/* * sparc helpers * * Copyright (c) 2003-2005 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include #include #include #include #include #include #include "cpu.h" #include "exec-all.h" #include "qemu-common.h" //#define DEBUG_MMU //#define DEBUG_FEATURES #ifdef DEBUG_MMU #define DPRINTF_MMU(fmt, ...) \ do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0) #else #define DPRINTF_MMU(fmt, ...) do {} while (0) #endif static int cpu_sparc_find_by_name(sparc_def_t *cpu_def, const char *cpu_model); /* Sparc MMU emulation */ /* thread support */ static spinlock_t global_cpu_lock = SPIN_LOCK_UNLOCKED; void cpu_lock(void) { spin_lock(&global_cpu_lock); } void cpu_unlock(void) { spin_unlock(&global_cpu_lock); } #if defined(CONFIG_USER_ONLY) int cpu_sparc_handle_mmu_fault(CPUState *env1, target_ulong address, int rw, int mmu_idx, int is_softmmu) { if (rw & 2) env1->exception_index = TT_TFAULT; else env1->exception_index = TT_DFAULT; return 1; } #else #ifndef TARGET_SPARC64 /* * Sparc V8 Reference MMU (SRMMU) */ static const int access_table[8][8] = { { 0, 0, 0, 0, 8, 0, 12, 12 }, { 0, 0, 0, 0, 8, 0, 0, 0 }, { 8, 8, 0, 0, 0, 8, 12, 12 }, { 8, 8, 0, 0, 0, 8, 0, 0 }, { 8, 0, 8, 0, 8, 8, 12, 12 }, { 8, 0, 8, 0, 8, 0, 8, 0 }, { 8, 8, 8, 0, 8, 8, 12, 12 }, { 8, 8, 8, 0, 8, 8, 8, 0 } }; static const int perm_table[2][8] = { { PAGE_READ, PAGE_READ | PAGE_WRITE, PAGE_READ | PAGE_EXEC, PAGE_READ | PAGE_WRITE | PAGE_EXEC, PAGE_EXEC, PAGE_READ | PAGE_WRITE, PAGE_READ | PAGE_EXEC, PAGE_READ | PAGE_WRITE | PAGE_EXEC }, { PAGE_READ, PAGE_READ | PAGE_WRITE, PAGE_READ | PAGE_EXEC, PAGE_READ | PAGE_WRITE | PAGE_EXEC, PAGE_EXEC, PAGE_READ, 0, 0, } }; static int get_physical_address(CPUState *env, target_phys_addr_t *physical, int *prot, int *access_index, target_ulong address, int rw, int mmu_idx, target_ulong *page_size) { int access_perms = 0; target_phys_addr_t pde_ptr; uint32_t pde; int error_code = 0, is_dirty, is_user; unsigned long page_offset; is_user = mmu_idx == MMU_USER_IDX; if ((env->mmuregs[0] & MMU_E) == 0) { /* MMU disabled */ *page_size = TARGET_PAGE_SIZE; // Boot mode: instruction fetches are taken from PROM if (rw == 2 && (env->mmuregs[0] & env->def->mmu_bm)) { *physical = env->prom_addr | (address & 0x7ffffULL); *prot = PAGE_READ | PAGE_EXEC; return 0; } *physical = address; *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; return 0; } *access_index = ((rw & 1) << 2) | (rw & 2) | (is_user? 0 : 1); *physical = 0xffffffffffff0000ULL; /* SPARC reference MMU table walk: Context table->L1->L2->PTE */ /* Context base + context number */ pde_ptr = (env->mmuregs[1] << 4) + (env->mmuregs[2] << 2); pde = ldl_phys(pde_ptr); /* Ctx pde */ switch (pde & PTE_ENTRYTYPE_MASK) { default: case 0: /* Invalid */ return 1 << 2; case 2: /* L0 PTE, maybe should not happen? */ case 3: /* Reserved */ return 4 << 2; case 1: /* L0 PDE */ pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4); pde = ldl_phys(pde_ptr); switch (pde & PTE_ENTRYTYPE_MASK) { default: case 0: /* Invalid */ return (1 << 8) | (1 << 2); case 3: /* Reserved */ return (1 << 8) | (4 << 2); case 1: /* L1 PDE */ pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4); pde = ldl_phys(pde_ptr); switch (pde & PTE_ENTRYTYPE_MASK) { default: case 0: /* Invalid */ return (2 << 8) | (1 << 2); case 3: /* Reserved */ return (2 << 8) | (4 << 2); case 1: /* L2 PDE */ pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4); pde = ldl_phys(pde_ptr); switch (pde & PTE_ENTRYTYPE_MASK) { default: case 0: /* Invalid */ return (3 << 8) | (1 << 2); case 1: /* PDE, should not happen */ case 3: /* Reserved */ return (3 << 8) | (4 << 2); case 2: /* L3 PTE */ page_offset = (address & TARGET_PAGE_MASK) & (TARGET_PAGE_SIZE - 1); } *page_size = TARGET_PAGE_SIZE; break; case 2: /* L2 PTE */ page_offset = address & 0x3ffff; *page_size = 0x40000; } break; case 2: /* L1 PTE */ page_offset = address & 0xffffff; *page_size = 0x1000000; } } /* check access */ access_perms = (pde & PTE_ACCESS_MASK) >> PTE_ACCESS_SHIFT; error_code = access_table[*access_index][access_perms]; if (error_code && !((env->mmuregs[0] & MMU_NF) && is_user)) return error_code; /* update page modified and dirty bits */ is_dirty = (rw & 1) && !(pde & PG_MODIFIED_MASK); if (!(pde & PG_ACCESSED_MASK) || is_dirty) { pde |= PG_ACCESSED_MASK; if (is_dirty) pde |= PG_MODIFIED_MASK; stl_phys_notdirty(pde_ptr, pde); } /* the page can be put in the TLB */ *prot = perm_table[is_user][access_perms]; if (!