;
    case 0xb: /* Supervisor data access */
        switch(size) {
        case 1:
            stb_kernel(T0, T1);
            break;
        case 2:
            stw_kernel(T0 & ~1, T1);
            break;
        default:
        case 4:
            stl_kernel(T0 & ~3, T1);
            break;
        case 8:
            stq_kernel(T0 & ~7, ((uint64_t)T1 << 32) | T2);
            break;
        }
        break;
    case 0xc: /* I-cache tag */
    case 0xd: /* I-cache data */
    case 0xe: /* D-cache tag */
    case 0xf: /* D-cache data */
    case 0x10: /* I/D-cache flush page */
    case 0x11: /* I/D-cache flush segment */
    case 0x12: /* I/D-cache flush region */
    case 0x13: /* I/D-cache flush context */
    case 0x14: /* I/D-cache flush user */
        break;
    case 0x17: /* Block copy, sta access */
        {
            // value (T1) = src
            // address (T0) = dst
            // copy 32 bytes
            unsigned int i;
            uint32_t src = T1 & ~3, dst = T0 & ~3, temp;

            for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
                temp = ldl_kernel(src);
                stl_kernel(dst, temp);
            }
        }
        return;
    case 0x1f: /* Block fill, stda access */
        {
            // value (T1, T2)
            // address (T0) = dst
            // fill 32 bytes
            unsigned int i;
            uint32_t dst = T0 & 7;
            uint64_t val;

            val = (((uint64_t)T1) << 32) | T2;

            for (i = 0; i < 32; i += 8, dst += 8)
                stq_kernel(dst, val);
        }
        return;
    case 0x20: /* MMU passthrough */
        {
            switch(size) {
            case 1:
                stb_phys(T0, T1);
                break;
            case 2:
                stw_phys(T0 & ~1, T1);
                break;
            case 4:
            default:
                stl_phys(T0 & ~3, T1);
                break;
            case 8:
                stq_phys(T0 & ~7, ((uint64_t)T1 << 32) | T2);
                break;
            }
        }
        return;
    case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
    case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
        {
            switch(size) {
            case 1:
                stb_phys((target_phys_addr_t)T0
                         | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
                break;
            case 2:
                stw_phys((target_phys_addr_t)(T0 & ~1)
                            | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
                break;
            case 4:
            default:
                stl_phys((target_phys_addr_t)(T0 & ~3)
                           | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
                break;
            case 8:
                stq_phys((target_phys_addr_t)(T0 & ~7)
                           | ((target_phys_addr_t)(asi & 0xf) << 32),
                         ((uint64_t)T1 << 32) | T2);
                break;
            }
        }
        return;
    case 0x31: /* Ross RT620 I-cache flush */
    case 0x36: /* I-cache flash clear */
    case 0x37: /* D-cache flash clear */
        break;
    case 9: /* Supervisor code access, XXX */
    case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
    default:
        do_unassigned_access(T0, 1, 0, 1);
        return;
    }
}

#endif /* CONFIG_USER_ONLY */
#else /* TARGET_SPARC64 */

#ifdef CONFIG_USER_ONLY
void helper_ld_asi(int asi, int size, int sign)
{
    uint64_t ret = 0;

    if (asi < 0x80)
        raise_exception(TT_PRIV_ACT);

    switch (asi) {
    case 0x80: // Primary
    case 0x82: // Primary no-fault
    case 0x88: // Primary LE
    case 0x8a: // Primary no-fault LE
        {
            switch(size) {
            case 1:
                ret = ldub_raw(T0);
                break;
            case 2:
                ret = lduw_raw(T0 & ~1);
                break;
            case 4:
                ret = ldl_raw(T0 & ~3);
                break;
            default:
            case 8:
                ret = ldq_raw(T0 & ~7);
                break;
            }
        }
        break;
    case 0x81: // Secondary
    case 0x83: // Secondary no-fault
    case 0x89: // Secondary LE
    case 0x8b: // Secondary no-fault LE
        // XXX
        break;
    default:
        break;
    }

