/* * Helpers for loads and stores * * Copyright (c) 2003-2005 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/helper-proto.h" #include "exec/exec-all.h" #include "exec/cpu_ldst.h" #include "asi.h" //#define DEBUG_MMU //#define DEBUG_MXCC //#define DEBUG_UNALIGNED //#define DEBUG_UNASSIGNED //#define DEBUG_ASI //#define DEBUG_CACHE_CONTROL #ifdef DEBUG_MMU #define DPRINTF_MMU(fmt, ...) \ do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0) #else #define DPRINTF_MMU(fmt, ...) do {} while (0) #endif #ifdef DEBUG_MXCC #define DPRINTF_MXCC(fmt, ...) \ do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0) #else #define DPRINTF_MXCC(fmt, ...) do {} while (0) #endif #ifdef DEBUG_ASI #define DPRINTF_ASI(fmt, ...) \ do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0) #endif #ifdef DEBUG_CACHE_CONTROL #define DPRINTF_CACHE_CONTROL(fmt, ...) \ do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0) #else #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0) #endif #ifdef TARGET_SPARC64 #ifndef TARGET_ABI32 #define AM_CHECK(env1) ((env1)->pstate & PS_AM) #else #define AM_CHECK(env1) (1) #endif #endif #define QT0 (env->qt0) #define QT1 (env->qt1) #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) /* Calculates TSB pointer value for fault page size 8k or 64k */ static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register, uint64_t tag_access_register, int page_size) { uint64_t tsb_base = tsb_register & ~0x1fffULL; int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0; int tsb_size = tsb_register & 0xf; /* discard lower 13 bits which hold tag access context */ uint64_t tag_access_va = tag_access_register & ~0x1fffULL; /* now reorder bits */ uint64_t tsb_base_mask = ~0x1fffULL; uint64_t va = tag_access_va; /* move va bits to correct position */ if (page_size == 8*1024) { va >>= 9; } else if (page_size == 64*1024) { va >>= 12; } if (tsb_size) { tsb_base_mask <<= tsb_size; } /* calculate tsb_base mask and adjust va if split is in use */ if (tsb_split) { if (page_size == 8*1024) { va &= ~(1ULL << (13 + tsb_size)); } else if (page_size == 64*1024) { va |= (1ULL << (13 + tsb_size)); } tsb_base_mask <<= 1; } return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL; } /* Calculates tag target register value by reordering bits in tag access register */ static uint64_t ultrasparc_tag_target(uint64_t tag_access_register) { return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22); } static void replace_tlb_entry(SparcTLBEntry *tlb, uint64_t tlb_tag, uint64_t tlb_tte, CPUSPARCState *env1) { target_ulong mask, size, va, offset; /* flush page range if translation is valid */ if (TTE_IS_VALID(tlb->tte)) { CPUState *cs = CPU(sparc_env_get_cpu(env1)); mask = 0xffffffffffffe000ULL; mask <<= 3 * ((tlb->tte >> 61) & 3); size = ~mask + 1; va = tlb->tag & mask; for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) { tlb_flush_page(cs, va + offset); } } tlb->tag = tlb_tag; tlb->tte = tlb_tte; } static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr, const char *strmmu, CPUSPARCState *env1) { unsigned int i; target_ulong mask; uint64_t context; int is_demap_context = (demap_addr >> 6) & 1; /* demap context */ switch ((demap_addr >> 4) & 3) { case 0: /* primary */ context = env1->dmmu.mmu_primary_context; break; case 1: /* secondary */ context = env1->dmmu.mmu_secondary_context; break; case 2: /* nucleus */ context = 0; break; case 3: /* reserved */ default: return; } for (i = 0; i < 64; i++) { if (TTE_IS_VALID(tlb[i].tte)) { if (is_demap_context) { /* will remove non-global entries matching context value */ if (TTE_IS_GLOBAL(tlb[i].tte) || !tlb_compare_context(&tlb[i], context)) { continue; } } else { /* demap page will remove any entry matching VA */ mask = 0xffffffffffffe000ULL; mask <<= 3 * ((tlb[i].tte >> 61) & 3); if (!compare_masked(demap_addr, tlb[i].tag, mask)) { continue; } /* entry should be global or matching context value */ if (!TTE_IS_GLOBAL(tlb[i].tte) && !tlb_compare_context(&tlb[i], context)) { continue; } } replace_tlb_entry(&tlb[i], 0, 0, env1); #ifdef DEBUG_MMU DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i); dump_mmu(stdout, fprintf, env1); #endif } } } static void replace_tlb_1bit_lru(SparcTLBEntry *tlb, uint64_t tlb_tag, uint64_t tlb_tte, const char *strmmu, CPUSPARCState *env1) { unsigned int i, replace_used; /* Try replacing invalid entry */ for (i = 0; i < 64; i++) { if (!TTE_IS_VALID(tlb[i].tte)) { replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1); #ifdef DEBUG_MMU DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i); dump_mmu(stdout, fprintf, env1); #endif return; } } /* All entries are valid, try replacing unlocked entry */ for (replace_used = 0; replace_used < 2; ++replace_used) { /* Used entries are not replaced on first pass */ for (i = 0; i < 64; i++) { if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) { replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1); #ifdef DEBUG_MMU DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n", strmmu, (replace_used ? "used" : "unused"), i); dump_mmu(stdout, fprintf, env1); #endif return; } } /* Now reset used bit and search for unused entries again */ for (i = 0; i < 64; i++) { TTE_SET_UNUSED(tlb[i].tte); } } #ifdef DEBUG_MMU DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu); #endif /* error state? */ } #endif #if defined(TARGET_SPARC64) || defined(CONFIG_USER_ONLY) static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr) { #ifdef TARGET_SPARC64 if (AM_CHECK(env1)) { addr &= 0xffffffffULL; } #endif return addr; } #endif #ifdef TARGET_SPARC64 /* returns true if access using this ASI is to have address translated by MMU otherwise access is to raw physical address */ /* TODO: check sparc32 bits */ static inline int is_translating_asi(int asi) { /* Ultrasparc IIi translating asi - note this list is defined by cpu implementation */ switch (asi) { case 0x04 ... 0x11: case 0x16 ... 0x19: case 0x1E ... 0x1F: case 0x24 ... 0x2C: case 0x70 ... 0x73: case 0x78 ... 0x79: case 0x80 ... 0xFF: return 1; default: return 0; } } static inline target_ulong asi_address_mask(CPUSPARCState *env, int asi, target_ulong addr) { if (is_translating_asi(asi)) { return address_mask(env, addr); } else { return addr; } } #endif void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align) { if (addr & align) { #ifdef DEBUG_UNALIGNED printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx "\n", addr, env->pc); #endif helper_raise_exception(env, TT_UNALIGNED); } } #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \ defined(DEBUG_MXCC) static void dump_mxcc(CPUSPARCState *env) { printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 "\n", env->mxccdata[0], env->mxccdata[1], env->mxccdata[2], env->mxccdata[3]); printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 "\n" " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 "\n", env->mxccregs[0], env->mxccregs[1], env->mxccregs[2], env->mxccregs[3], env->mxccregs[4], env->mxccregs[5], env->mxccregs[6], env->mxccregs[7]); } #endif #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \ && defined(DEBUG_ASI) static void dump_asi(const char *txt, target_ulong addr, int asi, int