(pde & PG_MODIFIED_MASK)) { /* only set write access if already dirty... otherwise wait for dirty access */ *prot &= ~PAGE_WRITE; } /* Even if large ptes, we map only one 4KB page in the cache to avoid filling it too fast */ *physical = ((target_phys_addr_t)(pde & PTE_ADDR_MASK) << 4) + page_offset; return error_code; } /* Perform address translation */ int cpu_sparc_handle_mmu_fault (CPUState *env, target_ulong address, int rw, int mmu_idx, int is_softmmu) { target_phys_addr_t paddr; target_ulong vaddr; target_ulong page_size; int error_code = 0, prot, access_index; error_code = get_physical_address(env, &paddr, &prot, &access_index, address, rw, mmu_idx, &page_size); if (error_code == 0) { vaddr = address & TARGET_PAGE_MASK; paddr &= TARGET_PAGE_MASK; #ifdef DEBUG_MMU printf("Translate at " TARGET_FMT_lx " -> " TARGET_FMT_plx ", vaddr " TARGET_FMT_lx "\n", address, paddr, vaddr); #endif tlb_set_page(env, vaddr, paddr, prot, mmu_idx, page_size); return 0; } if (env->mmuregs[3]) /* Fault status register */ env->mmuregs[3] = 1; /* overflow (not read before another fault) */ env->mmuregs[3] |= (access_index << 5) | error_code | 2; env->mmuregs[4] = address; /* Fault address register */ if ((env->mmuregs[0] & MMU_NF) || env->psret == 0) { // No fault mode: if a mapping is available, just override // permissions. If no mapping is available, redirect accesses to // neverland. Fake/overridden mappings will be flushed when // switching to normal mode. vaddr = address & TARGET_PAGE_MASK; prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; tlb_set_page(env, vaddr, paddr, prot, mmu_idx, TARGET_PAGE_SIZE); return 0; } else { if (rw & 2) env->exception_index = TT_TFAULT; else env->exception_index = TT_DFAULT; return 1; } } target_ulong mmu_probe(CPUState *env, target_ulong address, int mmulev) { target_phys_addr_t pde_ptr; uint32_t pde; /* Context base + context number */ pde_ptr = (target_phys_addr_t)(env->mmuregs[1] << 4) + (env->mmuregs[2] << 2); pde = ldl_phys(pde_ptr); switch (pde & PTE_ENTRYTYPE_MASK) { default: case 0: /* Invalid */ case 2: /* PTE, maybe should not happen? */ case 3: /* Reserved */ return 0; case 1: /* L1 PDE */ if (mmulev == 3) return pde; pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4); pde = ldl_phys(pde_ptr); switch (pde & PTE_ENTRYTYPE_MASK) { default: case 0: /* Invalid */ case 3: /* Reserved */ return 0; case 2: /* L1 PTE */ return pde; case 1: /* L2 PDE */ if (mmulev == 2) return pde; pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4); pde = ldl_phys(pde_ptr); switch (pde & PTE_ENTRYTYPE_MASK) { default: case 0: /* Invalid */ case 3: /* Reserved */ return 0; case 2: /* L2 PTE */ return pde; case 1: /* L3 PDE */ if (mmulev == 1) return pde; pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4); pde = ldl_phys(pde_ptr); switch (pde & PTE_ENTRYTYPE_MASK) { default: case 0: /* Invalid */ case 1: /* PDE, should not happen */ case 3: /* Reserved */ return 0; case 2: /* L3 PTE */ return pde; } } } } return 0; } #ifdef DEBUG_MMU void dump_mmu(CPUState *env) { target_ulong va, va1, va2; unsigned int n, m, o; target_phys_addr_t pde_ptr, pa; uint32_t pde; printf("MMU dump:\n"); pde_ptr = (env->mmuregs[1] << 4) + (env->mmuregs[2] << 2); pde = ldl_phys(pde_ptr); printf("Root ptr: " TARGET_FMT_plx ", ctx: %d\n", (target_phys_addr_t)env->mmuregs[1] << 4, env->mmuregs[2]); for (n = 0, va = 0; n < 256; n++, va += 16 * 1024 * 1024) { pde = mmu_probe(env, va, 2); if (pde) { pa = cpu_get_phys_page_debug(env, va); printf("VA: " TARGET_FMT_lx ", PA: " TARGET_FMT_plx " PDE: " TARGET_FMT_lx "\n", va, pa, pde); for (m = 0, va1 = va; m < 64; m++, va1 += 256 * 1024) { pde = mmu_probe(env, va1, 1); if (pde) { pa = cpu_get_phys_page_debug(env, va1); printf(" VA: " TARGET_FMT_lx ", PA: " TARGET_FMT_plx " PDE: " TARGET_FMT_lx "\n", va1, pa, pde); for (o = 0, va2 = va1; o < 64; o++, va2 += 4 * 1024) { pde = mmu_probe(env, va2, 0); if (pde) { pa = cpu_get_phys_page_debug(env, va2); printf(" VA: " TARGET_FMT_lx ", PA: " TARGET_FMT_plx " PTE: " TARGET_FMT_lx "\n", va2, pa, pde); } } } } } } printf("MMU dump ends\n"); } #endif /* DEBUG_MMU */ #else /* !TARGET_SPARC64 */ // 41 bit physical address space static inline target_phys_addr_t ultrasparc_truncate_physical(uint64_t x) { return x & 0x1ffffffffffULL; } /* * UltraSparc IIi I/DMMUs */ // Returns true if TTE tag is valid and matches virtual address value in context // requires virtual address mask value calculated from TTE entry size static inline int ultrasparc_tag_match(SparcTLBEntry *tlb, uint64_t address, uint64_t context, target_phys_addr_t *physical) { uint64_t mask; switch ((tlb->tte >> 61) & 3) { default: case 0x0: // 8k mask = 0xffffffffffffe000ULL; break; case 0x1: // 64k mask = 0xffffffffffff0000ULL; break; case 0x2: // 512k mask = 0xfffffffffff80000ULL; break; case 0x3: // 4M mask = 