    /* Convert from little endian */
    switch (asi) {
    case 0x88: // Primary LE
    case 0x89: // Secondary LE
    case 0x8a: // Primary no-fault LE
    case 0x8b: // Secondary no-fault LE
        switch(size) {
        case 2:
            ret = bswap16(ret);
            break;
        case 4:
            ret = bswap32(ret);
            break;
        case 8:
            ret = bswap64(ret);
            break;
        default:
            break;
        }
    default:
        break;
    }

    /* Convert to signed number */
    if (sign) {
        switch(size) {
        case 1:
            ret = (int8_t) ret;
            break;
        case 2:
            ret = (int16_t) ret;
            break;
        case 4:
            ret = (int32_t) ret;
            break;
        default:
            break;
        }
    }
    T1 = ret;
}

void helper_st_asi(int asi, int size)
{
    if (asi < 0x80)
        raise_exception(TT_PRIV_ACT);

    /* Convert to little endian */
    switch (asi) {
    case 0x88: // Primary LE
    case 0x89: // Secondary LE
        switch(size) {
        case 2:
            T0 = bswap16(T0);
            break;
        case 4:
            T0 = bswap32(T0);
            break;
        case 8:
            T0 = bswap64(T0);
            break;
        default:
            break;
        }
    default:
        break;
    }

    switch(asi) {
    case 0x80: // Primary
    case 0x88: // Primary LE
        {
            switch(size) {
            case 1:
                stb_raw(T0, T1);
                break;
            case 2:
                stw_raw(T0 & ~1, T1);
                break;
            case 4:
                stl_raw(T0 & ~3, T1);
                break;
            case 8:
            default:
                stq_raw(T0 & ~7, T1);
                break;
            }
        }
        break;
    case 0x81: // Secondary
    case 0x89: // Secondary LE
        // XXX
        return;

    case 0x82: // Primary no-fault, RO
    case 0x83: // Secondary no-fault, RO
    case 0x8a: // Primary no-fault LE, RO
    case 0x8b: // Secondary no-fault LE, RO
    default:
        do_unassigned_access(T0, 1, 0, 1);
        return;
    }
}

#else /* CONFIG_USER_ONLY */

void helper_ld_asi(int asi, int size, int sign)
{
    uint64_t ret = 0;

    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
        || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
        raise_exception(TT_PRIV_ACT);

    switch (asi) {
    case 0x10: // As if user primary
    case 0x18: // As if user primary LE
    case 0x80: // Primary
    case 0x82: // Primary no-fault
    case 0x88: // Primary LE
    case 0x8a: // Primary no-fault LE
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
            if (env->hpstate & HS_PRIV) {
                switch(size) {
                case 1:
                    ret = ldub_hypv(T0);
                    break;
                case 2:
                    ret = lduw_hypv(T0 & ~1);
                    break;
                case 4:
                    ret = ldl_hypv(T0 & ~3);
                    break;
                default:
                case 8:
                    ret = ldq_hypv(T0 & ~7);
                    break;
                }
            } else {
                switch(size) {
                case 1:
                    ret = ldub_kernel(T0);
                    break;
                case 2:
                    ret = lduw_kernel(T0 & ~1);
                    break;
                case 4:
                    ret = ldl_kernel(T0 & ~3);
                    break;
                default:
                case 8:
                    ret = ldq_kernel(T0 & ~7);
                    break;
                }
            }
        } else {
            switch(size) {
            case 1:
                ret = ldub_user(T0);
                break;
            case 2:
                ret = lduw_user(T0 & ~1);
                break;
            case 4:
                ret = ldl_user(T0 & ~3);
                break;
            default:
            case 8:
                ret = ldq_user(T0 & ~7);
                break;
            }
        }
        break;
    case 0x14: // Bypass
    case 0x15: // Bypass, non-cacheable
    case 0x1c: // Bypass LE
    case 0x1d: // Bypass, non-cacheable LE
        {
            switch(size) {
            case 1:
                ret = ldub_phys(T0);
                break;
            case 2:
                ret = lduw_phys(T0 & ~1);
                break;
            case 4:
                ret = ldl_phys(T0 & ~3);
                break;
            default:
            case 8:
                ret = ldq_phys(T0 & ~7);
                break;
            }
            break;
        }
    case 0x04: // Nucleus
    case 0x0c: // Nucleus Little Endian (LE)
    case 0x11: // As if user secondary
    case 0x19: // As if user secondary LE
    case 0x24: // Nucleus quad LDD 128 bit atomic
    case 0x2c: // Nucleus quad LDD 128 bit atomic
    case 0x4a: // UPA config
    case 0x81: // Secondary
    case 0x83: // Secondary no-fault
    case 0x89: // Secondary LE
    case 0x8b: // Secondary no-fault LE
        // XXX
        break;
    case 0x45: // LSU
        ret = env->lsu;
        break;
    case 0x50: // I-MMU regs
        {
            int reg = (T0 >> 3) & 0xf;