size, uint64_t r1) { switch (size) { case 1: DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt, addr, asi, r1 & 0xff); break; case 2: DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt, addr, asi, r1 & 0xffff); break; case 4: DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt, addr, asi, r1 & 0xffffffff); break; case 8: DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt, addr, asi, r1); break; } } #endif #ifndef TARGET_SPARC64 #ifndef CONFIG_USER_ONLY /* Leon3 cache control */ static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr, uint64_t val, int size) { DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n", addr, val, size); if (size != 4) { DPRINTF_CACHE_CONTROL("32bits only\n"); return; } switch (addr) { case 0x00: /* Cache control */ /* These values must always be read as zeros */ val &= ~CACHE_CTRL_FD; val &= ~CACHE_CTRL_FI; val &= ~CACHE_CTRL_IB; val &= ~CACHE_CTRL_IP; val &= ~CACHE_CTRL_DP; env->cache_control = val; break; case 0x04: /* Instruction cache configuration */ case 0x08: /* Data cache configuration */ /* Read Only */ break; default: DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr); break; }; } static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr, int size) { uint64_t ret = 0; if (size != 4) { DPRINTF_CACHE_CONTROL("32bits only\n"); return 0; } switch (addr) { case 0x00: /* Cache control */ ret = env->cache_control; break; /* Configuration registers are read and only always keep those predefined values */ case 0x04: /* Instruction cache configuration */ ret = 0x10220000; break; case 0x08: /* Data cache configuration */ ret = 0x18220000; break; default: DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr); break; }; DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n", addr, ret, size); return ret; } uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size, int sign) { CPUState *cs = CPU(sparc_env_get_cpu(env)); uint64_t ret = 0; #if defined(DEBUG_MXCC) || defined(DEBUG_ASI) uint32_t last_addr = addr; #endif helper_check_align(env, addr, size - 1); switch (asi) { case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */ /* case ASI_LEON_CACHEREGS: Leon3 cache control */ switch (addr) { case 0x00: /* Leon3 Cache Control */ case 0x08: /* Leon3 Instruction Cache config */ case 0x0C: /* Leon3 Date Cache config */ if (env->def->features & CPU_FEATURE_CACHE_CTRL) { ret = leon3_cache_control_ld(env, addr, size); } break; case 0x01c00a00: /* MXCC control register */ if (size == 8) { ret = env->mxccregs[3]; } else { qemu_log_mask(LOG_UNIMP, "%08x: unimplemented access size: %d\n", addr, size); } break; case 0x01c00a04: /* MXCC control register */ if (size == 4) { ret = env->mxccregs[3]; } else { qemu_log_mask(LOG_UNIMP, "%08x: unimplemented access size: %d\n", addr, size); } break; case 0x01c00c00: /* Module reset register */ if (size == 8) { ret = env->mxccregs[5]; /* should we do something here? */ } else { qemu_log_mask(LOG_UNIMP, "%08x: unimplemented access size: %d\n", addr, size); } break; case 0x01c00f00: /* MBus port address register */ if (size == 8) { ret = env->mxccregs[7]; } else { qemu_log_mask(LOG_UNIMP, "%08x: unimplemented access size: %d\n", addr, size); } break; default: qemu_log_mask(LOG_UNIMP, "%08x: unimplemented address, size: %d\n", addr, size); break; } DPRINTF_MXCC("asi = %d, size = %d, sign = %d, " "addr = %08x -> ret = %" PRIx64 "," "addr = %08x\n", asi, size, sign, last_addr, ret, addr); #ifdef DEBUG_MXCC dump_mxcc(env); #endif break; case ASI_M_FLUSH_PROBE: /* SuperSparc MMU probe */ case ASI_LEON_MMUFLUSH: /* LEON3 MMU probe */ { int mmulev; mmulev = (addr >> 8) & 15; if (mmulev > 4) { ret = 0; } else { ret = mmu_probe(env, addr, mmulev); } DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n", addr, mmulev, ret); } break; case ASI_M_MMUREGS: /* SuperSparc MMU regs */ case ASI_LEON_MMUREGS: /* LEON3 MMU regs */ { int reg = (addr >> 8) & 0x1f; ret = env->mmuregs[reg]; if (reg == 3) { /* Fault status cleared on read */ env->mmuregs[3] = 0; } else if (reg == 0x13) { /* Fault status read */ ret = env->mmuregs[3]; } else if (reg == 0x14) { /* Fault address read */ ret = env->mmuregs[4]; } DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret); } break; case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */ case ASI_M_DIAGS: /* Turbosparc DTLB Diagnostic */ case ASI_M_IODIAG: /* Turbosparc IOTLB Diagnostic */ break; case ASI_KERNELTXT: /* Supervisor code access */ switch (size) { case 1: ret = cpu_ldub_code(env, addr); break; case 2: ret = cpu_lduw_code(env, addr); break; default: case 4: ret = cpu_ldl_code(env, addr); break; case 8: ret = cpu_ldq_code(env, addr); break; } break; case ASI_USERDATA: /* User data access */ switch (size) { case 1: ret = cpu_ldub_user(env, addr); break; case 2: ret = cpu_lduw_user(env, addr); break; default: case 4: ret = cpu_ldl_user(env, addr); break; case 8: ret = cpu_ldq_user(env, addr); break; } break; case ASI_KERNELDATA: /* Supervisor data access */ case ASI_P: /* Implicit primary context data access (v9 only?) */ switch (size) { case 1: ret = cpu_ldub_kernel(env, addr); break; case 2: ret = cpu_lduw_kernel(env, addr); break; default: case 4: ret = cpu_ldl_kernel(env, addr); break; case 8: ret = cpu_ldq_kernel(env, addr); break; } break; case ASI_M_TXTC_TAG: /* SparcStation 5 I-cache tag */ case ASI_M_TXTC_DATA: /* SparcStation 5 I-cache data */ case ASI_M_DATAC_TAG: /* SparcStation 5 D-cache tag */ case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */ break; case ASI_M_BYPASS: /* MMU passthrough */ case ASI_LEON_BYPASS: /* LEON MMU passthrough */ switch (size) { case 1: ret = ldub_phys(cs->as, addr); break; case 2: ret = lduw_phys(cs->as, addr); break; default: case 4: ret = ldl_phys(cs->as, addr); break; case 8: ret = ldq_phys(cs->as, addr); break; } break; case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */ switch (size) { case 1: ret = ldub_phys(cs->as, (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32)); break; case 2: ret = lduw_phys(cs->as, (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32)); break; default: case 4: ret = ldl_phys(cs->as, (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32)); break; case 8: ret = ldq_phys(cs->as, (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32)); break; } break; case 0x30: /* Turbosparc secondary cache diagnostic */ case 0x31: /* Turbosparc RAM snoop */ case 0x32: /* Turbosparc page table descriptor diagnostic */ case 0x39: /* data cache diagnostic register */ ret = 0; break; case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */ { int reg = (addr >> 8) & 3; switch (reg) { case 0: /* Breakpoint Value (Addr) */ ret = env->mmubpregs[reg]; break; case 1: /* Breakpoint Mask */ ret = env->mmubpregs[reg]; break; case 2: /* Breakpoint Control */ ret = env->mmubpregs[reg]; break; case 3: /* Breakpoint Status */ ret = env->mmubpregs[reg]; env->mmubpregs[reg] = 0ULL; break; } DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg, ret); } break; case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */ ret = env->mmubpctrv; break; case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */ ret = env->mmubpctrc; break; case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */ ret = env->mmubpctrs; break; case 0x4c: /* SuperSPARC MMU Breakpoint Action */ ret = env->mmubpaction; break; case ASI_USERTXT: /* User code access, XXX */ default: cpu_unassigned_access(cs, addr, false, false, asi, size); ret = 0; break; } if (sign) { switch (size) { case 1: ret = (int8_t) ret; break; case 2: ret = (int16_t) ret; break; case 4: ret = (int32_t) ret; break; default: break; } } #ifdef DEBUG_ASI dump_asi("read ", last_addr, asi, size, ret); #endif return ret; } void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val, int asi, int size) { SPARCCPU *cpu = sparc_env_get_cpu(env); CPUState *cs = CPU(cpu); helper_check_align(env, addr, size - 1); switch (asi) { case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */ /* case ASI_LEON_CACHEREGS: Leon3 cache control */ switch (addr) { case 0x00: /* Leon3 Cache Control */ case 0x08: /* Leon3 Instruction Cache config */ case 0x0C: /* Leon3 Date Cache config */ if (env->def->features & CPU_FEATURE_CACHE_CTRL) { leon3_cache_control_st(env, addr, val, size); } break; case 0x01c00000: /* MXCC stream data register 0 */ if (size == 8) { env->mxccdata[0] = val; } else { qemu_log_mask(LOG_UNIMP, "%08x: unimplemented access size: %d\n", addr, size); } break; case 0x01c00008: /* MXCC stream data register 1 */ if (size == 8) { env->mxccdata[1] = val; } else { qemu_log_mask(LOG_UNIMP, "%08x: unimplemented access size: %d\n", addr, size); } break; case 0x01c00010: /* MXCC stream data register 2 */ if (size == 8) { env->mxccdata[2] = val; } else { qemu_log_mask(LOG_UNIMP, "%08x: unimplemented access size: %d\n", addr, size); } break; case 0x01c00018: /* MXCC stream data register 3 */ if (size == 8) { env->mxccdata[3] = val; } else { qemu_log_mask(LOG_UNIMP, "%08x: unimplemented access size: %d\n", addr, size); } break; case 0x01c00100: /* MXCC stream source */ if (size == 8) { env->mxccregs[0] = val; } else { qemu_log_mask(LOG_UNIMP, "%08x: unimplemented access size: %d\n", addr, size); } env->mxccdata[0] = ldq_phys(cs->as, (env->mxccregs[0] & 0xffffffffULL) + 0); env->mxccdata[1] = ldq_phys(cs->as, (env->mxccregs[0] & 0xffffffffULL) + 8); env->mxccdata[2] = ldq_phys(cs->as, (env->mxccregs[0] & 0xffffffffULL) + 16); env->mxccdata[3] = ldq_phys(cs->as, (env->mxccregs[0] & 0xffffffffULL) + 24); break; case 0x01c00200: /* MXCC stream destination */ if (size == 8) { env->mxccregs[1] = val; } else { qemu_log_mask(LOG_UNIMP, "%08x: unimplemented access size: %d\n", addr, size); } stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 0, env->mxccdata[0]); stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 8, env->mxccdata[1]); stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 16, env->mxccdata[2]); stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 24, env->mxccdata[3]); break; case 0x01c00a00: /* MXCC control register */ if (size == 8) { env->mxccregs[3] = val; } else { qemu_log_mask(LOG_UNIMP, "%08x: unimplemented access size: %d\n", addr, size); } break; case 0x01c00a04: /* MXCC control register */ if (size == 4) { env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL) | val; } else { qemu_log_mask(LOG_UNIMP, "%08x: unimplemented access size: %d\n", addr, size); } break; case 0x01c00e00: /* MXCC error register */ /* writing a 1 bit clears the error */ if (size == 8) { env->mxccregs[6] &= ~val; } else { qemu_log_mask(LOG_UNIMP, "%08x: unimplemented access size: %d\n", addr, size); } break; case 0x01c00f00: /* MBus port address register */ if (size == 8) { env->mxccregs[7] = val; } else { qemu_log_mask(LOG_UNIMP, "%08x: unimplemented access size: %d\n", addr, size); } break; default: qemu_log_mask(LOG_UNIMP, "%08x: unimplemented address, size: %d\n", addr, size); break; } DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n", asi, size, addr, val); #ifdef DEBUG_MXCC dump_mxcc(env); #endif break; case ASI_M_FLUSH_PROBE: /* SuperSparc MMU flush */ case ASI_LEON_MMUFLUSH: /* LEON3 MMU flush */ { int mmulev; mmulev = (addr >> 8) & 15; DPRINTF_MMU("mmu flush level %d\n", mmulev); switch (mmulev) { case 0: /* flush page */ tlb_flush_page(CPU(cpu), addr & 0xfffff000); break; case 1: /* flush segment (256k) */ case 2: /* flush region (16M) */ case 3: /* flush context (4G) */ case 4: /* flush entire */ tlb_flush(CPU(cpu), 1); break; default: break; } #ifdef DEBUG_MMU dump_mmu(stdout, fprintf, env); #endif } break; case ASI_M_MMUREGS: /* write MMU regs */ case ASI_LEON_MMUREGS: /* LEON3 write MMU regs */ { int reg = (addr >> 8) & 0x1f; uint32_t oldreg; oldreg = env->mmuregs[reg]; switch (reg) { case 0: /* Control Register */ env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) | (val & 0x00ffffff); /* Mappings generated during no-fault mode or MMU disabled mode are invalid in normal mode */ if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) != (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm))) { tlb_flush(CPU(cpu), 1); } break; case 1: /* Context Table Pointer Register */ env->mmuregs[reg] = val & env->def->mmu_ctpr_mask; break; case 2: /* Context Register */ env->mmuregs[reg] = val & env->def->mmu_cxr_mask; if (oldreg != env->mmuregs[reg]) { /* we flush when the MMU context changes because QEMU has no MMU context support */ tlb_flush(CPU(cpu), 1); } break; case 3: /* Synchronous Fault Status Register with Clear */ case 4: /* Synchronous Fault Address Register */ break; case 0x10: /* TLB Replacement Control Register */ env->mmuregs[reg] = val & env->def->mmu_trcr_mask; break; case 0x13: /* Synchronous Fault Status Register with Read and Clear */ env->mmuregs[3] = val & env->def->mmu_sfsr_mask; break; case 0x14: /* Synchronous Fault Address Register */ env->mmuregs[4] = val; break; default: env->mmuregs[reg] = val; break; } if (oldreg != env->mmuregs[reg]) { DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]); } #ifdef DEBUG_MMU dump_mmu(stdout, fprintf, env); #endif } break; case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */ case ASI_M_DIAGS: /* Turbosparc DTLB Diagnostic */ case ASI_M_IODIAG: /* Turbosparc IOTLB Diagnostic */ break; case ASI_USERDATA: /* User data access */ switch (size) { case 1: cpu_stb_user(env, addr, val); break; case 2: cpu_stw_user(env, addr, val); break; default: case 4: cpu_stl_user(env, addr, val); break; case 8: cpu_stq_user(env, addr, val); break; } break; case ASI_KERNELDATA: /* Supervisor data access */ case ASI_P: switch (size) { case 1: cpu_stb_kernel(env, addr, val); break; case 2: cpu_stw_kernel(env, addr, val); break; default: case 4: cpu_stl_kernel(env, addr, val); break; case 8: cpu_stq_kernel(env, addr, val); break; } break; case ASI_M_TXTC_TAG: /* I-cache tag */ case ASI_M_TXTC_DATA: /* I-cache data */ case ASI_M_DATAC_TAG: /* D-cache tag */ case ASI_M_DATAC_DATA: /* D-cache data */ case ASI_M_FLUSH_PAGE: /* I/D-cache flush page */ case ASI_M_FLUSH_SEG: /* I/D-cache flush segment */ case ASI_M_FLUSH_REGION: /* I/D-cache flush region */ case ASI_M_FLUSH_CTX: /* I/D-cache flush context */ case ASI_M_FLUSH_USER: /* I/D-cache flush user */ break; case ASI_M_BCOPY: /* Block copy, sta access */ { /* val = src addr = dst copy 32 bytes */ unsigned int i; uint32_t src = val & ~3, dst = addr & ~3, temp; for (i = 0; i < 32; i += 4, src += 4, dst += 4) { temp = cpu_ldl_kernel(env, src); cpu_stl_kernel(env, dst, temp); } } break; case ASI_M_BFILL: /* Block fill, stda access */ { /* addr = dst fill 32 bytes with val */ unsigned int i; uint32_t dst = addr & 7; for (i = 0; i < 32; i += 8, dst += 8) { cpu_stq_kernel(env, dst, val); } } break; case ASI_M_BYPASS: /* MMU passthrough */ case ASI_LEON_BYPASS: /* LEON MMU passthrough */ { switch (size) { case 1: stb_phys(cs->as, addr, val); break; case 2: stw_phys(cs->as, addr, val); break; case 4: default: stl_phys(cs->as, addr, val); break; case 8: stq_phys(cs->as, addr, val); break; } } break; case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */ { switch (size) { case 1: stb_phys(cs->as, (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32), val); break; case 2: stw_phys(cs->as, (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32), val); break; case 4: default: stl_phys(cs->as, (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32), val); break; case 8: stq_phys(cs->as, (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32), val); break; } } break; case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */ case 0x31: /* store buffer data, Ross RT620 I-cache flush or Turbosparc snoop RAM */ case 0x32: /* store buffer control or Turbosparc page table descriptor diagnostic */ case 0x36: /* I-cache flash clear */ case 0x37: /* D-cache flash clear */ break; case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/ { int reg = (addr >> 8) & 3; switch (reg) { case 0: /* Breakpoint Value (Addr) */ env->mmubpregs[reg] = (val & 0xfffffffffULL); break; case 1: /* Breakpoint Mask */ env->mmubpregs[reg] = (val & 0xfffffffffULL); break; case 2: /* Breakpoint Control */ env->mmubpregs[reg] = (val & 0x7fULL); break; case 3: /* Breakpoint Status */ env->mmubpregs[reg] = (val & 0xfULL); break; } DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg, env->mmuregs[reg]); } break; case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */ env->mmubpctrv = val & 0xffffffff; break; case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */ env->mmubpctrc = val & 0x3; break; case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */ env->mmubpctrs = val & 0x3; break; case 0x4c: /* SuperSPARC MMU Breakpoint Action */ env->mmubpaction = val & 0x1fff; break; case ASI_USERTXT: /* User code access, XXX */ case ASI_KERNELTXT: /* Supervisor code access, XXX */ default: cpu_unassigned_access(CPU(sparc_env_get_cpu(env)), addr, true, false, asi, size); break; } #ifdef DEBUG_ASI dump_asi("write", addr, asi, size, val); #endif } #endif /* CONFIG_USER_ONLY */ #else /* TARGET_SPARC64 */ #ifdef CONFIG_USER_ONLY uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size, int sign) { uint64_t ret = 0; #if defined(DEBUG_ASI) target_ulong last_addr = addr; #endif if (asi < 0x80) { helper_raise_exception(env, TT_PRIV_ACT); } helper_check_align(env, addr, size - 1); addr = asi_address_mask(env, asi, addr); switch (asi) { case ASI_PNF: /* Primary no-fault */ case ASI_PNFL: /* Primary no-fault LE */ if (page_check_range(addr, size, PAGE_READ) == -1) { #ifdef DEBUG_ASI dump_asi("read ", last_addr, asi, size, ret); #endif return 0; } /* Fall through */ case ASI_P: /* Primary */ case ASI_PL: /* Primary LE */ { switch (size) { case 1: ret = cpu_ldub_data(env, addr); break; case 2: ret = cpu_lduw_data(env, addr); break; case 4: ret = cpu_ldl_data(env, addr); break; default: case 8: ret = cpu_ldq_data(env, addr); break; } } break; case ASI_SNF: /* Secondary no-fault */ case ASI_SNFL: /* Secondary no-fault LE */ if (page_check_range(addr, size, PAGE_READ) == -1) { #ifdef DEBUG_ASI dump_asi("read ", last_addr, asi, size, ret); #endif return 0; } /* Fall through */ case ASI_S: /* Secondary */ case ASI_SL: /* Secondary LE */ /* XXX */ break; default: break; } /* Convert from little endian */ switch (asi) { case ASI_PL: /* Primary LE */ case ASI_SL: /* Secondary LE */ case ASI_PNFL: /* Primary no-fault LE */ case ASI_SNFL: /* Secondary no-fault LE */ switch (size) { case 2: ret = bswap16(ret); break; case 4: ret = bswap32(ret); break; case 8: ret = bswap64(ret); break; default: break; } default: break; } /* Convert to signed number */ if (sign) { switch (size) { case 1: ret = (int8_t) ret; break; case 2: ret = (int16_t) ret; break; case 4: ret = (int32_t) ret; break; default: break; } } #ifdef DEBUG_ASI dump_asi("read ", last_addr, asi, size, ret); #endif return ret; } void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val, int asi, int size) { #ifdef DEBUG_ASI dump_asi("write", addr, asi, size, val); #endif if (asi < 0x80) { helper_raise_exception(env, TT_PRIV_ACT); } helper_check_align(env, addr, size - 1); addr = asi_address_mask(env, asi, addr); /* Convert to little endian */ switch (asi) { case ASI_PL: /* Primary LE */ case ASI_SL: /* Secondary LE */ switch (size) { case 2: val = bswap16(val); break; case 4: val = bswap32(val); break; case 8: val = bswap64(val); break; default: break; } default: break; } switch (asi) { case ASI_P: /* Primary */ case ASI_PL: /* Primary LE */ { switch (size) { case 1: cpu_stb_data(env, addr, val); break; case 2: cpu_stw_data(env, addr, val); break; case 4: cpu_stl_data(env, addr, val); break; case 8: default: cpu_stq_data(env, addr, val); break; } } break; case ASI_S: /* Secondary */ case ASI_SL: /* Secondary LE */ /* XXX */ return; case ASI_PNF: /* Primary no-fault, RO */ case ASI_SNF: /* Secondary no-fault, RO */ case ASI_PNFL: /* Primary no-fault LE, RO */ case ASI_SNFL: /* Secondary no-fault LE, RO */ default: helper_raise_exception(env, TT_DATA_ACCESS); return; } } #else /* CONFIG_USER_ONLY */ uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size, int sign) { CPUState *cs = CPU(sparc_env_get_cpu(env)); uint64_t ret = 0; #if defined(DEBUG_ASI) target_ulong last_addr = addr; #endif asi &= 0xff; if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0) || (cpu_has_hypervisor(env) && asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV))) { helper_raise_exception(env, TT_PRIV_ACT); } helper_check_align(env, addr, size - 1); addr = asi_address_mask(env, asi, addr); /* process nonfaulting loads first */ if ((asi & 0xf6) == 0x82) { int mmu_idx; /* secondary space access has lowest asi bit equal to 1 */ if (env->pstate & PS_PRIV) { mmu_idx = (asi & 1) ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX; } else { mmu_idx = (asi & 1) ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX; } if (cpu_get_phys_page_nofault(env, addr, mmu_idx) == -1ULL) { #ifdef DEBUG_ASI dump_asi("read ", last_addr, asi, size, ret); #endif /* env->exception_index is set in get_physical_address_data(). */ helper_raise_exception(env, cs->exception_index); } /* convert nonfaulting load ASIs to normal load ASIs */ asi &= ~0x02; } switch (asi) { case ASI_AIUP: /* As if user primary */ case ASI_AIUS: /* As if user secondary */ case ASI_AIUPL: /* As if user primary LE */ case ASI_AIUSL: /* As if user secondary LE */ case ASI_P: /* Primary */ case ASI_S: /* Secondary */ case ASI_PL: /* Primary LE */ case ASI_SL: /* Secondary LE */ if ((asi & 0x80) && (env->pstate & PS_PRIV)) { if (cpu_hypervisor_mode(env)) { switch (size) { case 1: ret = cpu_ldub_hypv(env, addr); break; case 2: ret = cpu_lduw_hypv(env, addr); break; case 4: ret = cpu_ldl_hypv(env, addr); break; default: case 8: ret = cpu_ldq_hypv(env, addr); break; } } else { /* secondary space access has lowest asi bit equal to 1 */ if (asi & 1) { switch (size) { case 1: ret = cpu_ldub_kernel_secondary(env, addr); break; case 2: ret = cpu_lduw_kernel_secondary(env, addr); break; case 4: ret = cpu_ldl_kernel_secondary(env, addr); break; default: case 8: ret = cpu_ldq_kernel_secondary(env, addr); break; } } else { switch (size) { case 1: ret = cpu_ldub_kernel(env, addr); break; case 2: ret = cpu_lduw_kernel(env, addr); break; case 4: ret = cpu_ldl_kernel(env, addr); break; default: case 8: ret = cpu_ldq_kernel(env, addr); break; } } } } else { /* secondary space access has lowest asi bit equal to 1 */ if (asi & 1) { switch (size) { case 1: ret = cpu_ldub_user_secondary(env, addr); break; case 2: ret = cpu_lduw_user_secondary(env, addr); break; case 4: ret = cpu_ldl_user_secondary(env, addr); break; default: case 8: ret = cpu_ldq_user_secondary(env, addr); break; } } else { switch (size) { case 1: ret = cpu_ldub_user(env, addr); break; case 2: ret = cpu_lduw_user(env, addr); break; case 4: ret = cpu_ldl_user(env, addr); break; default: case 8: ret = cpu_ldq_user(env, addr); break; } } } break; case ASI_REAL: /* Bypass */ case ASI_REAL_IO: /* Bypass, non-cacheable */ case ASI_REAL_L: /* Bypass LE */ case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */ { switch (size) { case 1: ret = ldub_phys(cs->as, addr); break; case 2: ret = lduw_phys(cs->as, addr); break; case 4: ret = ldl_phys(cs->as, addr); break; default: case 8: ret = ldq_phys(cs->as, addr); break; } break; } case ASI_N: /* Nucleus */ case ASI_NL: /* Nucleus Little Endian (LE) */ { switch (size) { case 1: ret = cpu_ldub_nucleus(env, addr); break; case 2: ret = cpu_lduw_nucleus(env, addr); break; case 4: ret = cpu_ldl_nucleus(env, addr); break; default: case 8: ret = cpu_ldq_nucleus(env, addr); break; } break; } case ASI_UPA_CONFIG: /* UPA config */ /* XXX */ break; case ASI_LSU_CONTROL: /* LSU */ ret = env->lsu; break; case ASI_IMMU: /* I-MMU regs */ { int reg = (addr >> 3) & 0xf; if (reg == 0) { /* I-TSB Tag Target register */ ret = ultrasparc_tag_target(env->immu.tag_access); } else { ret = env->immuregs[reg]; } break; } case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */ { /* env->immuregs[5] holds I-MMU TSB register value env->immuregs[6] holds I-MMU Tag Access register value */ ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access, 8*1024); break; } case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */ { /* env->immuregs[5] holds I-MMU TSB register value env->immuregs[6] holds I-MMU Tag Access register value */ ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access, 64*1024); break; } case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */ { int reg = (addr >> 3) & 0x3f; ret = env->itlb[reg].tte; break; } case ASI_ITLB_TAG_READ: /* I-MMU tag read */ { int reg = (addr >> 3) & 0x3f; ret = env->itlb[reg].tag; break; } case ASI_DMMU: /* D-MMU regs */ { int reg = (addr >> 3) & 0xf; if (reg == 0) { /* D-TSB Tag Target register */ ret = ultrasparc_tag_target(env->dmmu.tag_access); } else { ret = env->dmmuregs[reg]; } break; } case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer */ { /* env->dmmuregs[5] holds D-MMU TSB register value env->dmmuregs[6] holds D-MMU Tag Access register value */ ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access, 8*1024); break; } case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */ { /* env->dmmuregs[5] holds D-MMU TSB register value env->dmmuregs[6] holds D-MMU Tag Access register value */ ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access, 64*1024); break; } case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */ { int reg = (addr >> 3) & 0x3f; ret = env->dtlb[reg].tte; break; } case ASI_DTLB_TAG_READ: /* D-MMU tag read */ { int reg = (addr >> 3) & 0x3f; ret = env->dtlb[reg].tag; break; } case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */ break; case ASI_INTR_RECEIVE: /* Interrupt data receive */ ret = env->ivec_status; break; case ASI_INTR_R: /* Incoming interrupt vector, RO */ { int reg = (addr >> 4) & 0x3; if (reg < 3) { ret = env->ivec_data[reg]; } break; } case ASI_DCACHE_DATA: /* D-cache data */ case ASI_DCACHE_TAG: /* D-cache tag access */ case ASI_ESTATE_ERROR_EN: /* E-cache error enable */ case ASI_AFSR: /* E-cache asynchronous fault status */ case ASI_AFAR: /* E-cache asynchronous fault address */ case ASI_EC_TAG_DATA: /* E-cache tag data */ case ASI_IC_INSTR: /* I-cache instruction access */ case ASI_IC_TAG: /* I-cache tag access */ case ASI_IC_PRE_DECODE: /* I-cache predecode */ case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */ case ASI_EC_W: /* E-cache tag */ case ASI_EC_R: /* E-cache tag */ break; case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer */ case ASI_ITLB_DATA_IN: /* I-MMU data in, WO */ case ASI_IMMU_DEMAP: /* I-MMU demap, WO */ case ASI_DTLB_DATA_IN: /* D-MMU data in, WO */ case ASI_DMMU_DEMAP: /* D-MMU demap, WO */ case ASI_INTR_W: /* Interrupt vector, WO */ default: cpu_unassigned_access(cs, addr, false, false, 1, size); ret = 0; break; case ASI_NUCLEUS_QUAD_LDD: /* Nucleus quad LDD 128 bit atomic */ case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */ case ASI_TWINX_AIUP: /* As if user primary, twinx */ case ASI_TWINX_AIUS: /* As if user secondary, twinx */ case ASI_TWINX_REAL: /* Real address, twinx */ case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */ case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */ case ASI_TWINX_REAL_L: /* Real address, twinx, LE */ case ASI_TWINX_N: /* Nucleus, twinx */ case ASI_TWINX_NL: /* Nucleus, twinx, LE */ /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */ case ASI_TWINX_P: /* Primary, twinx */ case ASI_TWINX_PL: /* Primary, twinx, LE */ case ASI_TWINX_S: /* Secondary, twinx */ case ASI_TWINX_SL: /* Secondary, twinx, LE */ /* These are all 128-bit atomic; only ldda (now ldtxa) allowed */ helper_raise_exception(env, TT_ILL_INSN); return 0; } /* Convert from little endian */ switch (asi) { case ASI_NL: /* Nucleus Little Endian (LE) */ case ASI_AIUPL: /* As if user primary LE */ case ASI_AIUSL: /* As if user secondary LE */ case ASI_REAL_L: /* Bypass LE */ case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */ case ASI_PL: /* Primary LE */ case ASI_SL: /* Secondary LE */ switch(size) { case 2: ret = bswap16(ret); break; case 4: ret = bswap32(ret); break; case 8: ret = bswap64(ret); break; default: break; } default: break; } /* Convert to signed number */ if (sign) { switch (size) { case 1: ret = (int8_t) ret; break; case 2: ret = (int16_t) ret; break; case 4: ret = (int32_t) ret; break; default: break; } } #ifdef DEBUG_ASI dump_asi("read ", last_addr, asi, size, ret); #endif return ret; } void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val, int asi, int size) { SPARCCPU *cpu = sparc_env_get_cpu(env); CPUState *cs = CPU(cpu); #ifdef DEBUG_ASI dump_asi("write", addr, asi, size, val); #endif asi &= 