/* * sparc helpers * * Copyright (c) 2003-2005 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include "cpu.h" #include "exec-all.h" #include "qemu-common.h" #include "helper.h" //#define DEBUG_MMU //#define DEBUG_FEATURES //#define DEBUG_PCALL typedef struct sparc_def_t sparc_def_t; struct sparc_def_t { const char *name; target_ulong iu_version; uint32_t fpu_version; uint32_t mmu_version; uint32_t mmu_bm; uint32_t mmu_ctpr_mask; uint32_t mmu_cxr_mask; uint32_t mmu_sfsr_mask; uint32_t mmu_trcr_mask; uint32_t features; }; static int cpu_sparc_find_by_name(sparc_def_t *cpu_def, const char *cpu_model); /* Sparc MMU emulation */ /* thread support */ spinlock_t global_cpu_lock = SPIN_LOCK_UNLOCKED; void cpu_lock(void) { spin_lock(&global_cpu_lock); } void cpu_unlock(void) { spin_unlock(&global_cpu_lock); } #if defined(CONFIG_USER_ONLY) int cpu_sparc_handle_mmu_fault(CPUState *env1, target_ulong address, int rw, int mmu_idx, int is_softmmu) { if (rw & 2) env1->exception_index = TT_TFAULT; else env1->exception_index = TT_DFAULT; return 1; } #else #ifndef TARGET_SPARC64 /* * Sparc V8 Reference MMU (SRMMU) */ static const int access_table[8][8] = { { 0, 0, 0, 0, 2, 0, 3, 3 }, { 0, 0, 0, 0, 2, 0, 0, 0 }, { 2, 2, 0, 0, 0, 2, 3, 3 }, { 2, 2, 0, 0, 0, 2, 0, 0 }, { 2, 0, 2, 0, 2, 2, 3, 3 }, { 2, 0, 2, 0, 2, 0, 2, 0 }, { 2, 2, 2, 0, 2, 2, 3, 3 }, { 2, 2, 2, 0, 2, 2, 2, 0 } }; static const int perm_table[2][8] = { { PAGE_READ, PAGE_READ | PAGE_WRITE, PAGE_READ | PAGE_EXEC, PAGE_READ | PAGE_WRITE | PAGE_EXEC, PAGE_EXEC, PAGE_READ | PAGE_WRITE, PAGE_READ | PAGE_EXEC, PAGE_READ | PAGE_WRITE | PAGE_EXEC }, { PAGE_READ, PAGE_READ | PAGE_WRITE, PAGE_READ | PAGE_EXEC, PAGE_READ | PAGE_WRITE | PAGE_EXEC, PAGE_EXEC, PAGE_READ, 0, 0, } }; static int get_physical_address(CPUState *env, target_phys_addr_t *physical, int *prot, int *access_index, target_ulong address, int rw, int mmu_idx) { int access_perms = 0; target_phys_addr_t pde_ptr; uint32_t pde; target_ulong virt_addr; int error_code = 0, is_dirty, is_user; unsigned long page_offset; is_user = mmu_idx == MMU_USER_IDX; virt_addr = address & TARGET_PAGE_MASK; if ((env->mmuregs[0] & MMU_E) == 0) { /* MMU disabled */ // Boot mode: instruction fetches are taken from PROM if (rw == 2 && (env->mmuregs[0] & env->mmu_bm)) { *physical = env->prom_addr | (address & 0x7ffffULL); *prot = PAGE_READ | PAGE_EXEC; return 0; } *physical = address; *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; return 0; } *access_index = ((rw & 1) << 2) | (rw & 2) | (is_user? 0 : 1); *physical = 0xffffffffffff0000ULL; /* SPARC reference MMU table walk: Context table->L1->L2->PTE */ /* Context base + context number */ pde_ptr = (env->mmuregs[1] << 4) + (env->mmuregs[2] << 2); pde = ldl_phys(pde_ptr); /* Ctx pde */ switch (pde & PTE_ENTRYTYPE_MASK) { default: case 0: /* Invalid */ return 1 << 2; case 2: /* L0 PTE, maybe should not happen? */ case 3: /* Reserved */ return 4 << 2; case 1: /* L0 PDE */ pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4); pde = ldl_phys(pde_ptr); switch (pde & PTE_ENTRYTYPE_MASK) { default: case 0: /* Invalid */ return (1 << 8) | (1 << 2); case 3: /* Reserved */ return (1 << 8) | (4 << 2); case 1: /* L1 PDE */ pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4); pde = ldl_phys(pde_ptr); switch (pde & PTE_ENTRYTYPE_MASK) { default: case 0: /* Invalid */ return (2 << 8) | (1 << 2); case 3: /* Reserved */ return (2 << 8) | (4 << 2); case 1: /* L2 PDE */ pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4); pde = ldl_phys(pde_ptr); switch (pde & PTE_ENTRYTYPE_MASK) { default: case 0: /* Invalid */ return (3 << 8) | (1 << 2); case 1: /* PDE, should not happen */ case 3: /* Reserved */ return (3 << 8) | (4 << 2); case 2: /* L3 PTE */ virt_addr = address & TARGET_PAGE_MASK; page_offset = (address & TARGET_PAGE_MASK) & (TARGET_PAGE_SIZE - 1); } break; case 2: /* L2 PTE */ virt_addr = address & ~0x3ffff; page_offset = address & 0x3ffff; } break; case 2: /* L1 PTE */ virt_addr = address & ~0xffffff; page_offset = address & 0xffffff; } } /* update page modified and dirty bits */ is_dirty = (rw & 1) && !(pde & PG_MODIFIED_MASK); if (!(pde & PG_ACCESSED_MASK) || is_dirty) { pde |= PG_ACCESSED_MASK; if (is_dirty) pde |= PG_MODIFIED_MASK; stl_phys_notdirty(pde_ptr, pde); } /* check access */ access_perms = (pde & PTE_ACCESS_MASK) >> PTE_ACCESS_SHIFT; error_code = access_table[*access_index][access_perms]; if (error_code && !((env->mmuregs[0] & MMU_NF) && is_user)) return error_code; /* the page can be put in the TLB */ *prot = perm_table[is_user][access_perms]; if (!