            ret = env->immuregs[reg];
            break;
        }
    case 0x51: // I-MMU 8k TSB pointer
    case 0x52: // I-MMU 64k TSB pointer
    case 0x55: // I-MMU data access
        // XXX
        break;
    case 0x56: // I-MMU tag read
        {
            unsigned int i;

            for (i = 0; i < 64; i++) {
                // Valid, ctx match, vaddr match
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 &&
                    env->itlb_tag[i] == T0) {
                    ret = env->itlb_tag[i];
                    break;
                }
            }
            break;
        }
    case 0x58: // D-MMU regs
        {
            int reg = (T0 >> 3) & 0xf;

            ret = env->dmmuregs[reg];
            break;
        }
    case 0x5e: // D-MMU tag read
        {
            unsigned int i;

            for (i = 0; i < 64; i++) {
                // Valid, ctx match, vaddr match
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 &&
                    env->dtlb_tag[i] == T0) {
                    ret = env->dtlb_tag[i];
                    break;
                }
            }
            break;
        }
    case 0x59: // D-MMU 8k TSB pointer
    case 0x5a: // D-MMU 64k TSB pointer
    case 0x5b: // D-MMU data pointer
    case 0x5d: // D-MMU data access
    case 0x48: // Interrupt dispatch, RO
    case 0x49: // Interrupt data receive
    case 0x7f: // Incoming interrupt vector, RO
        // XXX
        break;
    case 0x54: // I-MMU data in, WO
    case 0x57: // I-MMU demap, WO
    case 0x5c: // D-MMU data in, WO
    case 0x5f: // D-MMU demap, WO
    case 0x77: // Interrupt vector, WO
    default:
        do_unassigned_access(T0, 0, 0, 1);
        ret = 0;
        break;
    }

    /* Convert from little endian */
    switch (asi) {
    case 0x0c: // Nucleus Little Endian (LE)
    case 0x18: // As if user primary LE
    case 0x19: // As if user secondary LE
    case 0x1c: // Bypass LE
    case 0x1d: // Bypass, non-cacheable LE
    case 0x88: // Primary LE
    case 0x89: // Secondary LE
    case 0x8a: // Primary no-fault LE
    case 0x8b: // Secondary no-fault LE
        switch(size) {
        case 2:
            ret = bswap16(ret);
            break;
        case 4:
            ret = bswap32(ret);
            break;
        case 8:
            ret = bswap64(ret);
            break;
        default:
            break;
        }
    default:
        break;
    }

    /* Convert to signed number */
    if (sign) {
        switch(size) {
        case 1:
            ret = (int8_t) ret;
            break;
        case 2:
            ret = (int16_t) ret;
            break;
        case 4:
            ret = (int32_t) ret;
            break;
        default:
            break;
        }
    }
    T1 = ret;
}

void helper_st_asi(int asi, int size)
{
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
        || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
        raise_exception(TT_PRIV_ACT);

    /* Convert to little endian */
    switch (asi) {
    case 0x0c: // Nucleus Little Endian (LE)
    case 0x18: // As if user primary LE
    case 0x19: // As if user secondary LE
    case 0x1c: // Bypass LE
    case 0x1d: // Bypass, non-cacheable LE
    case 0x88: // Primary LE
    case 0x89: // Secondary LE
        switch(size) {
        case 2:
            T0 = bswap16(T0);
            break;
        case 4:
            T0 = bswap32(T0);
            break;
        case 8:
            T0 = bswap64(T0);
            break;
        default:
            break;
        }
    default:
        break;
    }

