/* * FPU op helpers * * Copyright (c) 2003-2005 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/>. */ #include "cpu.h" #include "exec/helper-proto.h" #define QT0 (env->qt0) #define QT1 (env->qt1) static void check_ieee_exceptions(CPUSPARCState *env) { target_ulong status; status = get_float_exception_flags(&env->fp_status); if (status) { /* Copy IEEE 754 flags into FSR */ if (status & float_flag_invalid) { env->fsr |= FSR_NVC; } if (status & float_flag_overflow) { env->fsr |= FSR_OFC; } if (status & float_flag_underflow) { env->fsr |= FSR_UFC; } if (status & float_flag_divbyzero) { env->fsr |= FSR_DZC; } if (status & float_flag_inexact) { env->fsr |= FSR_NXC; } if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) { /* Unmasked exception, generate a trap */ env->fsr |= FSR_FTT_IEEE_EXCP; helper_raise_exception(env, TT_FP_EXCP); } else { /* Accumulate exceptions */ env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5; } } } static inline void clear_float_exceptions(CPUSPARCState *env) { set_float_exception_flags(0, &env->fp_status); } #define F_HELPER(name, p) void helper_f##name##p(CPUSPARCState *env) #define F_BINOP(name) \ float32 helper_f ## name ## s (CPUSPARCState *env, float32 src1, \ float32 src2) \ { \ float32 ret; \ clear_float_exceptions(env); \ ret = float32_ ## name (src1, src2, &env->fp_status); \ check_ieee_exceptions(env); \ return ret; \ } \ float64 helper_f ## name ## d (CPUSPARCState * env, float64 src1,\ float64 src2) \ { \ float64 ret; \ clear_float_exceptions(env); \ ret = float64_ ## name (src1, src2, &env->fp_status); \ check_ieee_exceptions(env); \ return ret; \ } \ F_HELPER(name, q) \ { \ clear_float_exceptions(env); \ QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \ check_ieee_exceptions(env); \ } F_BINOP(add); F_BINOP(sub); F_BINOP(mul); F_BINOP(div); #undef F_BINOP float64 helper_fsmuld(CPUSPARCState *env, float32 src1, float32 src2) { float64 ret; clear_float_exceptions(env); ret = float64_mul(float32_to_float64(src1, &env->fp_status), float32_to_float64(src2, &env->fp_status), &env->fp_status); check_ieee_exceptions(env); return ret; } void helper_fdmulq(CPUSPARCState *env, float64 src1, float64 src2) { clear_float_exceptions(env); QT0 = float128_mul(float64_to_float128(src1, &env->fp_status), float64_to_float128(src2, &env->fp_status), &env->fp_status); check_ieee_exceptions(env); } float32 helper_fnegs(float32 src) { return float32_chs(src); } #ifdef TARGET_SPARC64 float64 helper_fnegd(float64 src) { return float64_chs(src); } F_HELPER(neg, q) { QT0 = float128_chs(QT1); } #endif /* Integer to float conversion. */ float32 helper_fitos(CPUSPARCState *env, int32_t src) { /* Inexact error possible converting int to float. */ float32 ret; clear_float_exceptions(env); ret = int32_to_float32(src, &env->fp_status); check_ieee_exceptions(env); return ret; } float64 helper_fitod(CPUSPARCState *env, int32_t src) { /* No possible exceptions converting int to double. */ return int32_to_float64(src, &env->fp_status); } void helper_fitoq(CPUSPARCState *env, int32_t src) { /* No possible exceptions converting int to long double. */ QT0 = int32_to_float128(src, &env->fp_status); } #ifdef TARGET_SPARC64 float32 helper_fxtos(CPUSPARCState *env, int64_t src) { float32 ret; clear_float_exceptions(env); ret = int64_to_float32(src, &env->fp_status); check_ieee_exceptions(env); return