(pde & PG_MODIFIED_MASK)) { /* only set write access if already dirty... otherwise wait for dirty access */ *prot &= ~PAGE_WRITE; } /* Even if large ptes, we map only one 4KB page in the cache to avoid filling it too fast */ *physical = ((target_phys_addr_t)(pde & PTE_ADDR_MASK) << 4) + page_offset; return error_code; } /* Perform address translation */ int cpu_sparc_handle_mmu_fault (CPUState *env, target_ulong address, int rw, int mmu_idx, int is_softmmu) { target_phys_addr_t paddr; target_ulong vaddr; int error_code = 0, prot, ret = 0, access_index; error_code = get_physical_address(env, &paddr, &prot, &access_index, address, rw, mmu_idx); if (error_code == 0) { vaddr = address & TARGET_PAGE_MASK; paddr &= TARGET_PAGE_MASK; #ifdef DEBUG_MMU printf("Translate at " TARGET_FMT_lx " -> " TARGET_FMT_plx ", vaddr " TARGET_FMT_lx "\n", address, paddr, vaddr); #endif ret = tlb_set_page_exec(env, vaddr, paddr, prot, mmu_idx, is_softmmu); return ret; } if (env->mmuregs[3]) /* Fault status register */ env->mmuregs[3] = 1; /* overflow (not read before another fault) */ env->mmuregs[3] |= (access_index << 5) | error_code | 2; env->mmuregs[4] = address; /* Fault address register */ if ((env->mmuregs[0] & MMU_NF) || env->psret == 0) { // No fault mode: if a mapping is available, just override // permissions. If no mapping is available, redirect accesses to // neverland. Fake/overridden mappings will be flushed when // switching to normal mode. vaddr = address & TARGET_PAGE_MASK; prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; ret = tlb_set_page_exec(env, vaddr, paddr, prot, mmu_idx, is_softmmu); return ret; } else { if (rw & 2) env->exception_index = TT_TFAULT; else env->exception_index = TT_DFAULT; return 1; } } target_ulong mmu_probe(CPUState *env, target_ulong address, int mmulev) { target_phys_addr_t pde_ptr; uint32_t pde; /* Context base + context number */ pde_ptr = (target_phys_addr_t)(env->mmuregs[1] << 4) + (env->mmuregs[2] << 2); pde = ldl_phys(pde_ptr); switch (pde & PTE_ENTRYTYPE_MASK) { default: case 0: /* Invalid */ case 2: /* PTE, maybe should not happen? */ case 3: /* Reserved */ return 0; case 1: /* L1 PDE */ if (mmulev == 3) return pde; pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4); pde = ldl_phys(pde_ptr); switch (pde & PTE_ENTRYTYPE_MASK) { default: case 0: /* Invalid */ case 3: /* Reserved */ return 0; case 2: /* L1 PTE */ return pde; case 1: /* L2 PDE */ if (mmulev == 2) return pde; pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4); pde = ldl_phys(pde_ptr); switch (pde & PTE_ENTRYTYPE_MASK) { default: case 0: /* Invalid */ case 3: /* Reserved */ return 0; case 2: /* L2 PTE */ return pde; case 1: /* L3 PDE */ if (mmulev == 1) return pde; pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4); pde = ldl_phys(pde_ptr); switch (pde & PTE_ENTRYTYPE_MASK) { default: case 0: /* Invalid */ case 1: /* PDE, should not happen */ case 3: /* Reserved */ return 0; case 2: /* L3 PTE */ return pde; } } } } return 0; } #ifdef DEBUG_MMU void dump_mmu(CPUState *env) { target_ulong va, va1, va2; unsigned int n, m, o; target_phys_addr_t pde_ptr, pa; uint32_t pde; printf("MMU dump:\n"); pde_ptr = (env->mmuregs[1] << 4) + (env->mmuregs[2] << 2); pde = ldl_phys(pde_ptr); printf("Root ptr: " TARGET_FMT_plx ", ctx: %d\n", (target_phys_addr_t)env->mmuregs[1] << 4, env->mmuregs[2]); for (n = 0, va = 0; n < 256; n++, va += 16 * 1024 * 1024) { pde = mmu_probe(env, va, 2); if (pde) { pa = cpu_get_phys_page_debug(env, va); printf("VA: " TARGET_FMT_lx ", PA: " TARGET_FMT_plx " PDE: " TARGET_FMT_lx "\n", va, pa, pde); for (m = 0, va1 = va; m < 64; m++, va1 += 256 * 1024) { pde = mmu_probe(env, va1, 1); if (pde) { pa = cpu_get_phys_page_debug(env, va1); printf(" VA: " TARGET_FMT_lx ", PA: " TARGET_FMT_plx " PDE: " TARGET_FMT_lx "\n", va1, pa, pde); for (o = 0, va2 = va1; o < 64; o++, va2 += 4 * 1024) { pde = mmu_probe(env, va2, 0); if (pde) { pa = cpu_get_phys_page_debug(env, va2); printf(" VA: " TARGET_FMT_lx ", PA: " TARGET_FMT_plx " PTE: " TARGET_FMT_lx "\n", va2, pa, pde); } } } } } } printf("MMU dump ends\n"); } #endif /* DEBUG_MMU */ #else /* !TARGET_SPARC64 */ /* * UltraSparc IIi I/DMMUs */ static int get_physical_address_data(CPUState *env, target_phys_addr_t *physical, int *prot, target_ulong address, int rw, int is_user) { target_ulong mask; unsigned int i; if ((env->lsu & DMMU_E) == 0) { /* DMMU disabled */ *physical = address; *prot = PAGE_READ | PAGE_WRITE; return 0; } for (i = 0; i < 64; i++) { switch ((env->dtlb_tte[i] >> 61) & 3) { default: case 0x0: // 8k mask = 0xffffffffffffe000ULL; break; case 0x1: // 64k mask = 0xffffffffffff0000ULL; break; case 0x2: // 512k mask = 0xfffffffffff80000ULL; break; case 0x3: // 4M mask = 0xffffffffffc00000ULL; break; } // ctx match, vaddr match? if (env->dmmuregs[1] == (env->dtlb_tag[i] & 0x1fff) && (address & mask) == (env->dtlb_tag[i] & ~0x1fffULL)) { // valid, access ok? if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0 || ((env->dtlb_tte[i] & 0x4) && is_user) || (!