    switch(asi) {
    case 0x10: // As if user primary
    case 0x18: // As if user primary LE
    case 0x80: // Primary
    case 0x88: // Primary LE
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
            if (env->hpstate & HS_PRIV) {
                switch(size) {
                case 1:
                    stb_hypv(T0, T1);
                    break;
                case 2:
                    stw_hypv(T0 & ~1, T1);
                    break;
                case 4:
                    stl_hypv(T0 & ~3, T1);
                    break;
                case 8:
                default:
                    stq_hypv(T0 & ~7, T1);
                    break;
                }
            } else {
                switch(size) {
                case 1:
                    stb_kernel(T0, T1);
                    break;
                case 2:
                    stw_kernel(T0 & ~1, T1);
                    break;
                case 4:
                    stl_kernel(T0 & ~3, T1);
                    break;
                case 8:
                default:
                    stq_kernel(T0 & ~7, T1);
                    break;
                }
            }
        } else {
            switch(size) {
            case 1:
                stb_user(T0, T1);
                break;
            case 2:
                stw_user(T0 & ~1, T1);
                break;
            case 4:
                stl_user(T0 & ~3, T1);
                break;
            case 8:
            default:
                stq_user(T0 & ~7, T1);
                break;
            }
        }
        break;
    case 0x14: // Bypass
    case 0x15: // Bypass, non-cacheable
    case 0x1c: // Bypass LE
    case 0x1d: // Bypass, non-cacheable LE
        {
            switch(size) {
            case 1:
                stb_phys(T0, T1);
                break;
            case 2:
                stw_phys(T0 & ~1, T1);
                break;
            case 4:
                stl_phys(T0 & ~3, T1);
                break;
            case 8:
            default:
                stq_phys(T0 & ~7, T1);
                break;
            }
        }
        return;
    case 0x04: // Nucleus
    case 0x0c: // Nucleus Little Endian (LE)
    case 0x11: // As if user secondary
    case 0x19: // As if user secondary LE
    case 0x24: // Nucleus quad LDD 128 bit atomic
    case 0x2c: // Nucleus quad LDD 128 bit atomic
    case 0x4a: // UPA config
    case 0x81: // Secondary
    case 0x89: // Secondary LE
        // XXX
        return;
    case 0x45: // LSU
        {
            uint64_t oldreg;

            oldreg = env->lsu;
            env->lsu = T1 & (DMMU_E | IMMU_E);
            // Mappings generated during D/I MMU disabled mode are
            // invalid in normal mode
            if (oldreg != env->lsu) {
                DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", oldreg, env->lsu);
#ifdef DEBUG_MMU
                dump_mmu(env);
#endif
                tlb_flush(env, 1);
            }
            return;
        }
    case 0x50: // I-MMU regs
        {
            int reg = (T0 >> 3) & 0xf;
            uint64_t oldreg;

            oldreg = env->immuregs[reg];
            switch(reg) {
            case 0: // RO
            case 4:
                return;
            case 1: // Not in I-MMU
            case 2:
            case 7:
            case 8:
                return;
            case 3: // SFSR
                if ((T1 & 1) == 0)
                    T1 = 0; // Clear SFSR
                break;
            case 5: // TSB access
            case 6: // Tag access
            default:
                break;
            }
            env->immuregs[reg] = T1;
            if (oldreg != env->immuregs[reg]) {
                DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
            }
#ifdef DEBUG_MMU
            dump_mmu(env);
#endif
            return;
        }
    case 0x54: // I-MMU data in
        {
            unsigned int i;

            // Try finding an invalid entry
            for (i = 0; i < 64; i++) {
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
                    env->itlb_tag[i] = env->immuregs[6];
                    env->itlb_tte[i] = T1;
                    return;
                }
            }
            // Try finding an unlocked entry
            for (i = 0; i < 64; i++) {
                if ((env->itlb_tte[i] & 0x40) == 0) {
                    env->itlb_tag[i] = env->immuregs[6];
                    env->itlb_tte[i] = T1;
                    return;
                }
            }
            // error state?
            return;
        }
    case 0x55: // I-MMU data access
        {
            unsigned int i = (T0 >> 3) & 0x3f;