0xff; if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0) || (cpu_has_hypervisor(env) && asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV))) { helper_raise_exception(env, TT_PRIV_ACT); } helper_check_align(env, addr, size - 1); addr = asi_address_mask(env, asi, addr); /* Convert to little endian */ switch (asi) { case ASI_NL: /* Nucleus Little Endian (LE) */ case ASI_AIUPL: /* As if user primary LE */ case ASI_AIUSL: /* As if user secondary LE */ case ASI_REAL_L: /* Bypass LE */ case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */ case ASI_PL: /* Primary LE */ case ASI_SL: /* Secondary LE */ switch (size) { case 2: val = bswap16(val); break; case 4: val = bswap32(val); break; case 8: val = bswap64(val); break; default: break; } default: break; } switch (asi) { case ASI_AIUP: /* As if user primary */ case ASI_AIUS: /* As if user secondary */ case ASI_AIUPL: /* As if user primary LE */ case ASI_AIUSL: /* As if user secondary LE */ case ASI_P: /* Primary */ case ASI_S: /* Secondary */ case ASI_PL: /* Primary LE */ case ASI_SL: /* Secondary LE */ if ((asi & 0x80) && (env->pstate & PS_PRIV)) { if (cpu_hypervisor_mode(env)) { switch (size) { case 1: cpu_stb_hypv(env, addr, val); break; case 2: cpu_stw_hypv(env, addr, val); break; case 4: cpu_stl_hypv(env, addr, val); break; case 8: default: cpu_stq_hypv(env, addr, val); break; } } else { /* secondary space access has lowest asi bit equal to 1 */ if (asi & 1) { switch (size) { case 1: cpu_stb_kernel_secondary(env, addr, val); break; case 2: cpu_stw_kernel_secondary(env, addr, val); break; case 4: cpu_stl_kernel_secondary(env, addr, val); break; case 8: default: cpu_stq_kernel_secondary(env, addr, val); break; } } else { switch (size) { case 1: cpu_stb_kernel(env, addr, val); break; case 2: cpu_stw_kernel(env, addr, val); break; case 4: cpu_stl_kernel(env, addr, val); break; case 8: default: cpu_stq_kernel(env, addr, val); break; } } } } else { /* secondary space access has lowest asi bit equal to 1 */ if (asi & 1) { switch (size) { case 1: cpu_stb_user_secondary(env, addr, val); break; case 2: cpu_stw_user_secondary(env, addr, val); break; case 4: cpu_stl_user_secondary(env, addr, val); break; case 8: default: cpu_stq_user_secondary(env, addr, val); break; } } else { switch (size) { case 1: cpu_stb_user(env, addr, val); break; case 2: cpu_stw_user(env, addr, val); break; case 4: cpu_stl_user(env, addr, val); break; case 8: default: cpu_stq_user(env, addr, val); break; } } } break; case ASI_REAL: /* Bypass */ case ASI_REAL_IO: /* Bypass, non-cacheable */ case ASI_REAL_L: /* Bypass LE */ case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */ { switch (size) { case 1: stb_phys(cs->as, addr, val); break; case 2: stw_phys(cs->as, addr, val); break; case 4: stl_phys(cs->as, addr, val); break; case 8: default: stq_phys(cs->as, addr, val); break; } } return; case ASI_N: /* Nucleus */ case ASI_NL: /* Nucleus Little Endian (LE) */ { switch (size) { case 1: cpu_stb_nucleus(env, addr, val); break; case 2: cpu_stw_nucleus(env, addr, val); break; case 4: cpu_stl_nucleus(env, addr, val); break; default: case 8: cpu_stq_nucleus(env, addr, val); break; } break; } case ASI_UPA_CONFIG: /* UPA config */ /* XXX */ return; case ASI_LSU_CONTROL: /* LSU */ { uint64_t oldreg; oldreg = env->lsu; env->lsu = val & (DMMU_E | IMMU_E); /* Mappings generated during D/I MMU disabled mode are invalid in normal mode */ if (oldreg != env->lsu) { DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", oldreg, env->lsu); #ifdef DEBUG_MMU dump_mmu(stdout, fprintf, env); #endif tlb_flush(CPU(cpu), 1); } return; } case ASI_IMMU: /* I-MMU regs */ { int reg = (addr >> 3) & 0xf; uint64_t oldreg; oldreg = env->immuregs[reg]; switch (reg) { case 0: /* RO */ return; case 1: /* Not in I-MMU */ case 2: return; case 3: /* SFSR */ if ((val & 1) == 0) { val = 0; /* Clear SFSR */ } env->immu.sfsr = val; break; case 4: /* RO */ return; case 5: /* TSB access */ DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016" PRIx64 "\n", env->immu.tsb, val); env->immu.tsb = val; break; case 6: /* Tag access */ env->immu.tag_access = val; break; case 7: case 8: return; default: break; } if (oldreg != env->immuregs[reg]) { DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016" PRIx64 "\n", reg, oldreg, env->immuregs[reg]); } #ifdef DEBUG_MMU dump_mmu(stdout, fprintf, env); #endif return; } case ASI_ITLB_DATA_IN: /* I-MMU data in */ replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env); return; case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */ { /* TODO: auto demap */ unsigned int i = (addr >> 3) & 0x3f; replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env); #ifdef DEBUG_MMU DPRINTF_MMU("immu data access replaced entry [%i]\n", i); dump_mmu(stdout, fprintf, env); #endif return; } case ASI_IMMU_DEMAP: /* I-MMU demap */ demap_tlb(env->itlb, addr, "immu", env); return; case ASI_DMMU: /* D-MMU regs */ { int reg = (addr >> 3) & 0xf; uint64_t oldreg; oldreg = env->dmmuregs[reg]; switch (reg) { case 0: /* RO */ case 4: return; case 3: /* SFSR */ if ((val & 1) == 0) { val = 0; /* Clear SFSR, Fault address */ env->dmmu.sfar = 0; } env->dmmu.sfsr = val; break; case 1: /* Primary context */ env->dmmu.mmu_primary_context = val; /* can be optimized to only flush MMU_USER_IDX and MMU_KERNEL_IDX entries */ tlb_flush(CPU(cpu), 1); break; case 2: /* Secondary context */ env->dmmu.mmu_secondary_context = val; /* can be optimized to only flush MMU_USER_SECONDARY_IDX and MMU_KERNEL_SECONDARY_IDX entries */ tlb_flush(CPU(cpu), 1); break; case 5: /* TSB access */ DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016" PRIx64 "\n", env->dmmu.tsb, val); env->dmmu.tsb = val; break; case 6: /* Tag access */ env->dmmu.tag_access = val; break; case 7: /* Virtual Watchpoint */ case 8: /* Physical Watchpoint */ default: env->dmmuregs[reg] = val; break; } if (oldreg != env->dmmuregs[reg]) { DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016" PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]); } #ifdef DEBUG_MMU dump_mmu(stdout, fprintf, env); #endif return; } case ASI_DTLB_DATA_IN: /* D-MMU data in */ replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env); return; case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */ { unsigned int i = (addr >> 3) & 0x3f; replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env); #ifdef DEBUG_MMU DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i); dump_mmu(stdout, fprintf, env); #endif return; } case ASI_DMMU_DEMAP: /* D-MMU demap */ demap_tlb(env->dtlb, addr, "dmmu", env); return; case ASI_INTR_RECEIVE: /* Interrupt data receive */ env->ivec_status = val & 0x20; return; case ASI_NUCLEUS_QUAD_LDD: /* Nucleus quad LDD 128 bit atomic */ case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */ case ASI_TWINX_AIUP: /* As if user primary, twinx */ case ASI_TWINX_AIUS: /* As if user secondary, twinx */ case ASI_TWINX_REAL: /* Real address, twinx */ case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */ case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */ case ASI_TWINX_REAL_L: /* Real address, twinx, LE */ case ASI_TWINX_N: /* Nucleus, twinx */ case ASI_TWINX_NL: /* Nucleus, twinx, LE */ /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */ case ASI_TWINX_P: /* Primary, twinx */ case ASI_TWINX_PL: /* Primary, twinx, LE */ case ASI_TWINX_S: /* Secondary, twinx */ case ASI_TWINX_SL: /* Secondary, twinx, LE */ /* Only stda allowed */ helper_raise_exception(env, TT_ILL_INSN); return; case ASI_DCACHE_DATA: /* D-cache data */ case ASI_DCACHE_TAG: /* D-cache tag access */ case ASI_ESTATE_ERROR_EN: /* E-cache error enable */ case ASI_AFSR: /* E-cache asynchronous fault status */ case ASI_AFAR: /* E-cache asynchronous fault address */ case ASI_EC_TAG_DATA: /* E-cache tag data */ case ASI_IC_INSTR: /* I-cache instruction access */ case ASI_IC_TAG: /* I-cache tag access */ case ASI_IC_PRE_DECODE: /* I-cache predecode */ case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */ case ASI_EC_W: /* E-cache tag */ case ASI_EC_R: /* E-cache tag */ return; case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer, RO */ case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer, RO */ case ASI_ITLB_TAG_READ: /* I-MMU tag read, RO */ case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer, RO */ case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer, RO */ case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer, RO */ case ASI_DTLB_TAG_READ: /* D-MMU tag read, RO */ case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */ case ASI_INTR_R: /* Incoming interrupt vector, RO */ case ASI_PNF: /* Primary no-fault, RO */ case ASI_SNF: /* Secondary no-fault, RO */ case ASI_PNFL: /* Primary no-fault LE, RO */ case ASI_SNFL: /* Secondary no-fault LE, RO */ default: cpu_unassigned_access(cs, addr, true, false, 1, size); return; } } #endif /* CONFIG_USER_ONLY */ /* 128-bit LDDA; result returned in QT0. */ void helper_ldda_asi(CPUSPARCState *env, target_ulong addr, int asi) { uint64_t h, l; if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0) || (cpu_has_hypervisor(env) && asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV))) { helper_raise_exception(env, TT_PRIV_ACT); } addr = asi_address_mask(env, asi, addr); switch (asi) { #if !defined(CONFIG_USER_ONLY) case ASI_TWINX_AIUP: /* As if user primary, twinx */ case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */ helper_check_align(env, addr, 0xf); h = cpu_ldq_user(env, addr); l = cpu_ldq_user(env, addr + 8); break; case ASI_TWINX_AIUS: /* As if user secondary, twinx */ case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */ helper_check_align(env, addr, 0xf); h = cpu_ldq_user_secondary(env, addr); l = cpu_ldq_user_secondary(env, addr + 8); break; case ASI_TWINX_REAL: /* Real address, twinx */ case ASI_TWINX_REAL_L: /* Real address, twinx, LE */ helper_check_align(env, addr, 0xf); { CPUState *cs = CPU(sparc_env_get_cpu(env)); h = ldq_phys(cs->as, addr); l = ldq_phys(cs->as, addr + 8); } break; case ASI_NUCLEUS_QUAD_LDD: case ASI_NUCLEUS_QUAD_LDD_L: case ASI_TWINX_N: /* Nucleus, twinx */ case ASI_TWINX_NL: /* Nucleus, twinx, LE */ helper_check_align(env, addr, 0xf); h = cpu_ldq_nucleus(env, addr); l = cpu_ldq_nucleus(env, addr + 8); break; case ASI_TWINX_S: /* Secondary, twinx */ case ASI_TWINX_SL: /* Secondary, twinx, LE */ if (!cpu_hypervisor_mode(env)) { helper_check_align(env, addr, 0xf); if (env->pstate & PS_PRIV) { h = cpu_ldq_kernel_secondary(env, addr); l = cpu_ldq_kernel_secondary(env, addr + 8); } else { h = cpu_ldq_user_secondary(env, addr); l = cpu_ldq_user_secondary(env, addr + 8); } break; } /* fallthru */ case ASI_TWINX_P: /* Primary, twinx */ case ASI_TWINX_PL: /* Primary, twinx, LE */ helper_check_align(env, addr, 0xf); h = cpu_ldq_data(env, addr); l = cpu_ldq_data(env, addr + 8); break; #else case ASI_TWINX_P: /* Primary, twinx */ case ASI_TWINX_PL: /* Primary, twinx, LE */ case ASI_TWINX_S: /* Primary, twinx */ case ASI_TWINX_SL: /* Primary, twinx, LE */ /* ??? Should be available, but we need to implement an atomic 128-bit load. */ helper_raise_exception(env, TT_PRIV_ACT); #endif default: /* Non-twinx asi, so this is the legacy ldda insn, which performs two word sized operations. */ /* ??? The UA2011 manual recommends emulating this with a single 64-bit load. However, LE asis *are* treated as two 32-bit loads individually byte swapped. */ helper_check_align(env, addr, 0x7); QT0.high = (uint32_t)helper_ld_asi(env, addr, asi, 4, 0); QT0.low = (uint32_t)helper_ld_asi(env, addr + 4, asi, 4, 0); return; } if (asi & 8) { h = bswap64(h); l = bswap64(l); } QT0.high = h; QT0.low = l; } void helper_ldf_asi(CPUSPARCState *env, target_ulong addr, int asi, int size, int rd) { unsigned int i; target_ulong val; helper_check_align(env, addr, 3); addr = asi_address_mask(env, asi, addr); switch (asi) { case ASI_BLK_P: /* UA2007/JPS1 Block load primary */ case ASI_BLK_S: /* UA2007/JPS1 Block load secondary */ case ASI_BLK_PL: /* UA2007/JPS1 Block load primary LE */ case ASI_BLK_SL: /* UA2007/JPS1 Block load secondary LE */ if (rd & 7) { helper_raise_exception(env, TT_ILL_INSN); return; } helper_check_align(env, addr, 0x3f); for (i = 0; i < 8; i++, rd += 2, addr += 8) { env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi & 0x8f, 8, 0); } return; case ASI_BLK_AIUP_4V: /* UA2007 Block load primary, user privilege */ case ASI_BLK_AIUS_4V: /* UA2007 Block load secondary, user privilege */ case ASI_BLK_AIUP_L_4V: /* UA2007 Block load primary LE, user privilege */ case ASI_BLK_AIUS_L_4V: /* UA2007 Block load secondary LE, user privilege */ case ASI_BLK_AIUP: /* JPS1 Block load primary, user privilege */ case ASI_BLK_AIUS: /* JPS1 Block load secondary, user privilege */ case ASI_BLK_AIUPL: /* JPS1 Block load primary LE, user privilege */ case ASI_BLK_AIUSL: /* JPS1 Block load secondary LE, user privilege */ if (rd & 7) { helper_raise_exception(env, TT_ILL_INSN); return; } helper_check_align(env, addr, 0x3f); for (i = 0; i < 8; i++, rd += 2, addr += 8) { env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi & 0x19, 8, 0); } return; default: break; } switch (size) { default: case 4: val = helper_ld_asi(env, addr, asi, size, 0); if (rd & 1) { env->fpr[rd / 2].l.lower = val; } else { env->fpr[rd / 2].l.upper = val; } break; case 8: env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi, size, 0); break; case 16: env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi, 8, 0); env->fpr[rd / 2 + 1].ll = helper_ld_asi(env, addr + 8, asi, 8, 0); break; } } void helper_stf_asi(CPUSPARCState *env, target_ulong addr, int asi, int size, int rd) { unsigned int i; target_ulong val; addr = asi_address_mask(env, asi, addr); switch (asi) { case ASI_BLK_COMMIT_P: /* UA2007/JPS1 Block store primary (cache flush) */ case ASI_BLK_COMMIT_S: /* UA2007/JPS1 Block store secondary (cache flush) */ case ASI_BLK_P: /* UA2007/JPS1 Block store primary */ case ASI_BLK_S: /* UA2007/JPS1 Block store secondary */ case ASI_BLK_PL: /* UA2007/JPS1 Block store primary LE */ case ASI_BLK_SL: /* UA2007/JPS1 Block store secondary LE */ if (rd & 7) { helper_raise_exception(env, TT_ILL_INSN); return; } helper_check_align(env, addr, 0x3f); for (i = 0; i < 8; i++, rd += 2, addr += 8) { helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi & 0x8f, 8); } return; case ASI_BLK_AIUP_4V: /* UA2007 Block load primary, user privilege */ case