(env->dtlb_tte[i] & 0x2) && (rw == 1))) { if (env->dmmuregs[3]) /* Fault status register */ env->dmmuregs[3] = 2; /* overflow (not read before another fault) */ env->dmmuregs[3] |= (is_user << 3) | ((rw == 1) << 2) | 1; env->dmmuregs[4] = address; /* Fault address register */ env->exception_index = TT_DFAULT; #ifdef DEBUG_MMU printf("DFAULT at 0x%" PRIx64 "\n", address); #endif return 1; } *physical = (env->dtlb_tte[i] & mask & 0x1fffffff000ULL) + (address & ~mask & 0x1fffffff000ULL); *prot = PAGE_READ; if (env->dtlb_tte[i] & 0x2) *prot |= PAGE_WRITE; return 0; } } #ifdef DEBUG_MMU printf("DMISS at 0x%" PRIx64 "\n", address); #endif env->exception_index = TT_DMISS; return 1; } static int get_physical_address_code(CPUState *env, target_phys_addr_t *physical, int *prot, target_ulong address, int is_user) { target_ulong mask; unsigned int i; if ((env->lsu & IMMU_E) == 0) { /* IMMU disabled */ *physical = address; *prot = PAGE_EXEC; return 0; } for (i = 0; i < 64; i++) { switch ((env->itlb_tte[i] >> 61) & 3) { default: case 0x0: // 8k mask = 0xffffffffffffe000ULL; break; case 0x1: // 64k mask = 0xffffffffffff0000ULL; break; case 0x2: // 512k mask = 0xfffffffffff80000ULL; break; case 0x3: // 4M mask = 0xffffffffffc00000ULL; break; } // ctx match, vaddr match? if (env->dmmuregs[1] == (env->itlb_tag[i] & 0x1fff) && (address & mask) == (env->itlb_tag[i] & ~0x1fffULL)) { // valid, access ok? if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0 || ((env->itlb_tte[i] & 0x4) && is_user)) { if (env->immuregs[3]) /* Fault status register */ env->immuregs[3] = 2; /* overflow (not read before another fault) */ env->immuregs[3] |= (is_user << 3) | 1; env->exception_index = TT_TFAULT; #ifdef DEBUG_MMU printf("TFAULT at 0x%" PRIx64 "\n", address); #endif return 1; } *physical = (env->itlb_tte[i] & mask & 0x1fffffff000ULL) + (address & ~mask & 0x1fffffff000ULL); *prot = PAGE_EXEC; return 0; } } #ifdef DEBUG_MMU printf("TMISS at 0x%" PRIx64 "\n", address); #endif env->exception_index = TT_TMISS; return 1; } static int get_physical_address(CPUState *env, target_phys_addr_t *physical, int *prot, int *access_index, target_ulong address, int rw, int mmu_idx) { int is_user = mmu_idx == MMU_USER_IDX; if (rw == 2) return get_physical_address_code(env, physical, prot, address, is_user); else return get_physical_address_data(env, physical, prot, address, rw, is_user); } /* Perform address translation */ int cpu_sparc_handle_mmu_fault (CPUState *env, target_ulong address, int rw, int mmu_idx, int is_softmmu) { target_ulong virt_addr, vaddr; target_phys_addr_t paddr; int error_code = 0, prot, ret = 0, access_index; error_code = get_physical_address(env, &paddr, &prot, &access_index, address, rw, mmu_idx); if (error_code == 0) { virt_addr = address & TARGET_PAGE_MASK; vaddr = virt_addr + ((address & TARGET_PAGE_MASK) & (TARGET_PAGE_SIZE - 1)); #ifdef DEBUG_MMU printf("Translate at 0x%" PRIx64 " -> 0x%" PRIx64 ", vaddr 0x%" PRIx64 "\n", address, paddr, vaddr); #endif ret = tlb_set_page_exec(env, vaddr, paddr, prot, mmu_idx, is_softmmu); return ret; } // XXX return 1; } #ifdef DEBUG_MMU void dump_mmu(CPUState *env) { unsigned int i; const char *mask; printf("MMU contexts: Primary: %" PRId64 ", Secondary: %" PRId64 "\n", env->dmmuregs[1], env->dmmuregs[2]); if ((env->lsu & DMMU_E) == 0) { printf("DMMU disabled\n"); } else { printf("DMMU dump:\n"); for (i = 0; i < 64; i++) { switch ((env->dtlb_tte[i] >> 61) & 3) { default: case 0x0: mask = " 8k"; break; case 0x1: mask = " 64k"; break; case 0x2: mask = "512k"; break; case 0x3: mask = " 4M"; break; } if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0) { printf("VA: " TARGET_FMT_lx ", PA: " TARGET_FMT_lx ", %s, %s, %s, %s, ctx %" PRId64 "\n", env->dtlb_tag[i] & ~0x1fffULL, env->dtlb_tte[i] & 0x1ffffffe000ULL, mask, env->dtlb_tte[i] & 0x4? "priv": "user", env->dtlb_tte[i] & 0x2? "RW": "RO", env->dtlb_tte[i] & 0x40? "locked": "unlocked", env->dtlb_tag[i] & 0x1fffULL); } } } if ((env->lsu & IMMU_E) == 0) { printf("IMMU disabled\n"); } else { printf("IMMU dump:\n"); for (i = 0; i < 64; i++) { switch ((env->itlb_tte[i] >> 61) & 3) { default: case 0x0: mask = " 8k"; break; case 0x1: mask = " 64k"; break; case 0x2: mask = "512k"; break; case 0x3: mask = " 4M"; break; } if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0) { printf("VA: " TARGET_FMT_lx ", PA: " TARGET_FMT_lx ", %s, %s, %s, ctx %" PRId64 "\n", env->itlb_tag[i] & ~0x1fffULL, env->itlb_tte[i] & 0x1ffffffe000ULL, mask, env->itlb_tte[i] & 0x4? "priv": "user", env->itlb_tte[i] & 0x40? "locked": "unlocked", env->itlb_tag[i] & 0x1fffULL); } } } } #endif /* DEBUG_MMU */ #endif /* TARGET_SPARC64 */ #endif /* !CONFIG_USER_ONLY */ #if defined(CONFIG_USER_ONLY) target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr) { return addr; } #else target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr) { target_phys_addr_t phys_addr; int prot, access_index; if (get_physical_address(env, &phys_addr, &prot, &access_index, addr, 