            env->itlb_tag[i] = env->immuregs[6];
            env->itlb_tte[i] = T1;
            return;
        }
    case 0x57: // I-MMU demap
        // XXX
        return;
    case 0x58: // D-MMU regs
        {
            int reg = (T0 >> 3) & 0xf;
            uint64_t oldreg;

            oldreg = env->dmmuregs[reg];
            switch(reg) {
            case 0: // RO
            case 4:
                return;
            case 3: // SFSR
                if ((T1 & 1) == 0) {
                    T1 = 0; // Clear SFSR, Fault address
                    env->dmmuregs[4] = 0;
                }
                env->dmmuregs[reg] = T1;
                break;
            case 1: // Primary context
            case 2: // Secondary context
            case 5: // TSB access
            case 6: // Tag access
            case 7: // Virtual Watchpoint
            case 8: // Physical Watchpoint
            default:
                break;
            }
            env->dmmuregs[reg] = T1;
            if (oldreg != env->dmmuregs[reg]) {
                DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
            }
#ifdef DEBUG_MMU
            dump_mmu(env);
#endif
            return;
        }
    case 0x5c: // D-MMU data in
        {
            unsigned int i;

            // Try finding an invalid entry
            for (i = 0; i < 64; i++) {
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
                    env->dtlb_tag[i] = env->dmmuregs[6];
                    env->dtlb_tte[i] = T1;
                    return;
                }
            }
            // Try finding an unlocked entry
            for (i = 0; i < 64; i++) {
                if ((env->dtlb_tte[i] & 0x40) == 0) {
                    env->dtlb_tag[i] = env->dmmuregs[6];
                    env->dtlb_tte[i] = T1;
                    return;
                }
            }
            // error state?
            return;
        }
    case 0x5d: // D-MMU data access
        {
            unsigned int i = (T0 >> 3) & 0x3f;

            env->dtlb_tag[i] = env->dmmuregs[6];
            env->dtlb_tte[i] = T1;
            return;
        }
    case 0x5f: // D-MMU demap
    case 0x49: // Interrupt data receive
        // XXX
        return;
    case 0x51: // I-MMU 8k TSB pointer, RO
    case 0x52: // I-MMU 64k TSB pointer, RO
    case 0x56: // I-MMU tag read, RO
    case 0x59: // D-MMU 8k TSB pointer, RO
    case 0x5a: // D-MMU 64k TSB pointer, RO
    case 0x5b: // D-MMU data pointer, RO
    case 0x5e: // D-MMU tag read, RO
    case 0x48: // Interrupt dispatch, RO
    case 0x7f: // Incoming interrupt vector, RO
    case 0x82: // Primary no-fault, RO
    case 0x83: // Secondary no-fault, RO
    case 0x8a: // Primary no-fault LE, RO
    case 0x8b: // Secondary no-fault LE, RO
    default:
        do_unassigned_access(T0, 1, 0, 1);
        return;
    }
}
#endif /* CONFIG_USER_ONLY */

void helper_ldf_asi(int asi, int size, int rd)
{
    target_ulong tmp_T0 = T0, tmp_T1 = T1;
    unsigned int i;

    switch (asi) {
    case 0xf0: // Block load primary
    case 0xf1: // Block load secondary
    case 0xf8: // Block load primary LE
    case 0xf9: // Block load secondary LE
        if (rd & 7) {
            raise_exception(TT_ILL_INSN);
            return;
        }
        if (T0 & 0x3f) {
            raise_exception(TT_UNALIGNED);
            return;
        }
        for (i = 0; i < 16; i++) {
            helper_ld_asi(asi & 0x8f, 4, 0);
            *(uint32_t *)&env->fpr[rd++] = T1;
            T0 += 4;
        }
        T0 = tmp_T0;
        T1 = tmp_T1;

        return;
    default:
        break;
    }

    helper_ld_asi(asi, size, 0);
    switch(size) {
    default:
    case 4:
        *((uint32_t *)&FT0) = T1;
        break;
    case 8:
        *((int64_t *)&DT0) = T1;
        break;
    }
    T1 = tmp_T1;
}

void helper_stf_asi(int asi, int size, int rd)
{
    target_ulong tmp_T0 = T0, tmp_T1 = T1;
    unsigned int i;