0xffffffffffc00000ULL; break; } // valid, context match, virtual address match? if (TTE_IS_VALID(tlb->tte) && (TTE_IS_GLOBAL(tlb->tte) || tlb_compare_context(tlb, context)) && compare_masked(address, tlb->tag, mask)) { // decode physical address *physical = ((tlb->tte & mask) | (address & ~mask)) & 0x1ffffffe000ULL; return 1; } return 0; } static int get_physical_address_data(CPUState *env, target_phys_addr_t *physical, int *prot, target_ulong address, int rw, int mmu_idx) { unsigned int i; uint64_t context; int is_user = (mmu_idx == MMU_USER_IDX || mmu_idx == MMU_USER_SECONDARY_IDX); if ((env->lsu & DMMU_E) == 0) { /* DMMU disabled */ *physical = ultrasparc_truncate_physical(address); *prot = PAGE_READ | PAGE_WRITE; return 0; } switch(mmu_idx) { case MMU_USER_IDX: case MMU_KERNEL_IDX: context = env->dmmu.mmu_primary_context & 0x1fff; break; case MMU_USER_SECONDARY_IDX: case MMU_KERNEL_SECONDARY_IDX: context = env->dmmu.mmu_secondary_context & 0x1fff; break; case MMU_NUCLEUS_IDX: default: context = 0; break; } for (i = 0; i < 64; i++) { // ctx match, vaddr match, valid? if (ultrasparc_tag_match(&env->dtlb[i], address, context, physical)) { uint8_t fault_type = 0; // access ok? if ((env->dtlb[i].tte & 0x4) && is_user) { fault_type |= 1; /* privilege violation */ env->exception_index = TT_DFAULT; DPRINTF_MMU("DFAULT at %" PRIx64 " context %" PRIx64 " mmu_idx=%d tl=%d\n", address, context, mmu_idx, env->tl); } else if (!(env->dtlb[i].tte & 0x2) && (rw == 1)) { env->exception_index = TT_DPROT; DPRINTF_MMU("DPROT at %" PRIx64 " context %" PRIx64 " mmu_idx=%d tl=%d\n", address, context, mmu_idx, env->tl); } else { *prot = PAGE_READ; if (env->dtlb[i].tte & 0x2) *prot |= PAGE_WRITE; TTE_SET_USED(env->dtlb[i].tte); return 0; } if (env->dmmu.sfsr & 1) /* Fault status register */ env->dmmu.sfsr = 2; /* overflow (not read before another fault) */ env->dmmu.sfsr |= (is_user << 3) | ((rw == 1) << 2) | 1; env->dmmu.sfsr |= (fault_type << 7); env->dmmu.sfar = address; /* Fault address register */ return 1; } } DPRINTF_MMU("DMISS at %" PRIx64 " context %" PRIx64 "\n", address, context); env->dmmu.tag_access = (address & ~0x1fffULL) | context; env->exception_index = TT_DMISS; return 1; } static int get_physical_address_code(CPUState *env, target_phys_addr_t *physical, int *prot, target_ulong address, int mmu_idx) { unsigned int i; uint64_t context; int is_user = (mmu_idx == MMU_USER_IDX || mmu_idx == MMU_USER_SECONDARY_IDX); if ((env->lsu & IMMU_E) == 0 || (env->pstate & PS_RED) != 0) { /* IMMU disabled */ *physical = ultrasparc_truncate_physical(address); *prot = PAGE_EXEC; return 0; } if (env->tl == 0) { /* PRIMARY context */ context = env->dmmu.mmu_primary_context & 0x1fff; } else { /* NUCLEUS context */ context = 0; } for (i = 0; i < 64; i++) { // ctx match, vaddr match, valid? if (ultrasparc_tag_match(&env->itlb[i], address, context, physical)) { // access ok? if ((env->itlb[i].tte & 0x4) && is_user) { if (env->immu.sfsr) /* Fault status register */ env->immu.sfsr = 2; /* overflow (not read before another fault) */ env->immu.sfsr |= (is_user << 3) | 1; env->exception_index = TT_TFAULT; DPRINTF_MMU("TFAULT at %" PRIx64 " context %" PRIx64 "\n", address, context); return 1; } *prot = PAGE_EXEC; TTE_SET_USED(env->itlb[i].tte); return 0; } } DPRINTF_MMU("TMISS at %" PRIx64 " context %" PRIx64 "\n", address, context); /* Context is stored in DMMU (dmmuregs[1]) also for IMMU */ env->immu.tag_access = (address & ~0x1fffULL) | context; env->exception_index = TT_TMISS; return 1; } static int get_physical_address(CPUState *env, target_phys_addr_t *physical, int *prot, int *access_index, target_ulong address, int rw, int mmu_idx, target_ulong *page_size) { /* ??? We treat everything as a small page, then explicitly flush everything when an entry is evicted. */ *page_size = TARGET_PAGE_SIZE; if (rw == 2) return get_physical_address_code(env, physical, prot, address, mmu_idx); else return get_physical_address_data(env, physical, prot, address, rw, mmu_idx); } /* Perform address translation */ int cpu_sparc_handle_mmu_fault (CPUState *env, target_ulong address, int rw, int mmu_idx, int is_softmmu) { target_ulong virt_addr, vaddr; target_phys_addr_t paddr; target_ulong page_size; int error_code = 0, prot, access_index; error_code = get_physical_address(env, &paddr, &prot, &access_index, address, rw, mmu_idx, &page_size); if (error_code == 0) { virt_addr = address & TARGET_PAGE_MASK; vaddr = virt_addr + ((address & TARGET_PAGE_MASK) & (TARGET_PAGE_SIZE - 1)); DPRINTF_MMU("Translate at %" PRIx64 " -> %" PRIx64 "," " vaddr %" PRIx64 " mmu_idx=%d" " tl=%d" " primary context=%" PRIx64 " secondary context=%" PRIx64 "\n", address, paddr, vaddr, mmu_idx, env->tl, env->dmmu.mmu_primary_context, env->dmmu.mmu_secondary_context); tlb_set_page(env, vaddr, paddr, prot, mmu_idx, page_size); return 0; } // XXX return 1; } #ifdef DEBUG_MMU void dump_mmu(CPUState *env) { unsigned int i; const char *mask; printf("MMU contexts: Primary: %" PRId64 ", Secondary: %" PRId64 "\n", env->dmmu.mmu_primary_context, env->dmmu.mmu_secondary_context); if ((env->lsu & DMMU_E) == 0) { printf("DMMU disabled\n"); } else { printf("DMMU dump:\n"); for (i = 0; i < 64; i++) { switch ((env->dtlb[i].tte >> 61) & 3) { default: case 0x0: mask = " 8k"; break; case 0x1: mask = " 64k"; break; case 0x2: mask = "512k"; break; case 0x3: mask = " 4M"; break; } if ((env->dtlb[i].tte & 0x8000000000000000ULL) != 0) { printf("[%02u] VA: %" PRIx64 ", PA: %" PRIx64 ", %s, %s, %s, %s, ctx %" PRId64 " %s\n", i, env->dtlb[i].tag & (uint64_t)~0x1fffULL, env->dtlb[i].tte & (uint64_t)0x1ffffffe000ULL, mask, env->dtlb[i].tte & 0x4? "priv": "user", env->dtlb[i].tte & 0x2? "RW": "RO", env->dtlb[i].tte & 0x40? "locked": "unlocked", env->dtlb[i].tag & (uint64_t)0x1fffULL, TTE_IS_GLOBAL(env->dtlb[i].tte)? "global" : "local"); } } } if ((env->lsu & IMMU_E) == 0) { printf("IMMU disabled\n"); } else { printf("IMMU dump:\n"); for (i = 0; i < 64; i++) { switch ((env->itlb[i].tte >> 61) & 3) { default: case 0x0: mask = " 8k"; break; case 0x1: mask = " 64k"; break; case 0x2: mask = "512k"; break; case 0x3: mask = " 4M"; break; } if ((env->itlb[i].tte & 0x8000000000000000ULL) != 0) { printf("[%02u] VA: %" PRIx64 ", PA: %" PRIx64 ", %s, %s, %s, ctx %" PRId64 " %s\n", i, env->itlb[i].tag & (uint64_t)~0x1fffULL, env->itlb[i].tte & (uint64_t)0x1ffffffe000ULL, mask, env->itlb[i].tte & 0x4? "priv": "user", env->itlb[i].tte & 0x40? "locked": "unlocked", env->itlb[i].tag & (uint64_t)0x1fffULL, TTE_IS_GLOBAL(env->itlb[i].tte)? "global" : "local"); } } } } #endif /* DEBUG_MMU */ #endif /* TARGET_SPARC64 */ #endif /* !CONFIG_USER_ONLY */ #if !defined(CONFIG_USER_ONLY) target_phys_addr_t cpu_get_phys_page_nofault(CPUState *env, target_ulong addr, int mmu_idx) { target_phys_addr_t phys_addr; target_ulong page_size; int prot, access_index; if (get_physical_address(env, &phys_addr, &prot, &access_index, addr, 2, mmu_idx, &page_size) != 0) if (get_physical_address(env, &phys_addr, &prot, &access_index, addr, 0, mmu_idx, &page_size) != 0) return -1; if (cpu_get_physical_page_desc(phys_addr) == IO_MEM_UNASSIGNED) return -1; return phys_addr; } target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr) { return cpu_get_phys_page_nofault(env, addr, MMU_KERNEL_IDX); } #endif void cpu_reset(CPUSPARCState *env) { if (qemu_loglevel_mask(CPU_LOG_RESET)) { qemu_log("CPU Reset (CPU %d)\n", env->cpu_index); log_cpu_state(env, 0); } tlb_flush(env, 1); env->cwp = 0; #ifndef TARGET_SPARC64 env->wim = 1; #endif env->regwptr = env->regbase + (env->cwp * 16); CC_OP = CC_OP_FLAGS; #if defined(CONFIG_USER_ONLY) #ifdef TARGET_SPARC64 env->cleanwin = env->nwindows - 2; env->cansave = env->nwindows - 2; env->pstate = PS_RMO | PS_PEF | PS_IE; env->asi = 0x82; // Primary no-fault #endif #else #if !defined(TARGET_SPARC64) env->psret = 0; env->psrs = 1; env->psrps = 1; #endif #ifdef TARGET_SPARC64 env->pstate = PS_PRIV|PS_RED|PS_PEF|PS_AG; env->hpstate = cpu_has_hypervisor(env) ? HS_PRIV : 0; env->tl = env->maxtl; cpu_tsptr(env)->tt = TT_POWER_ON_RESET; env->lsu = 0; #else env->mmuregs[0] &= ~(MMU_E | MMU_NF); env->mmuregs[0] |= env->def->mmu_bm; #endif env->pc = 0; env->npc = env->pc + 4; #endif } static int cpu_sparc_register(CPUSPARCState *env, const char *cpu_model) { sparc_def_t def1, *def = &def1; if (cpu_sparc_find_by_name(def, cpu_model) < 0) return -1; env->def = qemu_mallocz(sizeof(*def)); memcpy(env->def, def, sizeof(*def)); #if defined(CONFIG_USER_ONLY) if ((env->def->features & CPU_FEATURE_FLOAT)) env->def->features |= CPU_FEATURE_FLOAT128; #endif env->cpu_model_str = cpu_model; env->version = def->iu_version; env->fsr = def->fpu_version; env->nwindows = def->nwindows; #if !defined(TARGET_SPARC64) env->mmuregs[0] |= def->mmu_version; cpu_sparc_set_id(env, 0); env->mxccregs[7] |= def->mxcc_version; #else env->mmu_version = def->mmu_version; env->maxtl = def->maxtl; env->version |= def->maxtl << 8; env->version |= def->nwindows - 1; #endif return 0; } static void cpu_sparc_close(CPUSPARCState *env) { free(env->def); free(env); } CPUSPARCState *cpu_sparc_init(const char *cpu_model) { CPUSPARCState *env; env = qemu_mallocz(sizeof(CPUSPARCState)); cpu_exec_init(env); gen_intermediate_code_init(env); if (cpu_sparc_register(env, cpu_model) < 0) { cpu_sparc_close(env); return NULL; } qemu_init_vcpu(env); return