2, MMU_KERNEL_IDX) != 0) if (get_physical_address(env, &phys_addr, &prot, &access_index, addr, 0, MMU_KERNEL_IDX) != 0) return -1; if (cpu_get_physical_page_desc(phys_addr) == IO_MEM_UNASSIGNED) return -1; return phys_addr; } #endif #ifdef TARGET_SPARC64 #ifdef DEBUG_PCALL static const char * const excp_names[0x50] = { [TT_TFAULT] = "Instruction Access Fault", [TT_TMISS] = "Instruction Access MMU Miss", [TT_CODE_ACCESS] = "Instruction Access Error", [TT_ILL_INSN] = "Illegal Instruction", [TT_PRIV_INSN] = "Privileged Instruction", [TT_NFPU_INSN] = "FPU Disabled", [TT_FP_EXCP] = "FPU Exception", [TT_TOVF] = "Tag Overflow", [TT_CLRWIN] = "Clean Windows", [TT_DIV_ZERO] = "Division By Zero", [TT_DFAULT] = "Data Access Fault", [TT_DMISS] = "Data Access MMU Miss", [TT_DATA_ACCESS] = "Data Access Error", [TT_DPROT] = "Data Protection Error", [TT_UNALIGNED] = "Unaligned Memory Access", [TT_PRIV_ACT] = "Privileged Action", [TT_EXTINT | 0x1] = "External Interrupt 1", [TT_EXTINT | 0x2] = "External Interrupt 2", [TT_EXTINT | 0x3] = "External Interrupt 3", [TT_EXTINT | 0x4] = "External Interrupt 4", [TT_EXTINT | 0x5] = "External Interrupt 5", [TT_EXTINT | 0x6] = "External Interrupt 6", [TT_EXTINT | 0x7] = "External Interrupt 7", [TT_EXTINT | 0x8] = "External Interrupt 8", [TT_EXTINT | 0x9] = "External Interrupt 9", [TT_EXTINT | 0xa] = "External Interrupt 10", [TT_EXTINT | 0xb] = "External Interrupt 11", [TT_EXTINT | 0xc] = "External Interrupt 12", [TT_EXTINT | 0xd] = "External Interrupt 13", [TT_EXTINT | 0xe] = "External Interrupt 14", [TT_EXTINT | 0xf] = "External Interrupt 15", }; #endif void do_interrupt(CPUState *env) { int intno = env->exception_index; #ifdef DEBUG_PCALL if (loglevel & CPU_LOG_INT) { static int count; const char *name; if (intno < 0 || intno >= 0x180 || (intno > 0x4f && intno < 0x80)) name = "Unknown"; else if (intno >= 0x100) name = "Trap Instruction"; else if (intno >= 0xc0) name = "Window Fill"; else if (intno >= 0x80) name = "Window Spill"; else { name = excp_names[intno]; if (!name) name = "Unknown"; } fprintf(logfile, "%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64 " SP=%016" PRIx64 "\n", count, name, intno, env->pc, env->npc, env->regwptr[6]); cpu_dump_state(env, logfile, fprintf, 0); #if 0 { int i; uint8_t *ptr; fprintf(logfile, " code="); ptr = (uint8_t *)env->pc; for(i = 0; i < 16; i++) { fprintf(logfile, " %02x", ldub(ptr + i)); } fprintf(logfile, "\n"); } #endif count++; } #endif #if !defined(CONFIG_USER_ONLY) if (env->tl == MAXTL) { cpu_abort(env, "Trap 0x%04x while trap level is MAXTL, Error state", env->exception_index); return; } #endif env->tsptr->tstate = ((uint64_t)GET_CCR(env) << 32) | ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) | GET_CWP64(env); env->tsptr->tpc = env->pc; env->tsptr->tnpc = env->npc; env->tsptr->tt = intno; change_pstate(PS_PEF | PS_PRIV | PS_AG); if (intno == TT_CLRWIN) cpu_set_cwp(env, (env->cwp - 1) & (NWINDOWS - 1)); else if ((intno & 0x1c0) == TT_SPILL) cpu_set_cwp(env, (env->cwp - env->cansave - 2) & (NWINDOWS - 1)); else if ((intno & 0x1c0) == TT_FILL) cpu_set_cwp(env, (env->cwp + 1) & (NWINDOWS - 1)); env->tbr &= ~0x7fffULL; env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5); if (env->tl < MAXTL - 1) { env->tl++; } else { env->pstate |= PS_RED; if (env->tl != MAXTL) env->tl++; } env->tsptr = &env->ts[env->tl]; env->pc = env->tbr; env->npc = env->pc + 4; env->exception_index = 0; } #else #ifdef DEBUG_PCALL static const char * const excp_names[0x80] = { [TT_TFAULT] = "Instruction Access Fault", [TT_ILL_INSN] = "Illegal Instruction", [TT_PRIV_INSN] = "Privileged Instruction", [TT_NFPU_INSN] = "FPU Disabled", [TT_WIN_OVF] = "Window Overflow", [TT_WIN_UNF] = "Window Underflow", [TT_UNALIGNED] = "Unaligned Memory Access", [TT_FP_EXCP] = "FPU Exception", [TT_DFAULT] = "Data Access Fault", [TT_TOVF] = "Tag Overflow", [TT_EXTINT | 0x1] = "External Interrupt 1", [TT_EXTINT | 0x2] = "External Interrupt 2", [TT_EXTINT | 0x3] = "External Interrupt 3", [TT_EXTINT | 0x4] = "External Interrupt 4", [TT_EXTINT | 0x5] = "External Interrupt 5", [TT_EXTINT | 0x6] = "External Interrupt 6", [TT_EXTINT | 0x7] = "External Interrupt 7", [TT_EXTINT | 0x8] = "External Interrupt 8", [TT_EXTINT | 0x9] = "External Interrupt 9", [TT_EXTINT | 0xa] = "External Interrupt 10", [TT_EXTINT | 0xb] = "External Interrupt 11", [TT_EXTINT | 0xc] = "External Interrupt 12", [TT_EXTINT | 0xd] = "External Interrupt 13", [TT_EXTINT | 0xe] = "External Interrupt 14", [TT_EXTINT | 0xf] = "External Interrupt 15", [TT_TOVF] = "Tag Overflow", [TT_CODE_ACCESS] = "Instruction Access Error", [TT_DATA_ACCESS] = "Data Access Error", [TT_DIV_ZERO] = "Division By Zero", [TT_NCP_INSN] = "Coprocessor Disabled", }; #endif void do_interrupt(CPUState *env) { int cwp, intno = env->exception_index; #ifdef DEBUG_PCALL if (loglevel & CPU_LOG_INT) { static