ASI_BLK_AIUS_4V: /* UA2007 Block load secondary, user privilege */ case ASI_BLK_AIUP_L_4V: /* UA2007 Block load primary LE, user privilege */ case ASI_BLK_AIUS_L_4V: /* UA2007 Block load secondary LE, user privilege */ case ASI_BLK_AIUP: /* JPS1 Block store primary, user privilege */ case ASI_BLK_AIUS: /* JPS1 Block store secondary, user privilege */ case ASI_BLK_AIUPL: /* JPS1 Block load primary LE, user privilege */ case ASI_BLK_AIUSL: /* JPS1 Block load secondary LE, user privilege */ if (rd & 7) { helper_raise_exception(env, TT_ILL_INSN); return; } helper_check_align(env, addr, 0x3f); for (i = 0; i < 8; i++, rd += 2, addr += 8) { helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi & 0x19, 8); } return; case ASI_FL16_P: /* 16-bit floating point load primary */ case ASI_FL16_S: /* 16-bit floating point load secondary */ case ASI_FL16_PL: /* 16-bit floating point load primary, LE */ case ASI_FL16_SL: /* 16-bit floating point load secondary, LE */ helper_check_align(env, addr, 1); /* Fall through */ case ASI_FL8_P: /* 8-bit floating point load primary */ case ASI_FL8_S: /* 8-bit floating point load secondary */ case ASI_FL8_PL: /* 8-bit floating point load primary, LE */ case ASI_FL8_SL: /* 8-bit floating point load secondary, LE */ val = env->fpr[rd / 2].l.lower; helper_st_asi(env, addr, val, asi & 0x8d, ((asi & 2) >> 1) + 1); return; default: helper_check_align(env, addr, 3); break; } switch (size) { default: case 4: if (rd & 1) { val = env->fpr[rd / 2].l.lower; } else { val = env->fpr[rd / 2].l.upper; } helper_st_asi(env, addr, val, asi, size); break; case 8: helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi, size); break; case 16: helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi, 8); helper_st_asi(env, addr + 8, env->fpr[rd / 2 + 1].ll, asi, 8); break; } } target_ulong helper_casx_asi(CPUSPARCState *env, target_ulong addr, target_ulong val1, target_ulong val2, uint32_t asi) { target_ulong ret; ret = helper_ld_asi(env, addr, asi, 8, 0); if (val2 == ret) { helper_st_asi(env, addr, val1, asi, 8); } return ret; } #endif /* TARGET_SPARC64 */ #if !defined(CONFIG_USER_ONLY) || defined(TARGET_SPARC64) target_ulong helper_cas_asi(CPUSPARCState *env, target_ulong addr, target_ulong val1, target_ulong val2, uint32_t asi) { target_ulong ret; val2 &= 0xffffffffUL; ret = helper_ld_asi(env, addr, asi, 4, 0); ret &= 0xffffffffUL; if (val2 == ret) { helper_st_asi(env, addr, val1 & 0xffffffffUL, asi, 4); } return ret; } #endif /* !defined(CONFIG_USER_ONLY) || defined(TARGET_SPARC64) */ void helper_ldqf(CPUSPARCState *env, target_ulong addr, int mem_idx) { /* XXX add 128 bit load */ CPU_QuadU u; helper_check_align(env, addr, 7); #if !defined(CONFIG_USER_ONLY) switch (mem_idx) { case MMU_USER_IDX: u.ll.upper = cpu_ldq_user(env, addr); u.ll.lower = cpu_ldq_user(env, addr + 8); QT0 = u.q; break; case MMU_KERNEL_IDX: u.ll.upper = cpu_ldq_kernel(env, addr); u.ll.lower = cpu_ldq_kernel(env, addr + 8); QT0 = u.q; break; #ifdef TARGET_SPARC64 case MMU_HYPV_IDX: u.ll.upper = cpu_ldq_hypv(env, addr); u.ll.lower = cpu_ldq_hypv(env, addr + 8); QT0 = u.q; break; #endif default: DPRINTF_MMU("helper_ldqf: need to check MMU idx %d\n", mem_idx); break; } #else u.ll.upper = cpu_ldq_data(env, address_mask(env, addr)); u.ll.lower = cpu_ldq_data(env, address_mask(env, addr + 8)); QT0 = u.q; #endif } void helper_stqf(CPUSPARCState *env, target_ulong addr, int mem_idx) { /* XXX add 128 bit store */ CPU_QuadU u; helper_check_align(env, addr, 7); #if !defined(CONFIG_USER_ONLY) switch (mem_idx) { case MMU_USER_IDX: u.q = QT0; cpu_stq_user(env, addr, u.ll.upper); cpu_stq_user(env, addr + 8, u.ll.lower); break; case MMU_KERNEL_IDX: u.q = QT0; cpu_stq_kernel(env, addr, u.ll.upper); cpu_stq_kernel(env, addr + 8, u.ll.lower); break; #ifdef TARGET_SPARC64 case MMU_HYPV_IDX: u.q = QT0; cpu_stq_hypv(env, addr, u.ll.upper); cpu_stq_hypv(env, addr + 8, u.ll.lower); break; #endif default: DPRINTF_MMU("helper_stqf: need to check MMU idx %d\n", mem_idx); break; } #else u.q = QT0; cpu_stq_data(env, address_mask(env, addr), u.ll.upper); cpu_stq_data(env, address_mask(env, addr + 8), u.ll.lower); #endif } #if !defined(CONFIG_USER_ONLY) #ifndef TARGET_SPARC64 void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr, bool is_write, bool is_exec, int is_asi, unsigned size) { SPARCCPU *cpu = SPARC_CPU(cs); CPUSPARCState *env = &cpu->env; int fault_type; #ifdef DEBUG_UNASSIGNED if (is_asi) { printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx " asi 0x%02x from " TARGET_FMT_lx "\n", is_exec ? "exec" : is_write ? "write" : "read", size, size == 1 ? "" : "s", addr, is_asi, env->pc); } else { printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx " from " TARGET_FMT_lx "\n", is_exec ? "exec" : is_write ? "write" : "read", size, size == 1 ? "" : "s", addr, env->pc); } #endif /* Don't overwrite translation and access faults */ fault_type = (env->mmuregs[3] & 0x1c) >> 2; if ((fault_type > 4) || (fault_type == 0)) { env->mmuregs[3] = 0; /* Fault status register */ if (is_asi) { env->mmuregs[3] |= 1 << 16; } if (env->psrs) { env->mmuregs[3] |= 1 << 5; } if (is_exec) { env->mmuregs[3] |= 1 << 6; } if (is_write) { env->mmuregs[3] |= 1 << 7; } env->mmuregs[3] |= (5 << 2) | 2; /* SuperSPARC will never place instruction fault addresses in the FAR */ if (!is_exec) { env->mmuregs[4] = addr; /* Fault address register */ } } /* overflow (same type fault was not read before another fault) */ if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) { env->mmuregs[3] |= 1; } if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) { if (is_exec) { helper_raise_exception(env, TT_CODE_ACCESS); } else { helper_raise_exception(env, TT_DATA_ACCESS); } } /* flush neverland mappings created during no-fault mode, so the sequential MMU faults report proper fault types */ if (env->mmuregs[0] & MMU_NF) { tlb_flush(cs, 1); } } #else void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr, bool is_write, bool is_exec, int is_asi, unsigned size) { SPARCCPU *cpu = SPARC_CPU(cs); CPUSPARCState *env = &cpu->env; #ifdef DEBUG_UNASSIGNED printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx "\n", addr, env->pc); #endif if (is_exec) { helper_raise_exception(env, TT_CODE_ACCESS); } else { helper_raise_exception(env, TT_DATA_ACCESS); } } #endif #endif #if !defined(CONFIG_USER_ONLY) void QEMU_NORETURN sparc_cpu_do_unaligned_access(CPUState *cs, vaddr addr, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) { SPARCCPU *cpu = SPARC_CPU(cs); CPUSPARCState *env = &cpu->env; #ifdef DEBUG_UNALIGNED printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx "\n", addr, env->pc); #endif if (retaddr) { cpu_restore_state(CPU(cpu), retaddr); } helper_raise_exception(env, TT_UNALIGNED); } /* try to fill the TLB and return an exception if error. If retaddr is NULL, it means that the function was called in C code (i.e. not from generated code or from helper.c) */ /* XXX: fix it to restore all registers */ void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) { int ret; ret = sparc_cpu_handle_mmu_fault(cs, addr, access_type, mmu_idx); if (ret) { if (retaddr) { cpu_restore_state(cs, retaddr); } cpu_loop_exit(cs); } } #endif