ret; } float64 helper_fxtod(CPUSPARCState *env, int64_t src) { float64 ret; clear_float_exceptions(env); ret = int64_to_float64(src, &env->fp_status); check_ieee_exceptions(env); return ret; } void helper_fxtoq(CPUSPARCState *env, int64_t src) { /* No possible exceptions converting long long to long double. */ QT0 = int64_to_float128(src, &env->fp_status); } #endif #undef F_HELPER /* floating point conversion */ float32 helper_fdtos(CPUSPARCState *env, float64 src) { float32 ret; clear_float_exceptions(env); ret = float64_to_float32(src, &env->fp_status); check_ieee_exceptions(env); return ret; } float64 helper_fstod(CPUSPARCState *env, float32 src) { float64 ret; clear_float_exceptions(env); ret = float32_to_float64(src, &env->fp_status); check_ieee_exceptions(env); return ret; } float32 helper_fqtos(CPUSPARCState *env) { float32 ret; clear_float_exceptions(env); ret = float128_to_float32(QT1, &env->fp_status); check_ieee_exceptions(env); return ret; } void helper_fstoq(CPUSPARCState *env, float32 src) { clear_float_exceptions(env); QT0 = float32_to_float128(src, &env->fp_status); check_ieee_exceptions(env); } float64 helper_fqtod(CPUSPARCState *env) { float64 ret; clear_float_exceptions(env); ret = float128_to_float64(QT1, &env->fp_status); check_ieee_exceptions(env); return ret; } void helper_fdtoq(CPUSPARCState *env, float64 src) { clear_float_exceptions(env); QT0 = float64_to_float128(src, &env->fp_status); check_ieee_exceptions(env); } /* Float to integer conversion. */ int32_t helper_fstoi(CPUSPARCState *env, float32 src) { int32_t ret; clear_float_exceptions(env); ret = float32_to_int32_round_to_zero(src, &env->fp_status); check_ieee_exceptions(env); return ret; } int32_t helper_fdtoi(CPUSPARCState *env, float64 src) { int32_t ret; clear_float_exceptions(env); ret = float64_to_int32_round_to_zero(src, &env->fp_status); check_ieee_exceptions(env); return ret; } int32_t helper_fqtoi(CPUSPARCState *env) { int32_t ret; clear_float_exceptions(env); ret = float128_to_int32_round_to_zero(QT1, &env->fp_status); check_ieee_exceptions(env); return ret; } #ifdef TARGET_SPARC64 int64_t helper_fstox(CPUSPARCState *env, float32 src) { int64_t ret; clear_float_exceptions(env); ret = float32_to_int64_round_to_zero(src, &env->fp_status); check_ieee_exceptions(env); return ret; } int64_t helper_fdtox(CPUSPARCState *env, float64 src) { int64_t ret; clear_float_exceptions(env); ret = float64_to_int64_round_to_zero(src, &env->fp_status); check_ieee_exceptions(env); return ret; } int64_t helper_fqtox(CPUSPARCState *env) { int64_t ret; clear_float_exceptions(env); ret = float128_to_int64_round_to_zero(QT1, &env->fp_status); check_ieee_exceptions(env); return ret; } #endif float32 helper_fabss(float32 src) { return float32_abs(src); } #ifdef TARGET_SPARC64 float64 helper_fabsd(float64 src) { return float64_abs(src); } void helper_fabsq(CPUSPARCState *env) { QT0 = float128_abs(QT1); } #endif float32 helper_fsqrts(CPUSPARCState *env, float32 src) { float32 ret; clear_float_exceptions(env); ret = float32_sqrt(src, &env->fp_status); check_ieee_exceptions(env); return ret; } float64 helper_fsqrtd(CPUSPARCState *env, float64 src) { float64 ret; clear_float_exceptions(env); ret = float64_sqrt(src, &env->fp_status); check_ieee_exceptions(env); return ret; } void helper_fsqrtq(CPUSPARCState *env) { clear_float_exceptions(env); QT0 = float128_sqrt(QT1, &env->fp_status); check_ieee_exceptions(env); } #define GEN_FCMP(name, size, reg1, reg2, FS, E) \ void glue(helper_, name) (CPUSPARCState *env) \ { \ int ret; \ clear_float_exceptions(env); \ if (E) { \ ret = glue(size, _compare)(reg1, reg2, &env->fp_status); \ } else { \ ret = glue(size, _compare_quiet)(reg1, reg2, \ &env->fp_status); \ } \ check_ieee_exceptions(env); \ switch (ret) { \ case float_relation_unordered: \ env->fsr |= (FSR_FCC1 | FSR_FCC0) << FS; \ env->fsr |= FSR_NVA; \ break; \ case float_relation_less: \ env->fsr &= ~(FSR_FCC1) << FS; \ env->fsr |= FSR_FCC0 << FS; \ break; \ case float_relation_greater: \ env->fsr &= ~(FSR_FCC0) << FS; \ env->fsr |= FSR_FCC1 << FS; \ break; \ default: \ env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ break; \ } \ } #define GEN_FCMP_T(name, size, FS, E) \ void glue(helper_, name)(CPUSPARCState *env, size src1, size src2) \ { \ int ret; \ clear_float_exceptions(env); \ if (E) { \ ret = glue(size, _compare)(src1, src2, &env->fp_status); \ } else { \ ret = glue(size, _compare_quiet)(src1, src2, \ &env->fp_status); \ } \ check_ieee_exceptions(env); \ switch (ret) { \ case float_relation_unordered: \ env->fsr |= (FSR_FCC1 | FSR_FCC0) << FS; \ break; \ case float_relation_less: \ env->fsr &= ~(FSR_FCC1 << FS); \ env->fsr |= FSR_FCC0 << FS; \ break; \ case float_relation_greater: \ env->fsr &= ~(FSR_FCC0 << FS); \ env->fsr |= FSR_FCC1 << FS; \ break; \ default: \ env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ break; \ } \ } GEN_FCMP_T(fcmps, float32, 0, 0); GEN_FCMP_T(fcmpd, float64, 0, 0); GEN_FCMP_T(fcmpes, float32, 0, 1); GEN_FCMP_T(fcmped, float64, 0, 1); GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0); GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1); #ifdef TARGET_SPARC64 GEN_FCMP_T(fcmps_fcc1, float32, 22, 0); GEN_FCMP_T(fcmpd_fcc1, float64, 22, 0); GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0); GEN_FCMP_T(fcmps_fcc2, float32, 24, 0); GEN_FCMP_T(fcmpd_fcc2, float64, 24, 0); GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0); GEN_FCMP_T(fcmps_fcc3, float32, 26, 0); GEN_FCMP_T(fcmpd_fcc3, float64, 26, 0); GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0); GEN_FCMP_T(fcmpes_fcc1, float32, 22, 1); GEN_FCMP_T(fcmped_fcc1, float64, 22, 1); GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1); GEN_FCMP_T(fcmpes_fcc2, float32, 24, 1); GEN_FCMP_T(fcmped_fcc2, float64, 24, 1); GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1); GEN_FCMP_T(fcmpes_fcc3, float32, 26, 1); GEN_FCMP_T(fcmped_fcc3, float64, 26, 1); GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1); #endif #undef GEN_FCMP_T #undef GEN_FCMP static inline void set_fsr(CPUSPARCState *env) { int rnd_mode; switch (env->fsr & FSR_RD_MASK) { case FSR_RD_NEAREST: rnd_mode = float_round_nearest_even; break; default: case FSR_RD_ZERO: rnd_mode = float_round_to_zero; break; case FSR_RD_POS: rnd_mode = float_round_up; break; case FSR_RD_NEG: rnd_mode = float_round_down; break; } set_float_rounding_mode(rnd_mode, &env->fp_status); } void helper_ldfsr(CPUSPARCState *env, uint32_t new_fsr) { env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK); set_fsr(env); } #ifdef TARGET_SPARC64 void helper_ldxfsr(CPUSPARCState *env, uint64_t new_fsr) { env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK); set_fsr(env); } #endif