int count; const char *name; if (intno < 0 || intno >= 0x100) name = "Unknown"; else if (intno >= 0x80) name = "Trap Instruction"; else { name = excp_names[intno]; if (!name) name = "Unknown"; } fprintf(logfile, "%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n", count, name, intno, env->pc, env->npc, env->regwptr[6]); cpu_dump_state(env, logfile, fprintf, 0); #if 0 { int i; uint8_t *ptr; fprintf(logfile, " code="); ptr = (uint8_t *)env->pc; for(i = 0; i < 16; i++) { fprintf(logfile, " %02x", ldub(ptr + i)); } fprintf(logfile, "\n"); } #endif count++; } #endif #if !defined(CONFIG_USER_ONLY) if (env->psret == 0) { cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state", env->exception_index); return; } #endif env->psret = 0; cwp = (env->cwp - 1) & (NWINDOWS - 1); cpu_set_cwp(env, cwp); env->regwptr[9] = env->pc; env->regwptr[10] = env->npc; env->psrps = env->psrs; env->psrs = 1; env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4); env->pc = env->tbr; env->npc = env->pc + 4; env->exception_index = 0; } #endif void memcpy32(target_ulong *dst, const target_ulong *src) { dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; dst[4] = src[4]; dst[5] = src[5]; dst[6] = src[6]; dst[7] = src[7]; } void cpu_reset(CPUSPARCState *env) { tlb_flush(env, 1); env->cwp = 0; env->wim = 1; env->regwptr = env->regbase + (env->cwp * 16); #if defined(CONFIG_USER_ONLY) env->user_mode_only = 1; #ifdef TARGET_SPARC64 env->cleanwin = NWINDOWS - 2; env->cansave = NWINDOWS - 2; env->pstate = PS_RMO | PS_PEF | PS_IE; env->asi = 0x82; // Primary no-fault #endif #else env->psret = 0; env->psrs = 1; env->psrps = 1; #ifdef TARGET_SPARC64 env->pstate = PS_PRIV; env->hpstate = HS_PRIV; env->pc = 0x1fff0000000ULL; env->tsptr = &env->ts[env->tl]; #else env->pc = 0; env->mmuregs[0] &= ~(MMU_E | MMU_NF); env->mmuregs[0] |= env->mmu_bm; #endif env->npc = env->pc + 4; #endif } static int cpu_sparc_register(CPUSPARCState *env, const char *cpu_model) { sparc_def_t def1, *def = &def1; if (cpu_sparc_find_by_name(def, cpu_model) < 0) return -1; env->features = def->features; env->cpu_model_str = cpu_model; env->version = def->iu_version; env->fsr = def->fpu_version; #if !defined(TARGET_SPARC64) env->mmu_bm = def->mmu_bm; env->mmu_ctpr_mask = def->mmu_ctpr_mask; env->mmu_cxr_mask = def->mmu_cxr_mask; env->mmu_sfsr_mask = def->mmu_sfsr_mask; env->mmu_trcr_mask = def->mmu_trcr_mask; env->mmuregs[0] |= def->mmu_version; cpu_sparc_set_id(env, 0); #endif return 0; } static void cpu_sparc_close(CPUSPARCState *env) { free(env); } CPUSPARCState *cpu_sparc_init(const char *cpu_model) { CPUSPARCState *env; env = qemu_mallocz(sizeof(CPUSPARCState)); if (!env) return NULL; cpu_exec_init(env); gen_intermediate_code_init(env); if (cpu_sparc_register(env, cpu_model) < 0) { cpu_sparc_close(env); return NULL; } cpu_reset(env); return env; } void cpu_sparc_set_id(CPUSPARCState *env, unsigned int cpu) { #if !defined(TARGET_SPARC64) env->mxccregs[7] = ((cpu + 8) & 0xf) << 24; #endif } static const sparc_def_t sparc_defs[] = { #ifdef TARGET_SPARC64 { .name = "Fujitsu Sparc64", .iu_version = ((0x04ULL << 48) | (0x02ULL << 32) | (0ULL << 24) | (MAXTL << 8) | (NWINDOWS - 1)), .fpu_version = 0x00000000, .mmu_version = 0, .features = CPU_DEFAULT_FEATURES, }, { .name = "Fujitsu Sparc64 III", .iu_version = ((0x04ULL << 48) | (0x03ULL << 32) | (0ULL << 24) | (MAXTL << 8) | (NWINDOWS - 1)), .fpu_version = 0x00000000, .mmu_version = 0, .features = CPU_DEFAULT_FEATURES, }, { .name = "Fujitsu Sparc64 IV", .iu_version = ((0x04ULL << 48) | (0x04ULL << 32) | (0ULL << 24) | (MAXTL << 8) | (NWINDOWS - 1)), .fpu_version = 0x00000000, .mmu_version = 0, .features = CPU_DEFAULT_FEATURES, }, { .name = "Fujitsu Sparc64 V", .iu_version = ((0x04ULL << 48) | (0x05ULL << 32) | (0x51ULL << 24) | (MAXTL << 8) | (NWINDOWS - 1)), .fpu_version = 0x00000000, .mmu_version = 0, .features = CPU_DEFAULT_FEATURES, }, { .name = "TI UltraSparc I", .iu_version = ((0x17ULL << 48) | (0x10ULL << 32) | (0x40ULL << 24) | (MAXTL << 8) | (NWINDOWS - 1)), .fpu_version = 0x00000000, .mmu_version = 0, .features = CPU_DEFAULT_FEATURES, }, { .name = "TI UltraSparc II", .iu_version = ((0x17ULL << 48) | (0x11ULL << 32) | (0x20ULL << 24) | (MAXTL << 8) | (NWINDOWS - 1)), .fpu_version = 0x00000000, .mmu_version = 0, .features = CPU_DEFAULT_FEATURES, }, { .name = "TI UltraSparc IIi", .iu_version = ((0x17ULL << 48) | (0x12ULL << 32) | (0x91ULL << 24) | (MAXTL << 8) | (NWINDOWS - 1)), .fpu_version = 0x00000000, .mmu_version = 0, .features = CPU_DEFAULT_FEATURES, }, { .name = "TI UltraSparc IIe", .iu_version = ((0x17ULL << 48) | (0x13ULL << 32) | (0x14ULL << 24) | (MAXTL << 8) | (NWINDOWS - 1)), .fpu_version = 0x00000000, .mmu_version = 0, .features = CPU_DEFAULT_FEATURES, }, { .name = "Sun UltraSparc III", .iu_version = ((0x3eULL << 48) | (0x14ULL << 32) | (0x34ULL << 24) | (MAXTL << 8) | (NWINDOWS - 1)), .fpu_version = 0x00000000, .mmu_version = 0, .features = CPU_DEFAULT_FEATURES, }, { .name = "Sun UltraSparc III Cu", .iu_version = ((0x3eULL << 48) | (0x15ULL << 32) | (0x41ULL << 24) | (MAXTL << 8) | (NWINDOWS - 1)), .fpu_version = 0x00000000, .mmu_version = 0, .features = CPU_DEFAULT_FEATURES, }, { .name = "Sun UltraSparc IIIi", .iu_version = ((0x3eULL << 48) | (0x16ULL << 32) | (0x34ULL << 24) | (MAXTL << 8) | (NWINDOWS - 1)), .fpu_version = 0x00000000, .mmu_version = 0, .features = CPU_DEFAULT_FEATURES, }, { .name = "Sun UltraSparc IV", .iu_version = ((0x3eULL << 48) | (0x18ULL << 32) | (0x31ULL << 24) | (MAXTL << 8) | (NWINDOWS - 1)), .fpu_version = 0x00000000, .mmu_version = 0, .features = CPU_DEFAULT_FEATURES, }, { .name = "Sun UltraSparc IV+", .iu_version = ((0x3eULL << 48) | (0x19ULL << 32) | (0x22ULL << 24) | (MAXTL << 8) | (NWINDOWS - 1)), .fpu_version = 0x00000000, .mmu_version = 0, .features = CPU_DEFAULT_FEATURES, }, { .name = "Sun UltraSparc IIIi+", .iu_version = ((0x3eULL << 48) | (0x22ULL << 32) | (0ULL << 24) | (MAXTL << 8) | (NWINDOWS - 1)), .fpu_version = 0x00000000, .mmu_version = 0, .features = CPU_DEFAULT_FEATURES, }, { .name = "NEC UltraSparc I", .iu_version = ((0x22ULL << 48) | (0x10ULL << 32) | (0x40ULL << 24) | (MAXTL << 8) | (NWINDOWS - 1)), .fpu_version = 0x00000000, .mmu_version = 0, .features = CPU_DEFAULT_FEATURES, }, #else { .name = "Fujitsu MB86900", .iu_version = 0x00 << 24, /* Impl 0, ver 0 */ .fpu_version = 4 << 17, /* FPU version 4 (Meiko) */ .mmu_version = 0x00 << 24, /* Impl 0, ver 0 */ .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0x007ffff0, .mmu_cxr_mask = 0x0000003f, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .features = CPU_FEATURE_FLOAT | CPU_FEATURE_FSMULD, }, { .name = "Fujitsu MB86904", .iu_version = 0x04 << 24, /* Impl 0, ver 4 */ .fpu_version = 4 << 17, /* FPU version 4 (Meiko) */ .mmu_version = 0x04 << 24, /* Impl 0, ver 4 */ .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0x00ffffc0, .mmu_cxr_mask = 0x000000ff, .mmu_sfsr_mask = 0x00016fff, .mmu_trcr_mask = 0x00ffffff, .features = CPU_DEFAULT_FEATURES, }, { .name = "Fujitsu MB86907", .iu_version = 0x05 << 24, /* Impl 0, ver 5 */ .fpu_version = 4 << 17, /* FPU version 4 (Meiko) */ .mmu_version = 0x05 << 24, /* Impl 0, ver 5 */ .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0xffffffc0, .mmu_cxr_mask = 0x000000ff, .mmu_sfsr_mask = 0x00016fff, .mmu_trcr_mask = 0xffffffff, .features = CPU_DEFAULT_FEATURES, }, { .name = "LSI L64811", .iu_version = 0x10 << 24, /* Impl 1, ver 0 */ .fpu_version = 1 << 17, /* FPU version 1 (LSI L64814) */ .mmu_version = 0x10 << 24, .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0x007ffff0, .mmu_cxr_mask = 0x0000003f, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .features = CPU_FEATURE_FLOAT | CPU_FEATURE_SWAP | CPU_FEATURE_FSQRT | CPU_FEATURE_FSMULD, }, { .name = "Cypress CY7C601", .iu_version = 0x11 << 24, /* Impl 1, ver 1 */ .fpu_version = 3 << 17, /* FPU version 3 (Cypress CY7C602) */ .mmu_version = 0x10 << 24, .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0x007ffff0, .mmu_cxr_mask = 0x0000003f, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .features = CPU_FEATURE_FLOAT | CPU_FEATURE_SWAP | CPU_FEATURE_FSQRT | CPU_FEATURE_FSMULD, }, { .name = "Cypress CY7C611", .iu_version = 0x13 << 24, /* Impl 1, ver 3 */ .fpu_version = 3 << 17, /* FPU version 3 (Cypress CY7C602) */ .mmu_version = 0x10 << 24, .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0x007ffff0, .mmu_cxr_mask = 0x0000003f, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .features = CPU_FEATURE_FLOAT | CPU_FEATURE_SWAP | CPU_FEATURE_FSQRT | CPU_FEATURE_FSMULD, }, { .name = "TI SuperSparc II", .iu_version = 0x40000000, .fpu_version = 0 << 17, .mmu_version = 0x04000000, .mmu_bm = 0x00002000, .mmu_ctpr_mask = 0xffffffc0, .mmu_cxr_mask = 0x0000ffff, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .features = CPU_DEFAULT_FEATURES, }, { .name = "TI MicroSparc I", .iu_version = 0x41000000, .fpu_version = 4 << 17, .mmu_version = 0x41000000, .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0x007ffff0, .mmu_cxr_mask = 0x0000003f, .mmu_sfsr_mask = 0x00016fff, .mmu_trcr_mask = 0x0000003f, .features = CPU_FEATURE_FLOAT | CPU_FEATURE_SWAP | CPU_FEATURE_MUL | CPU_FEATURE_DIV | CPU_FEATURE_FLUSH | CPU_FEATURE_FSQRT | CPU_FEATURE_FMUL, }, { .name = "TI MicroSparc II", .iu_version = 0x42000000, .fpu_version = 4 << 17, .mmu_version = 0x02000000, .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0x00ffffc0, .mmu_cxr_mask = 0x000000ff, .mmu_sfsr_mask = 0x00016fff, .mmu_trcr_mask = 0x00ffffff, .features = CPU_DEFAULT_FEATURES, }, { .name = "TI MicroSparc IIep", .iu_version = 0x42000000, .fpu_version = 4 << 17, .mmu_version = 0x04000000, .