/* * Misc Sparc helpers * * Copyright (c) 2003-2005 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/>. */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/exec-all.h" #include "qemu/host-utils.h" #include "exec/helper-proto.h" #include "sysemu/sysemu.h" void helper_raise_exception(CPUSPARCState *env, int tt) { CPUState *cs = CPU(sparc_env_get_cpu(env)); cs->exception_index = tt; cpu_loop_exit(cs); } void helper_debug(CPUSPARCState *env) { CPUState *cs = CPU(sparc_env_get_cpu(env)); cs->exception_index = EXCP_DEBUG; cpu_loop_exit(cs); } #ifdef TARGET_SPARC64 target_ulong helper_popc(target_ulong val) { return ctpop64(val); } void helper_tick_set_count(void *opaque, uint64_t count) { #if !defined(CONFIG_USER_ONLY) cpu_tick_set_count(opaque, count); #endif } uint64_t helper_tick_get_count(CPUSPARCState *env, void *opaque, int mem_idx) { #if !defined(CONFIG_USER_ONLY) CPUTimer *timer = opaque; if (timer->npt && mem_idx < MMU_KERNEL_IDX) { helper_raise_exception(env, TT_PRIV_INSN); } return cpu_tick_get_count(timer); #else return 0; #endif } void helper_tick_set_limit(void *opaque, uint64_t limit) { #if !defined(CONFIG_USER_ONLY) cpu_tick_set_limit(opaque, limit); #endif } #endif static target_ulong helper_udiv_common(CPUSPARCState *env, target_ulong a, target_ulong b, int cc) { SPARCCPU *cpu = sparc_env_get_cpu(env); int overflow = 0; uint64_t x0; uint32_t x1; x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32); x1 = (b & 0xffffffff); if (x1 == 0) { cpu_restore_state(CPU(cpu), GETPC()); helper_raise_exception(env, TT_DIV_ZERO); } x0 = x0 / x1; if (x0 > UINT32_MAX) { x0 = UINT32_MAX; overflow = 1; } if (cc) { env->cc_dst = x0; env->cc_src2 = overflow; env->cc_op = CC_OP_DIV; } return x0; } target_ulong helper_udiv(CPUSPARCState *env, target_ulong a, target_ulong b) { return helper_udiv_common(env, a, b, 0); } target_ulong helper_udiv_cc(CPUSPARCState *env, target_ulong a, target_ulong b) { return helper_udiv_common(env, a, b, 1); } static target_ulong helper_sdiv_common(CPUSPARCState *env, target_ulong a, target_ulong b, int cc) { SPARCCPU *cpu = sparc_env_get_cpu(env); int overflow = 0; int64_t x0; int32_t x1; x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32); x1 = (b & 0xffffffff); if (x1 == 0) { cpu_restore_state(CPU(cpu), GETPC()); helper_raise_exception(env, TT_DIV_ZERO); } else if (x1 == -1 && x0 == INT64_MIN) { x0 = INT32_MAX; overflow = 1; } else { x0 = x0 / x1; if ((int32_t) x0 != x0) { x0 = x0 < 0 ? INT32_MIN : INT32_MAX; overflow = 1; } } if (cc) { env->cc_dst = x0; env->cc_src2 = overflow; env->cc_op = CC_OP_DIV; } return x0; } target_ulong helper_sdiv(CPUSPARCState *env, target_ulong a, target_ulong b) { return helper_sdiv_common(env, a, b, 0); } target_ulong helper_sdiv_cc(CPUSPARCState *env, target_ulong a, target_ulong b) { return helper_sdiv_common(env, a, b, 1); } #ifdef TARGET_SPARC64 int64_t helper_sdivx(CPUSPARCState *env, int64_t a, int64_t b) { if (b == 0) { /* Raise divide by zero trap. */ SPARCCPU *cpu = sparc_env_get_cpu(env); cpu_restore_state(CPU(cpu), GETPC()); helper_raise_exception(env, TT_DIV_ZERO); } else if (b == -1) { /* Avoid overflow trap with i386 divide insn. */ return -a; } else { return a / b; } } uint64_t helper_udivx(CPUSPARCState *env, uint64_t a, uint64_t b) { if (b == 0) { /* Raise divide by zero trap. */ SPARCCPU *cpu = sparc_env_get_cpu(env); cpu_restore_state(CPU(cpu), GETPC()); helper_raise_exception(env, TT_DIV_ZERO); } return a / b; } #endif target_ulong helper_taddcctv(CPUSPARCState *env, target_ulong src1, target_ulong src2) { SPARCCPU *cpu = sparc_env_get_cpu(env); target_ulong dst; /* Tag overflow occurs if either input has bits 0 or 1 set. */ if ((src1 | src2) & 3) { goto tag_overflow; } dst = src1 + src2; /* Tag overflow occurs if the addition overflows. */ if (~(src1 ^ src2) & (src1 ^ dst) & (1u << 31)) { goto tag_overflow; } /* Only modify the CC after any exceptions have been generated. */ env->cc_op = CC_OP_TADDTV; env->cc_src = src1; env->cc_src2 = src2; env->cc_dst = dst; return dst; tag_overflow: cpu_restore_state(CPU(cpu), GETPC()); helper_raise_exception(env, TT_TOVF); } target_ulong helper_tsubcctv(CPUSPARCState *env, target_ulong src1, target_ulong src2) { SPARCCPU *cpu = sparc_env_get_cpu(env); target_ulong dst; /* Tag overflow occurs if either input has bits 0 or 1 set. */ if ((src1 | src2) & 3) { goto tag_overflow; } dst = src1 - src2; /* Tag overflow occurs if the subtraction overflows. */ if ((src1 ^ src2) & (src1 ^ dst) & (1u << 31)) { goto tag_overflow; } /* Only modify the CC after any exceptions have been generated. */ env->cc_op = CC_OP_TSUBTV; env->cc_src = src1; env->cc_src2 = src2; env->cc_dst = dst; return dst; tag_overflow: cpu_restore_state(CPU(cpu), GETPC()); helper_raise_exception(env, TT_TOVF); } #ifndef TARGET_SPARC64 void helper_power_down(CPUSPARCState *env) { CPUState *cs = CPU(sparc_env_get_cpu(env)); cs->halted = 1; cs->exception_index = EXCP_HLT; env->pc = env->npc; env->npc = env->pc + 4; cpu_loop_exit(cs); } #endif