    switch (asi) {
    case 0xf0: // Block store primary
    case 0xf1: // Block store secondary
    case 0xf8: // Block store primary LE
    case 0xf9: // Block store secondary LE
        if (rd & 7) {
            raise_exception(TT_ILL_INSN);
            return;
        }
        if (T0 & 0x3f) {
            raise_exception(TT_UNALIGNED);
            return;
        }
        for (i = 0; i < 16; i++) {
            T1 = *(uint32_t *)&env->fpr[rd++];
            helper_st_asi(asi & 0x8f, 4);
            T0 += 4;
        }
        T0 = tmp_T0;
        T1 = tmp_T1;

        return;
    default:
        break;
    }

    switch(size) {
    default:
    case 4:
        T1 = *((uint32_t *)&FT0);
        break;
    case 8:
        T1 = *((int64_t *)&DT0);
        break;
    }
    helper_st_asi(asi, size);
    T1 = tmp_T1;
}

#endif /* TARGET_SPARC64 */

#ifndef TARGET_SPARC64
void helper_rett()
{
    unsigned int cwp;

    if (env->psret == 1)
        raise_exception(TT_ILL_INSN);

    env->psret = 1;
    cwp = (env->cwp + 1) & (NWINDOWS - 1);
    if (env->wim & (1 << cwp)) {
        raise_exception(TT_WIN_UNF);
    }
    set_cwp(cwp);
    env->psrs = env->psrps;
}
#endif

void helper_ldfsr(void)
{
    int rnd_mode;
    switch (env->fsr & FSR_RD_MASK) {
    case FSR_RD_NEAREST:
        rnd_mode = float_round_nearest_even;
        break;
    default:
    case FSR_RD_ZERO:
        rnd_mode = float_round_to_zero;
        break;
    case FSR_RD_POS:
        rnd_mode = float_round_up;
        break;
    case FSR_RD_NEG:
        rnd_mode = float_round_down;
        break;
    }
    set_float_rounding_mode(rnd_mode, &env->fp_status);
}

void helper_debug()
{
    env->exception_index = EXCP_DEBUG;
    cpu_loop_exit();
}

#ifndef TARGET_SPARC64
void do_wrpsr()
{
    if ((T0 & PSR_CWP) >= NWINDOWS)
        raise_exception(TT_ILL_INSN);
    else
        PUT_PSR(env, T0);
}

void do_rdpsr()
{
    T0 = GET_PSR(env);
}

#else

void do_popc()
{
    T0 = ctpop64(T1);
}

static inline uint64_t *get_gregset(uint64_t pstate)
{
    switch (pstate) {
    default:
    case 0:
        return env->bgregs;
    case PS_AG:
        return env->agregs;
    case PS_MG:
        return env->mgregs;
    case PS_IG:
        return env->igregs;
    }
}

static inline void change_pstate(uint64_t new_pstate)
{
    uint64_t pstate_regs, new_pstate_regs;
    uint64_t *src, *dst;

    pstate_regs = env->pstate & 0xc01;
    new_pstate_regs = new_pstate & 0xc01;
    if (new_pstate_regs != pstate_regs) {
        // Switch global register bank
        src = get_gregset(new_pstate_regs);
        dst = get_gregset(pstate_regs);
        memcpy32(dst, env->gregs);
        memcpy32(env->gregs, src);
    }
    env->pstate = new_pstate;
}

void do_wrpstate(void)
{
    change_pstate(T0 & 0xf3f);
}

void do_done(void)
{
    env->tl--;
    env->pc = env->tnpc[env->tl];
    env->npc = env->tnpc[env->tl] + 4;
    PUT_CCR(env, env->tstate[env->tl] >> 32);
    env->asi = (env->tstate[env->tl] >> 24) & 0xff;
    change_pstate((env->tstate[env->tl] >> 8) & 0xf3f);
    PUT_CWP64(env, env->tstate[env->tl] & 0xff);
}

void do_retry(void)
{
    env->tl--;
    env->pc = env->tpc[env->tl];
    env->npc = env->tnpc[env->tl];
    PUT_CCR(env, env->tstate[env->tl] >> 32);
    env->asi = (env->tstate[env->tl] >> 24) & 0xff;
    change_pstate((env->tstate[env->tl] >> 8) & 0xf3f);
    PUT_CWP64(env, env->tstate[env->tl] & 0xff);
}
#endif