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0x00ffffc0, .mmu_cxr_mask = 0x000000ff, .mmu_sfsr_mask = 0x00016bff, .mmu_trcr_mask = 0x00ffffff, .features = CPU_DEFAULT_FEATURES, }, { .name = "TI SuperSparc 40", // STP1020NPGA .iu_version = 0x41000000, .fpu_version = 0 << 17, .mmu_version = 0x00000000, .mmu_bm = 0x00002000, .mmu_ctpr_mask = 0xffffffc0, .mmu_cxr_mask = 0x0000ffff, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .features = CPU_DEFAULT_FEATURES, }, { .name = "TI SuperSparc 50", // STP1020PGA .iu_version = 0x40000000, .fpu_version = 0 << 17, .mmu_version = 0x04000000, .mmu_bm = 0x00002000, .mmu_ctpr_mask = 0xffffffc0, .mmu_cxr_mask = 0x0000ffff, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .features = CPU_DEFAULT_FEATURES, }, { .name = "TI SuperSparc 51", .iu_version = 0x43000000, .fpu_version = 0 << 17, .mmu_version = 0x04000000, .mmu_bm = 0x00002000, .mmu_ctpr_mask = 0xffffffc0, .mmu_cxr_mask = 0x0000ffff, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .features = CPU_DEFAULT_FEATURES, }, { .name = "TI SuperSparc 60", // STP1020APGA .iu_version = 0x40000000, .fpu_version = 0 << 17, .mmu_version = 0x03000000, .mmu_bm = 0x00002000, .mmu_ctpr_mask = 0xffffffc0, .mmu_cxr_mask = 0x0000ffff, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .features = CPU_DEFAULT_FEATURES, }, { .name = "TI SuperSparc 61", .iu_version = 0x44000000, .fpu_version = 0 << 17, .mmu_version = 0x04000000, .mmu_bm = 0x00002000, .mmu_ctpr_mask = 0xffffffc0, .mmu_cxr_mask = 0x0000ffff, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .features = CPU_DEFAULT_FEATURES, }, { .name = "Ross RT625", .iu_version = 0x1e000000, .fpu_version = 1 << 17, .mmu_version = 0x1e000000, .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0x007ffff0, .mmu_cxr_mask = 0x0000003f, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .features = CPU_DEFAULT_FEATURES, }, { .name = "Ross RT620", .iu_version = 0x1f000000, .fpu_version = 1 << 17, .mmu_version = 0x1f000000, .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0x007ffff0, .mmu_cxr_mask = 0x0000003f, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .features = CPU_DEFAULT_FEATURES, }, { .name = "BIT B5010", .iu_version = 0x20000000, .fpu_version = 0 << 17, /* B5010/B5110/B5120/B5210 */ .mmu_version = 0x20000000, .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0x007ffff0, .mmu_cxr_mask = 0x0000003f, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .features = CPU_FEATURE_FLOAT | CPU_FEATURE_SWAP | CPU_FEATURE_FSQRT | CPU_FEATURE_FSMULD, }, { .name = "Matsushita MN10501", .iu_version = 0x50000000, .fpu_version = 0 << 17, .mmu_version = 0x50000000, .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0x007ffff0, .mmu_cxr_mask = 0x0000003f, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .features = CPU_FEATURE_FLOAT | CPU_FEATURE_MUL | CPU_FEATURE_FSQRT | CPU_FEATURE_FSMULD, }, { .name = "Weitek W8601", .iu_version = 0x90 << 24, /* Impl 9, ver 0 */ .fpu_version = 3 << 17, /* FPU version 3 (Weitek WTL3170/2) */ .mmu_version = 0x10 << 24, .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0x007ffff0, .mmu_cxr_mask = 0x0000003f, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .features = CPU_DEFAULT_FEATURES, }, { .name = "LEON2", .iu_version = 0xf2000000, .fpu_version = 4 << 17, /* FPU version 4 (Meiko) */ .mmu_version = 0xf2000000, .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0x007ffff0, .mmu_cxr_mask = 0x0000003f, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .features = CPU_DEFAULT_FEATURES, }, { .name = "LEON3", .iu_version = 0xf3000000, .fpu_version = 4 << 17, /* FPU version 4 (Meiko) */ .mmu_version = 0xf3000000, .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0x007ffff0, .mmu_cxr_mask = 0x0000003f, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .features = CPU_DEFAULT_FEATURES, }, #endif }; static const char * const feature_name[] = { "float", "float128", "swap", "mul", "div", "flush", "fsqrt", "fmul", "vis1", "vis2", "fsmuld", }; static void print_features(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...), uint32_t features, const char *prefix) { unsigned int i; for (i = 0; i < ARRAY_SIZE(feature_name); i++) if (feature_name[i] && (features & (1 << i))) { if (prefix) (*cpu_fprintf)(f, "%s", prefix); (*cpu_fprintf)(f, "%s ", feature_name[i]); } } static void add_flagname_to_bitmaps(const char *flagname, uint32_t *features) { unsigned int i; for (i = 0; i < ARRAY_SIZE(feature_name); i++) if (feature_name[i] && !strcmp(flagname, feature_name[i])) { *features |= 1 << i; return; } fprintf(stderr, "CPU feature %s not found\n", flagname); } static int cpu_sparc_find_by_name(sparc_def_t *cpu_def, const char *cpu_model) { unsigned int i; const sparc_def_t *def = NULL; char *s = strdup(cpu_model); char *featurestr, *name = strtok(s, ","); uint32_t plus_features = 0; uint32_t minus_features = 0; long long iu_version; uint32_t fpu_version, mmu_version; for (i = 0; i < sizeof(sparc_defs) / sizeof(sparc_def_t); i++) { if (strcasecmp(name, sparc_defs[i].name) == 0) { def = &sparc_defs[i]; } } if (!def) goto error; memcpy(cpu_def, def, sizeof(*def)); featurestr = strtok(NULL, ","); while (featurestr) { char *val; if (featurestr[0] == '+') { add_flagname_to_bitmaps(featurestr + 1, &plus_features); } else if (featurestr[0] == '-') { add_flagname_to_bitmaps(featurestr + 1, &minus_features); } else if ((val = strchr(featurestr, '='))) { *val = 0; val++; if (!strcmp(featurestr, "iu_version")) { char *err; iu_version = strtoll(val, &err, 0); if (!