env; } void cpu_sparc_set_id(CPUSPARCState *env, unsigned int cpu) { #if !defined(TARGET_SPARC64) env->mxccregs[7] = ((cpu + 8) & 0xf) << 24; #endif } static const sparc_def_t sparc_defs[] = { #ifdef TARGET_SPARC64 { .name = "Fujitsu Sparc64", .iu_version = ((0x04ULL << 48) | (0x02ULL << 32) | (0ULL << 24)), .fpu_version = 0x00000000, .mmu_version = mmu_us_12, .nwindows = 4, .maxtl = 4, .features = CPU_DEFAULT_FEATURES, }, { .name = "Fujitsu Sparc64 III", .iu_version = ((0x04ULL << 48) | (0x03ULL << 32) | (0ULL << 24)), .fpu_version = 0x00000000, .mmu_version = mmu_us_12, .nwindows = 5, .maxtl = 4, .features = CPU_DEFAULT_FEATURES, }, { .name = "Fujitsu Sparc64 IV", .iu_version = ((0x04ULL << 48) | (0x04ULL << 32) | (0ULL << 24)), .fpu_version = 0x00000000, .mmu_version = mmu_us_12, .nwindows = 8, .maxtl = 5, .features = CPU_DEFAULT_FEATURES, }, { .name = "Fujitsu Sparc64 V", .iu_version = ((0x04ULL << 48) | (0x05ULL << 32) | (0x51ULL << 24)), .fpu_version = 0x00000000, .mmu_version = mmu_us_12, .nwindows = 8, .maxtl = 5, .features = CPU_DEFAULT_FEATURES, }, { .name = "TI UltraSparc I", .iu_version = ((0x17ULL << 48) | (0x10ULL << 32) | (0x40ULL << 24)), .fpu_version = 0x00000000, .mmu_version = mmu_us_12, .nwindows = 8, .maxtl = 5, .features = CPU_DEFAULT_FEATURES, }, { .name = "TI UltraSparc II", .iu_version = ((0x17ULL << 48) | (0x11ULL << 32) | (0x20ULL << 24)), .fpu_version = 0x00000000, .mmu_version = mmu_us_12, .nwindows = 8, .maxtl = 5, .features = CPU_DEFAULT_FEATURES, }, { .name = "TI UltraSparc IIi", .iu_version = ((0x17ULL << 48) | (0x12ULL << 32) | (0x91ULL << 24)), .fpu_version = 0x00000000, .mmu_version = mmu_us_12, .nwindows = 8, .maxtl = 5, .features = CPU_DEFAULT_FEATURES, }, { .name = "TI UltraSparc IIe", .iu_version = ((0x17ULL << 48) | (0x13ULL << 32) | (0x14ULL << 24)), .fpu_version = 0x00000000, .mmu_version = mmu_us_12, .nwindows = 8, .maxtl = 5, .features = CPU_DEFAULT_FEATURES, }, { .name = "Sun UltraSparc III", .iu_version = ((0x3eULL << 48) | (0x14ULL << 32) | (0x34ULL << 24)), .fpu_version = 0x00000000, .mmu_version = mmu_us_12, .nwindows = 8, .maxtl = 5, .features = CPU_DEFAULT_FEATURES, }, { .name = "Sun UltraSparc III Cu", .iu_version = ((0x3eULL << 48) | (0x15ULL << 32) | (0x41ULL << 24)), .fpu_version = 0x00000000, .mmu_version = mmu_us_3, .nwindows = 8, .maxtl = 5, .features = CPU_DEFAULT_FEATURES, }, { .name = "Sun UltraSparc IIIi", .iu_version = ((0x3eULL << 48) | (0x16ULL << 32) | (0x34ULL << 24)), .fpu_version = 0x00000000, .mmu_version = mmu_us_12, .nwindows = 8, .maxtl = 5, .features = CPU_DEFAULT_FEATURES, }, { .name = "Sun UltraSparc IV", .iu_version = ((0x3eULL << 48) | (0x18ULL << 32) | (0x31ULL << 24)), .fpu_version = 0x00000000, .mmu_version = mmu_us_4, .nwindows = 8, .maxtl = 5, .features = CPU_DEFAULT_FEATURES, }, { .name = "Sun UltraSparc IV+", .iu_version = ((0x3eULL << 48) | (0x19ULL << 32) | (0x22ULL << 24)), .fpu_version = 0x00000000, .mmu_version = mmu_us_12, .nwindows = 8, .maxtl = 5, .features = CPU_DEFAULT_FEATURES | CPU_FEATURE_CMT, }, { .name = "Sun UltraSparc IIIi+", .iu_version = ((0x3eULL << 48) | (0x22ULL << 32) | (0ULL << 24)), .fpu_version = 0x00000000, .mmu_version = mmu_us_3, .nwindows = 8, .maxtl = 5, .features = CPU_DEFAULT_FEATURES, }, { .name = "Sun UltraSparc T1", // defined in sparc_ifu_fdp.v and ctu.h .iu_version = ((0x3eULL << 48) | (0x23ULL << 32) | (0x02ULL << 24)), .fpu_version = 0x00000000, .mmu_version = mmu_sun4v, .nwindows = 8, .maxtl = 6, .features = CPU_DEFAULT_FEATURES | CPU_FEATURE_HYPV | CPU_FEATURE_CMT | CPU_FEATURE_GL, }, { .name = "Sun UltraSparc T2", // defined in tlu_asi_ctl.v and n2_revid_cust.v .iu_version = ((0x3eULL << 48) | (0x24ULL << 32) | (0x02ULL << 24)), .fpu_version = 0x00000000, .mmu_version = mmu_sun4v, .nwindows = 8, .maxtl = 6, .features = CPU_DEFAULT_FEATURES | CPU_FEATURE_HYPV | CPU_FEATURE_CMT | CPU_FEATURE_GL, }, { .name = "NEC UltraSparc I", .iu_version = ((0x22ULL << 48) | (0x10ULL << 32) | (0x40ULL << 24)), .fpu_version = 0x00000000, .mmu_version = mmu_us_12, .nwindows = 8, .maxtl = 5, .features = CPU_DEFAULT_FEATURES, }, #else { .name = "Fujitsu MB86900", .iu_version = 0x00 << 24, /* Impl 0, ver 0 */ .fpu_version = 4 << 17, /* FPU version 4 (Meiko) */ .mmu_version = 0x00 << 24, /* Impl 0, ver 0 */ .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0x007ffff0, .mmu_cxr_mask = 0x0000003f, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .nwindows = 7, .features = CPU_FEATURE_FLOAT | CPU_FEATURE_FSMULD, }, { .name = "Fujitsu MB86904", .iu_version = 0x04 << 24, /* Impl 0, ver 4 */ .fpu_version = 4 << 17, /* FPU version 4 (Meiko) */ .mmu_version = 0x04 << 24, /* Impl 0, ver 4 */ .