void set_cwp(int new_cwp)
{
    /* put the modified wrap registers at their proper location */
    if (env->cwp == (NWINDOWS - 1))
        memcpy32(env->regbase, env->regbase + NWINDOWS * 16);
    env->cwp = new_cwp;
    /* put the wrap registers at their temporary location */
    if (new_cwp == (NWINDOWS - 1))
        memcpy32(env->regbase + NWINDOWS * 16, env->regbase);
    env->regwptr = env->regbase + (new_cwp * 16);
    REGWPTR = env->regwptr;
}

void cpu_set_cwp(CPUState *env1, int new_cwp)
{
    CPUState *saved_env;
#ifdef reg_REGWPTR
    target_ulong *saved_regwptr;
#endif

    saved_env = env;
#ifdef reg_REGWPTR
    saved_regwptr = REGWPTR;
#endif
    env = env1;
    set_cwp(new_cwp);
    env = saved_env;
#ifdef reg_REGWPTR
    REGWPTR = saved_regwptr;
#endif
}

#ifdef TARGET_SPARC64
void do_interrupt(int intno)
{
#ifdef DEBUG_PCALL
    if (loglevel & CPU_LOG_INT) {
        static int count;
        fprintf(logfile, "%6d: v=%04x pc=%016" PRIx64 " npc=%016" PRIx64 " SP=%016" PRIx64 "\n",
                count, intno,
                env->pc,
                env->npc, env->regwptr[6]);
        cpu_dump_state(env, logfile, fprintf, 0);
#if 0
        {
            int i;
            uint8_t *ptr;

            fprintf(logfile, "       code=");
            ptr = (uint8_t *)env->pc;
            for(i = 0; i < 16; i++) {
                fprintf(logfile, " %02x", ldub(ptr + i));
            }
            fprintf(logfile, "\n");
        }
#endif
        count++;
    }
#endif
#if !defined(CONFIG_USER_ONLY)
    if (env->tl == MAXTL) {
        cpu_abort(env, "Trap 0x%04x while trap level is MAXTL, Error state", env->exception_index);
        return;
    }
#endif
    env->tstate[env->tl] = ((uint64_t)GET_CCR(env) << 32) | ((env->asi & 0xff) << 24) |
        ((env->pstate & 0xf3f) << 8) | GET_CWP64(env);
    env->tpc[env->tl] = env->pc;
    env->tnpc[env->tl] = env->npc;
    env->tt[env->tl] = intno;
    change_pstate(PS_PEF | PS_PRIV | PS_AG);

    if (intno == TT_CLRWIN)
        set_cwp((env->cwp - 1) & (NWINDOWS - 1));
    else if ((intno & 0x1c0) == TT_SPILL)
        set_cwp((env->cwp - env->cansave - 2) & (NWINDOWS - 1));
    else if ((intno & 0x1c0) == TT_FILL)
        set_cwp((env->cwp + 1) & (NWINDOWS - 1));
    env->tbr &= ~0x7fffULL;
    env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
    if (env->tl < MAXTL - 1) {
        env->tl++;
    } else {
        env->pstate |= PS_RED;
        if (env->tl != MAXTL)
            env->tl++;
    }
    env->pc = env->tbr;
    env->npc = env->pc + 4;
    env->exception_index = 0;
}
#else
void do_interrupt(int intno)
{
    int cwp;

#ifdef DEBUG_PCALL
    if (loglevel & CPU_LOG_INT) {
        static int count;
        fprintf(logfile, "%6d: v=%02x pc=%08x npc=%08x SP=%08x\n",
                count, intno,
                env->pc,
                env->npc, env->regwptr[6]);
        cpu_dump_state(env, logfile, fprintf, 0);
#if 0
        {
            int i;
            uint8_t *ptr;

            fprintf(logfile, "       code=");
            ptr = (uint8_t *)env->pc;
            for(i = 0; i < 16; i++) {
                fprintf(logfile, " %02x", ldub(ptr + i));
            }
            fprintf(logfile, "\n");
        }
#endif
        count++;
    }
#endif
#if !defined(CONFIG_USER_ONLY)
    if (env->psret == 0) {
        cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state", env->exception_index);
        return;
    }
#endif
    env->psret = 0;
    cwp = (env->cwp - 1) & (NWINDOWS - 1);
    set_cwp(cwp);
    env->regwptr[9] = env->pc;
    env->regwptr[10] = env->npc;
    env->psrps = env->psrs;
    env->psrs = 1;
    env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
    env->pc = env->tbr;
    env->npc = env->pc + 4;
    env->exception_index = 0;
}
#endif