*val || *err) { fprintf(stderr, "bad numerical value %s\n", val); goto error; } cpu_def->iu_version = iu_version; #ifdef DEBUG_FEATURES fprintf(stderr, "iu_version %llx\n", iu_version); #endif } else if (!strcmp(featurestr, "fpu_version")) { char *err; fpu_version = strtol(val, &err, 0); if (!*val || *err) { fprintf(stderr, "bad numerical value %s\n", val); goto error; } cpu_def->fpu_version = fpu_version; #ifdef DEBUG_FEATURES fprintf(stderr, "fpu_version %llx\n", fpu_version); #endif } else if (!strcmp(featurestr, "mmu_version")) { char *err; mmu_version = strtol(val, &err, 0); if (!*val || *err) { fprintf(stderr, "bad numerical value %s\n", val); goto error; } cpu_def->mmu_version = mmu_version; #ifdef DEBUG_FEATURES fprintf(stderr, "mmu_version %llx\n", mmu_version); #endif } else { fprintf(stderr, "unrecognized feature %s\n", featurestr); goto error; } } else { fprintf(stderr, "feature string `%s' not in format " "(+feature|-feature|feature=xyz)\n", featurestr); goto error; } featurestr = strtok(NULL, ","); } cpu_def->features |= plus_features; cpu_def->features &= ~minus_features; #ifdef DEBUG_FEATURES print_features(stderr, fprintf, cpu_def->features, NULL); #endif free(s); return 0; error: free(s); return -1; } void sparc_cpu_list(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...)) { unsigned int i; for (i = 0; i < sizeof(sparc_defs) / sizeof(sparc_def_t); i++) { (*cpu_fprintf)(f, "Sparc %16s IU " TARGET_FMT_lx " FPU %08x MMU %08x ", sparc_defs[i].name, sparc_defs[i].iu_version, sparc_defs[i].fpu_version, sparc_defs[i].mmu_version); print_features(f, cpu_fprintf, CPU_DEFAULT_FEATURES & ~sparc_defs[i].features, "-"); print_features(f, cpu_fprintf, ~CPU_DEFAULT_FEATURES & sparc_defs[i].features, "+"); (*cpu_fprintf)(f, "\n"); } (*cpu_fprintf)(f, "CPU feature flags (+/-): "); print_features(f, cpu_fprintf, -1, NULL); (*cpu_fprintf)(f, "\n"); (*cpu_fprintf)(f, "Numerical features (=): iu_version fpu_version " "mmu_version\n"); } #define GET_FLAG(a,b) ((env->psr & a)?b:'-') void cpu_dump_state(CPUState *env, FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...), int flags) { int i, x; cpu_fprintf(f, "pc: " TARGET_FMT_lx " npc: " TARGET_FMT_lx "\n", env->pc, env->npc); cpu_fprintf(f, "General Registers:\n"); for (i = 0; i < 4; i++) cpu_fprintf(f, "%%g%c: " TARGET_FMT_lx "\t", i + '0', env->gregs[i]); cpu_fprintf(f, "\n"); for (; i < 8; i++) cpu_fprintf(f, "%%g%c: " TARGET_FMT_lx "\t", i + '0', env->gregs[i]); cpu_fprintf(f, "\nCurrent Register Window:\n"); for (x = 0; x < 3; x++) { for (i = 0; i < 4; i++) cpu_fprintf(f, "%%%c%d: " TARGET_FMT_lx "\t", (x == 0 ? 'o' : (x == 1 ? 'l' : 'i')), i, env->regwptr[i + x * 8]); cpu_fprintf(f, "\n"); for (; i < 8; i++) cpu_fprintf(f, "%%%c%d: " TARGET_FMT_lx "\t", (x == 0 ? 'o' : x == 1 ? 'l' : 'i'), i, env->regwptr[i + x * 8]); cpu_fprintf(f, "\n"); } cpu_fprintf(f, "\nFloating Point Registers:\n"); for (i = 0; i < 32; i++) { if ((i & 3) == 0) cpu_fprintf(f, "%%f%02d:", i); cpu_fprintf(f, " %016lf", env->fpr[i]); if ((i & 3) == 3) cpu_fprintf(f, "\n"); } #ifdef TARGET_SPARC64 cpu_fprintf(f, "pstate: 0x%08x ccr: 0x%02x asi: 0x%02x tl: %d fprs: %d\n", env->pstate, GET_CCR(env), env->asi, env->tl, env->fprs); cpu_fprintf(f, "cansave: %d canrestore: %d otherwin: %d wstate %d " "cleanwin %d cwp %d\n", env->cansave, env->canrestore, env->otherwin, env->wstate, env->cleanwin, NWINDOWS - 1 - env->cwp); #else cpu_fprintf(f, "psr: 0x%08x -> %c%c%c%c %c%c%c wim: 0x%08x\n", GET_PSR(env), GET_FLAG(PSR_ZERO, 'Z'), GET_FLAG(PSR_OVF, 'V'), GET_FLAG(PSR_NEG, 'N'), GET_FLAG(PSR_CARRY, 'C'), env->psrs?'S':'-', env->psrps?'P':'-', env->psret?'E':'-', env->wim); #endif cpu_fprintf(f, "fsr: 0x%08x\n", GET_FSR32(env)); } #ifdef TARGET_SPARC64 #if !defined(CONFIG_USER_ONLY) #include "qemu-common.h" #include "hw/irq.h" #include "qemu-timer.h" #endif void helper_tick_set_count(void *opaque, uint64_t count) { #if !defined(CONFIG_USER_ONLY) ptimer_set_count(opaque, -count); #endif } uint64_t helper_tick_get_count(void *opaque) { #if !defined(CONFIG_USER_ONLY) return -ptimer_get_count(opaque); #else return 0; #endif } void helper_tick_set_limit(void *opaque, uint64_t limit) { #if !defined(CONFIG_USER_ONLY) ptimer_set_limit(opaque, -limit, 0); #endif } #endif