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0x00ffffc0, .mmu_cxr_mask = 0x000000ff, .mmu_sfsr_mask = 0x00016fff, .mmu_trcr_mask = 0x00ffffff, .nwindows = 8, .features = CPU_DEFAULT_FEATURES, }, { .name = "Fujitsu MB86907", .iu_version = 0x05 << 24, /* Impl 0, ver 5 */ .fpu_version = 4 << 17, /* FPU version 4 (Meiko) */ .mmu_version = 0x05 << 24, /* Impl 0, ver 5 */ .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0xffffffc0, .mmu_cxr_mask = 0x000000ff, .mmu_sfsr_mask = 0x00016fff, .mmu_trcr_mask = 0xffffffff, .nwindows = 8, .features = CPU_DEFAULT_FEATURES, }, { .name = "LSI L64811", .iu_version = 0x10 << 24, /* Impl 1, ver 0 */ .fpu_version = 1 << 17, /* FPU version 1 (LSI L64814) */ .mmu_version = 0x10 << 24, .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0x007ffff0, .mmu_cxr_mask = 0x0000003f, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .nwindows = 8, .features = CPU_FEATURE_FLOAT | CPU_FEATURE_SWAP | CPU_FEATURE_FSQRT | CPU_FEATURE_FSMULD, }, { .name = "Cypress CY7C601", .iu_version = 0x11 << 24, /* Impl 1, ver 1 */ .fpu_version = 3 << 17, /* FPU version 3 (Cypress CY7C602) */ .mmu_version = 0x10 << 24, .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0x007ffff0, .mmu_cxr_mask = 0x0000003f, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .nwindows = 8, .features = CPU_FEATURE_FLOAT | CPU_FEATURE_SWAP | CPU_FEATURE_FSQRT | CPU_FEATURE_FSMULD, }, { .name = "Cypress CY7C611", .iu_version = 0x13 << 24, /* Impl 1, ver 3 */ .fpu_version = 3 << 17, /* FPU version 3 (Cypress CY7C602) */ .mmu_version = 0x10 << 24, .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0x007ffff0, .mmu_cxr_mask = 0x0000003f, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .nwindows = 8, .features = CPU_FEATURE_FLOAT | CPU_FEATURE_SWAP | CPU_FEATURE_FSQRT | CPU_FEATURE_FSMULD, }, { .name = "TI MicroSparc I", .iu_version = 0x41000000, .fpu_version = 4 << 17, .mmu_version = 0x41000000, .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0x007ffff0, .mmu_cxr_mask = 0x0000003f, .mmu_sfsr_mask = 0x00016fff, .mmu_trcr_mask = 0x0000003f, .nwindows = 7, .features = CPU_FEATURE_FLOAT | CPU_FEATURE_SWAP | CPU_FEATURE_MUL | CPU_FEATURE_DIV | CPU_FEATURE_FLUSH | CPU_FEATURE_FSQRT | CPU_FEATURE_FMUL, }, { .name = "TI MicroSparc II", .iu_version = 0x42000000, .fpu_version = 4 << 17, .mmu_version = 0x02000000, .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0x00ffffc0, .mmu_cxr_mask = 0x000000ff, .mmu_sfsr_mask = 0x00016fff, .mmu_trcr_mask = 0x00ffffff, .nwindows = 8, .features = CPU_DEFAULT_FEATURES, }, { .name = "TI MicroSparc IIep", .iu_version = 0x42000000, .fpu_version = 4 << 17, .mmu_version = 0x04000000, .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0x00ffffc0, .mmu_cxr_mask = 0x000000ff, .mmu_sfsr_mask = 0x00016bff, .mmu_trcr_mask = 0x00ffffff, .nwindows = 8, .features = CPU_DEFAULT_FEATURES, }, { .name = "TI SuperSparc 40", // STP1020NPGA .iu_version = 0x41000000, // SuperSPARC 2.x .fpu_version = 0 << 17, .mmu_version = 0x00000800, // SuperSPARC 2.x, no MXCC .mmu_bm = 0x00002000, .mmu_ctpr_mask = 0xffffffc0, .mmu_cxr_mask = 0x0000ffff, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .nwindows = 8, .features = CPU_DEFAULT_FEATURES, }, { .name = "TI SuperSparc 50", // STP1020PGA .iu_version = 0x40000000, // SuperSPARC 3.x .fpu_version = 0 << 17, .mmu_version = 0x01000800, // SuperSPARC 3.x, no MXCC .mmu_bm = 0x00002000, .mmu_ctpr_mask = 0xffffffc0, .mmu_cxr_mask = 0x0000ffff, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .nwindows = 8, .features = CPU_DEFAULT_FEATURES, }, { .name = "TI SuperSparc 51", .iu_version = 0x40000000, // SuperSPARC 3.x .fpu_version = 0 << 17, .mmu_version = 0x01000000, // SuperSPARC 3.x, MXCC .mmu_bm = 0x00002000, .mmu_ctpr_mask = 0xffffffc0, .mmu_cxr_mask = 0x0000ffff, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .mxcc_version = 0x00000104, .nwindows = 8, .features = CPU_DEFAULT_FEATURES, }, { .name = "TI SuperSparc 60", // STP1020APGA .iu_version = 0x40000000, // SuperSPARC 3.x .fpu_version = 0 << 17, .mmu_version = 0x01000800, // SuperSPARC 3.x, no MXCC .mmu_bm = 0x00002000, .mmu_ctpr_mask = 0xffffffc0, .mmu_cxr_mask = 0x0000ffff, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .nwindows = 8, .features = CPU_DEFAULT_FEATURES, }, { .name = "TI SuperSparc 61", .iu_version = 0x44000000, // SuperSPARC 3.x .fpu_version = 0 << 17, .mmu_version = 0x01000000, // SuperSPARC 3.x, MXCC .mmu_bm = 0x00002000, .mmu_ctpr_mask = 0xffffffc0, .mmu_cxr_mask = 0x0000ffff, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .mxcc_version = 0x00000104, .nwindows = 8, .features = CPU_DEFAULT_FEATURES, }, { .name = "TI SuperSparc II", .iu_version = 0x40000000, // SuperSPARC II 1.x .fpu_version = 0 << 17, .mmu_version = 0x08000000, // SuperSPARC II 1.x, MXCC .mmu_bm = 0x00002000, .mmu_ctpr_mask = 0xffffffc0, .mmu_cxr_mask = 0x0000ffff, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .mxcc_version = 0x00000104, .nwindows = 8, .features = CPU_DEFAULT_FEATURES, }, { .name = "Ross RT625", .iu_version = 0x1e000000, .fpu_version = 1 << 17, .mmu_version = 0x1e000000, .