#if !defined(CONFIG_USER_ONLY)

static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
                                void *retaddr);

#define MMUSUFFIX _mmu
#define ALIGNED_ONLY
#ifdef __s390__
# define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL))
#else
# define GETPC() (__builtin_return_address(0))
#endif

#define SHIFT 0
#include "softmmu_template.h"

#define SHIFT 1
#include "softmmu_template.h"

#define SHIFT 2
#include "softmmu_template.h"

#define SHIFT 3
#include "softmmu_template.h"

static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
                                void *retaddr)
{
#ifdef DEBUG_UNALIGNED
    printf("Unaligned access to 0x%x from 0x%x\n", addr, env->pc);
#endif
    raise_exception(TT_UNALIGNED);
}

/* try to fill the TLB and return an exception if error. If retaddr is
   NULL, it means that the function was called in C code (i.e. not
   from generated code or from helper.c) */
/* XXX: fix it to restore all registers */
void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
{
    TranslationBlock *tb;
    int ret;
    unsigned long pc;
    CPUState *saved_env;

    /* XXX: hack to restore env in all cases, even if not called from
       generated code */
    saved_env = env;
    env = cpu_single_env;

    ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
    if (ret) {
        if (retaddr) {
            /* now we have a real cpu fault */
            pc = (unsigned long)retaddr;
            tb = tb_find_pc(pc);
            if (tb) {
                /* the PC is inside the translated code. It means that we have
                   a virtual CPU fault */
                cpu_restore_state(tb, env, pc, (void *)T2);
            }
        }
        cpu_loop_exit();
    }
    env = saved_env;
}

#endif

#ifndef TARGET_SPARC64
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
                          int is_asi)
{
    CPUState *saved_env;

    /* XXX: hack to restore env in all cases, even if not called from
       generated code */
    saved_env = env;
    env = cpu_single_env;
    if (env->mmuregs[3]) /* Fault status register */
        env->mmuregs[3] = 1; /* overflow (not read before another fault) */
    if (is_asi)
        env->mmuregs[3] |= 1 << 16;
    if (env->psrs)
        env->mmuregs[3] |= 1 << 5;
    if (is_exec)
        env->mmuregs[3] |= 1 << 6;
    if (is_write)
        env->mmuregs[3] |= 1 << 7;
    env->mmuregs[3] |= (5 << 2) | 2;
    env->mmuregs[4] = addr; /* Fault address register */
    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
#ifdef DEBUG_UNASSIGNED
        printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
               "\n", addr, env->pc);
#endif
        if (is_exec)
            raise_exception(TT_CODE_ACCESS);
        else
            raise_exception(TT_DATA_ACCESS);
    }
    env = saved_env;
}
#else
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
                          int is_asi)
{
#ifdef DEBUG_UNASSIGNED
    CPUState *saved_env;

    /* XXX: hack to restore env in all cases, even if not called from
       generated code */
    saved_env = env;
    env = cpu_single_env;
    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx "\n",
           addr, env->pc);
    env = saved_env;
#endif
    if (is_exec)
        raise_exception(TT_CODE_ACCESS);
    else
        raise_exception(TT_DATA_ACCESS);
}
#endif

#ifdef TARGET_SPARC64
void do_tick_set_count(void *opaque, uint64_t count)
{
#if !defined(CONFIG_USER_ONLY)
    ptimer_set_count(opaque, -count);
#endif
}

uint64_t do_tick_get_count(void *opaque)
{
#if !defined(CONFIG_USER_ONLY)
    return -ptimer_get_count(opaque);
#else
    return 0;
#endif
}

void do_tick_set_limit(void *opaque, uint64_t limit)
{
#if !defined(CONFIG_USER_ONLY)
    ptimer_set_limit(opaque, -limit, 0);
#endif
}
#endif