#include #include #include "exec.h" //#define DEBUG_MMU void raise_exception(int tt) { env->exception_index = tt; cpu_loop_exit(); } #ifdef USE_INT_TO_FLOAT_HELPERS void do_fitos(void) { FT0 = (float) *((int32_t *)&FT1); } void do_fitod(void) { DT0 = (double) *((int32_t *)&FT1); } #endif void do_fabss(void) { FT0 = fabsf(FT1); } void do_fsqrts(void) { FT0 = sqrtf(FT1); } void do_fsqrtd(void) { DT0 = sqrt(DT1); } void do_fcmps (void) { if (isnan(FT0) || isnan(FT1)) { T0 = FSR_FCC1 | FSR_FCC0; env->fsr &= ~(FSR_FCC1 | FSR_FCC0); env->fsr |= T0; if (env->fsr & FSR_NVM) { raise_exception(TT_FP_EXCP); } else { env->fsr |= FSR_NVA; } } else if (FT0 < FT1) { T0 = FSR_FCC0; } else if (FT0 > FT1) { T0 = FSR_FCC1; } else { T0 = 0; } env->fsr = T0; } void do_fcmpd (void) { if (isnan(DT0) || isnan(DT1)) { T0 = FSR_FCC1 | FSR_FCC0; env->fsr &= ~(FSR_FCC1 | FSR_FCC0); env->fsr |= T0; if (env->fsr & FSR_NVM) { raise_exception(TT_FP_EXCP); } else { env->fsr |= FSR_NVA; } } else if (DT0 < DT1) { T0 = FSR_FCC0; } else if (DT0 > DT1) { T0 = FSR_FCC1; } else { T0 = 0; } env->fsr = T0; } void helper_ld_asi(int asi, int size, int sign) { uint32_t ret; switch (asi) { case 3: /* MMU probe */ { int mmulev; mmulev = (T0 >> 8) & 15; if (mmulev > 4) ret = 0; else { ret = mmu_probe(T0, mmulev); //bswap32s(&ret); } #ifdef DEBUG_MMU printf("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret); #endif } break; case 4: /* read MMU regs */ { int reg = (T0 >> 8) & 0xf; ret = env->mmuregs[reg]; if (reg == 3) /* Fault status cleared on read */ env->mmuregs[reg] = 0; #ifdef DEBUG_MMU printf("mmu_read: reg[%d] = 0x%08x\n", reg, ret); #endif } break; case 0x20 ... 0x2f: /* MMU passthrough */ cpu_physical_memory_read(T0, (void *) &ret, size); if (size == 4) tswap32s(&ret); else if (size == 2) tswap16s((uint16_t *)&ret); break; default: ret = 0; break; } T1 = ret; } void helper_st_asi(int asi, int size, int sign) { switch(asi) { case 3: /* MMU flush */ { int mmulev; mmulev = (T0 >> 8) & 15; #ifdef DEBUG_MMU printf("mmu flush level %d\n", mmulev); #endif switch (mmulev) { case 0: // flush page tlb_flush_page(env, T0 & 0xfffff000); break; case 1: // flush segment (256k) case 2: // flush region (16M) case 3: // flush context (4G) case 4: // flush entire tlb_flush(env, 1); break; default: break; } #ifdef DEBUG_MMU dump_mmu(); #endif return; } case 4: /* write MMU regs */ { int reg = (T0 >> 8) & 0xf, oldreg; oldreg = env->mmuregs[reg]; switch(reg) { case 0: env->mmuregs[reg] &= ~(MMU_E | MMU_NF); env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF); if ((oldreg & MMU_E) != (env->mmuregs[reg] & MMU_E)) tlb_flush(env, 1); break; case 2: env->mmuregs[reg] = T1; if (oldreg != env->mmuregs[reg]) { /* we flush when the MMU context changes because QEMU has no MMU context support */ tlb_flush(env, 1); } break; case 3: case 4: break; default: env->mmuregs[reg] = T1; break; } #ifdef DEBUG_MMU if (oldreg != env->mmuregs[reg]) { printf("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]); } dump_mmu(); #endif return; } case 0x17: /* Block copy, sta access */ { // value (T1) = src // address (T0) = dst // copy 32 bytes int src = T1, dst = T0; uint8_t temp[32]; tswap32s(&src); cpu_physical_memory_read(src, (void *) &temp, 32); cpu_physical_memory_write(dst, (void *) &temp, 32); } return; case 0x1f: /* Block fill, stda access */ { // value (T1, T2) // address (T0) = dst // fill 32 bytes int i, dst = T0; uint64_t val; val = (((uint64_t)T1) << 32) | T2; tswap64s(&val); for (i = 0; i < 32; i += 8, dst += 8) { cpu_physical_memory_write(dst, (void *) &val, 8); } } return; case 0x20 ... 0x2f: /* MMU passthrough */ { int temp = T1; if (size == 4) tswap32s(&temp); else if (size == 2) tswap16s((uint16_t *)&temp); cpu_physical_memory_write(T0, (void *) &temp, size); } return; default: return; } } void helper_rett() { unsigned int cwp; env->psret = 1; cwp = (env->cwp + 1) & (NWINDOWS - 1); if (env->wim & (1 << cwp)) { raise_exception(TT_WIN_UNF); } set_cwp(cwp); env->psrs = env->psrps; } void helper_ldfsr(void) { switch (env->fsr & FSR_RD_MASK) { case FSR_RD_NEAREST: fesetround(FE_TONEAREST); break; case FSR_RD_ZERO: fesetround(FE_TOWARDZERO); break; case FSR_RD_POS: fesetround(FE_UPWARD); break; case FSR_RD_NEG: fesetround(FE_DOWNWARD); break; } } void cpu_get_fp64(uint64_t *pmant, uint16_t *pexp, double f) { int exptemp; *pmant = ldexp(frexp(f, &exptemp), 53); *pexp = exptemp; } double cpu_put_fp64(uint64_t mant, uint16_t exp) { return ldexp((double) mant, exp - 53); } void helper_debug() { env->exception_index = EXCP_DEBUG; cpu_loop_exit(); } void do_wrpsr() { PUT_PSR(env, T0); } void do_rdpsr() { T0 = GET_PSR(env); }