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0x007ffff0, .mmu_cxr_mask = 0x0000003f, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .nwindows = 8, .features = CPU_DEFAULT_FEATURES, }, { .name = "Ross RT620", .iu_version = 0x1f000000, .fpu_version = 1 << 17, .mmu_version = 0x1f000000, .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0x007ffff0, .mmu_cxr_mask = 0x0000003f, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .nwindows = 8, .features = CPU_DEFAULT_FEATURES, }, { .name = "BIT B5010", .iu_version = 0x20000000, .fpu_version = 0 << 17, /* B5010/B5110/B5120/B5210 */ .mmu_version = 0x20000000, .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0x007ffff0, .mmu_cxr_mask = 0x0000003f, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .nwindows = 8, .features = CPU_FEATURE_FLOAT | CPU_FEATURE_SWAP | CPU_FEATURE_FSQRT | CPU_FEATURE_FSMULD, }, { .name = "Matsushita MN10501", .iu_version = 0x50000000, .fpu_version = 0 << 17, .mmu_version = 0x50000000, .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0x007ffff0, .mmu_cxr_mask = 0x0000003f, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .nwindows = 8, .features = CPU_FEATURE_FLOAT | CPU_FEATURE_MUL | CPU_FEATURE_FSQRT | CPU_FEATURE_FSMULD, }, { .name = "Weitek W8601", .iu_version = 0x90 << 24, /* Impl 9, ver 0 */ .fpu_version = 3 << 17, /* FPU version 3 (Weitek WTL3170/2) */ .mmu_version = 0x10 << 24, .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0x007ffff0, .mmu_cxr_mask = 0x0000003f, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .nwindows = 8, .features = CPU_DEFAULT_FEATURES, }, { .name = "LEON2", .iu_version = 0xf2000000, .fpu_version = 4 << 17, /* FPU version 4 (Meiko) */ .mmu_version = 0xf2000000, .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0x007ffff0, .mmu_cxr_mask = 0x0000003f, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .nwindows = 8, .features = CPU_DEFAULT_FEATURES, }, { .name = "LEON3", .iu_version = 0xf3000000, .fpu_version = 4 << 17, /* FPU version 4 (Meiko) */ .mmu_version = 0xf3000000, .mmu_bm = 0x00004000, .mmu_ctpr_mask = 0x007ffff0, .mmu_cxr_mask = 0x0000003f, .mmu_sfsr_mask = 0xffffffff, .mmu_trcr_mask = 0xffffffff, .nwindows = 8, .features = CPU_DEFAULT_FEATURES, }, #endif }; static const char * const feature_name[] = { "float", "float128", "swap", "mul", "div", "flush", "fsqrt", "fmul", "vis1", "vis2", "fsmuld", "hypv", "cmt", "gl", }; static void print_features(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...), uint32_t features, const char *prefix) { unsigned int i; for (i = 0; i < ARRAY_SIZE(feature_name); i++) if (feature_name[i] && (features & (1 << i))) { if (prefix) (*cpu_fprintf)(f, "%s", prefix); (*cpu_fprintf)(f, "%s ", feature_name[i]); } } static void add_flagname_to_bitmaps(const char *flagname, uint32_t *features) { unsigned int i; for (i = 0; i < ARRAY_SIZE(feature_name); i++) if (feature_name[i] && !strcmp(flagname, feature_name[i])) { *features |= 1 << i; return; } fprintf(stderr, "CPU feature %s not found\n", flagname); } static int cpu_sparc_find_by_name(sparc_def_t *cpu_def, const char *cpu_model) { unsigned int i; const sparc_def_t *def = NULL; char *s = strdup(cpu_model); char *featurestr, *name = strtok(s, ","); uint32_t plus_features = 0; uint32_t minus_features = 0; uint64_t iu_version; uint32_t fpu_version, mmu_version, nwindows; for (i = 0; i < ARRAY_SIZE(sparc_defs); i++) { if (strcasecmp(name, sparc_defs[i].name) == 0) { def = &sparc_defs[i]; } } if (!def) goto error; memcpy(cpu_def, def, sizeof(*def)); featurestr = strtok(NULL, ","); while (featurestr) { char *val; if (featurestr[0] == '+') { add_flagname_to_bitmaps(featurestr + 1, &plus_features); } else if (featurestr[0] == '-') { add_flagname_to_bitmaps(featurestr + 1, &minus_features); } else if ((val = strchr(featurestr, '='))) { *val = 0; val++; if (!strcmp(featurestr, "iu_version")) { char *err; iu_version = strtoll(val, &err, 0); if (!*val || *err) { fprintf(stderr, "bad numerical value %s\n", val); goto error; } cpu_def->iu_version = iu_version; #ifdef DEBUG_FEATURES fprintf(stderr, "iu_version %" PRIx64 "\n", iu_version); #endif } else if (!strcmp(featurestr, "fpu_version")) { char *err; fpu_version = strtol(val, &err, 0); if (!*val || *err) { fprintf(stderr, "bad numerical value %s\n", val); goto error; } cpu_def->fpu_version = fpu_version; #ifdef DEBUG_FEATURES fprintf(stderr, "fpu_version %x\n", fpu_version); #endif } else if (!strcmp(featurestr, "mmu_version")) { char *err; mmu_version = strtol(val, &err, 0); if (!*val || *err) { fprintf(stderr, "bad numerical value %s\n", val); goto error; } cpu_def->mmu_version = mmu_version; #ifdef DEBUG_FEATURES fprintf(stderr, "mmu_version %x\n", mmu_version); #endif } else if (!strcmp(featurestr, "nwindows")) { char *err; nwindows = strtol(val, &err, 0); if (!*val || *err || nwindows > MAX_NWINDOWS || nwindows < MIN_NWINDOWS) { fprintf(stderr, "bad numerical value %s\n", val); goto error; } cpu_def->nwindows = nwindows; #ifdef DEBUG_FEATURES fprintf(stderr, "nwindows %d\n", nwindows); #endif } else { fprintf(stderr, "unrecognized feature %s\n", featurestr); goto error; } } else { fprintf(stderr, "feature string `%s' not in format " "(+feature|-feature|feature=xyz)\n", featurestr); goto error; } featurestr = strtok(NULL, ","); } cpu_def->features |= plus_features; cpu_def->features &= ~minus_features; #ifdef DEBUG_FEATURES print_features(stderr, fprintf, cpu_def->features, NULL); #endif free(s); return 0; error: free(s); return -1; } void sparc_cpu_list(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...)) { unsigned int i; for (i = 0; i < ARRAY_SIZE(sparc_defs); i++) { (*cpu_fprintf)(f, "Sparc %16s IU " TARGET_FMT_lx " FPU %08x MMU %08x NWINS %d ", sparc_defs[i].name, sparc_defs[i].iu_version, sparc_defs[i].fpu_version, sparc_defs[i].mmu_version, sparc_defs[i].nwindows); print_features(f, cpu_fprintf, CPU_DEFAULT_FEATURES & ~sparc_defs[i].features, "-"); print_features(f, cpu_fprintf, ~CPU_DEFAULT_FEATURES & sparc_defs[i].features, "+"); (*cpu_fprintf)(f, "\n"); } (*cpu_fprintf)(f, "Default CPU feature flags (use '-' to remove): "); print_features(f, cpu_fprintf, CPU_DEFAULT_FEATURES, NULL); (*cpu_fprintf)(f, "\n"); (*cpu_fprintf)(f, "Available CPU feature flags (use '+' to add): "); print_features(f, cpu_fprintf, ~CPU_DEFAULT_FEATURES, NULL); (*cpu_fprintf)(f, "\n"); (*cpu_fprintf)(f, "Numerical features (use '=' to set): iu_version " "fpu_version mmu_version nwindows\n"); } static void cpu_print_cc(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...), uint32_t cc) { cpu_fprintf(f, "%c%c%c%c", cc & PSR_NEG? 'N' : '-', cc & PSR_ZERO? 'Z' : '-', cc & PSR_OVF? 'V' : '-', cc & PSR_CARRY? 'C' : '-'); } #ifdef TARGET_SPARC64 #define REGS_PER_LINE 4 #else #define REGS_PER_LINE 8 #endif void cpu_dump_state(CPUState *env, FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...), int flags) { int i, x; cpu_fprintf(f, "pc: " TARGET_FMT_lx " npc: " TARGET_FMT_lx "\n", env->pc, env->npc); cpu_fprintf(f, "General Registers:\n"); for (i = 0; i < 8; i++) { if (i % REGS_PER_LINE == 0) { cpu_fprintf(f, "%%g%d-%d:", i, i + REGS_PER_LINE - 1); } cpu_fprintf(f, " " TARGET_FMT_lx, env->gregs[i]); if (i % REGS_PER_LINE == REGS_PER_LINE - 1) { cpu_fprintf(f, "\n"); } } cpu_fprintf(f, "\nCurrent Register Window:\n"); for (x = 0; x < 3; x++) { for (i = 0; i < 8; i++) { if (i % REGS_PER_LINE == 0) { cpu_fprintf(f, "%%%c%d-%d: ", x == 0 ? 'o' : (x == 1 ? 'l' : 'i'), i, i + REGS_PER_LINE - 1); } cpu_fprintf(f, TARGET_FMT_lx " ", env->regwptr[i + x * 8]); if (i % REGS_PER_LINE == REGS_PER_LINE - 1) { cpu_fprintf(f, "\n"); } } } cpu_fprintf(f, "\nFloating Point Registers:\n"); for (i = 0; i < TARGET_FPREGS; i++) { if ((i & 3) == 0) cpu_fprintf(f, "%%f%02d:", i); cpu_fprintf(f, " %016f", *(float *)&env->fpr[i]); if ((i & 3) == 3) cpu_fprintf(f, "\n"); } #ifdef TARGET_SPARC64 cpu_fprintf(f, "pstate: %08x ccr: %02x (icc: ", env->pstate, (unsigned)cpu_get_ccr(env)); cpu_print_cc(f, cpu_fprintf, cpu_get_ccr(env) << PSR_CARRY_SHIFT); cpu_fprintf(f, " xcc: "); cpu_print_cc(f, cpu_fprintf, cpu_get_ccr(env) << (PSR_CARRY_SHIFT - 4)); cpu_fprintf(f, ") asi: %02x tl: %d pil: %x\n", env->asi, env->tl, env->psrpil); cpu_fprintf(f, "cansave: %d canrestore: %d otherwin: %d wstate: %d " "cleanwin: %d cwp: %d\n", env->cansave, env->canrestore, env->otherwin, env->wstate, env->cleanwin, env->nwindows - 1 - env->cwp); cpu_fprintf(f, "fsr: " TARGET_FMT_lx " y: " TARGET_FMT_lx " fprs: " TARGET_FMT_lx "\n", env->fsr, env->y, env->fprs); #else cpu_fprintf(f, "psr: %08x (icc: ", cpu_get_psr(env)); cpu_print_cc(f, cpu_fprintf, cpu_get_psr(env)); cpu_fprintf(f, " SPE: %c%c%c) wim: %08x\n", env->psrs? 'S' : '-', env->psrps? 'P' : '-', env->psret? 'E' : '-', env->wim); cpu_fprintf(f, "fsr: " TARGET_FMT_lx " y: " TARGET_FMT_lx "\n", env->fsr, env->y); #endif }