/*
 *  SH4 emulation
 * 
 *  Copyright (c) 2005 Samuel Tardieu
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include "exec.h"

static inline void set_flag(uint32_t flag)
{
    env->flags |= flag;
}

static inline void clr_flag(uint32_t flag)
{
    env->flags &= ~flag;
}

static inline void set_t(void)
{
    env->sr |= SR_T;
}

static inline void clr_t(void)
{
    env->sr &= ~SR_T;
}

static inline void cond_t(int cond)
{
    if (cond)
	set_t();
    else
	clr_t();
}

void OPPROTO op_movl_imm_T0(void)
{
    T0 = (uint32_t) PARAM1;
    RETURN();
}

void OPPROTO op_movl_imm_T1(void)
{
    T0 = (uint32_t) PARAM1;
    RETURN();
}

void OPPROTO op_movl_imm_T2(void)
{
    T0 = (uint32_t) PARAM1;
    RETURN();
}

void OPPROTO op_cmp_eq_imm_T0(void)
{
    cond_t((int32_t) T0 == (int32_t) PARAM1);
    RETURN();
}

void OPPROTO op_cmd_eq_T0_T1(void)
{
    cond_t(T0 == T1);
    RETURN();
}

void OPPROTO op_cmd_hs_T0_T1(void)
{
    cond_t((uint32_t) T0 <= (uint32_t) T1);
    RETURN();
}

void OPPROTO op_cmd_ge_T0_T1(void)
{
    cond_t((int32_t) T0 <= (int32_t) T1);
    RETURN();
}

void OPPROTO op_cmd_hi_T0_T1(void)
{
    cond_t((uint32_t) T0 < (uint32_t) T1);
    RETURN();
}

void OPPROTO op_cmd_gt_T0_T1(void)
{
    cond_t((int32_t) T0 < (int32_t) T1);
    RETURN();
}

void OPPROTO op_not_T0(void)
{
    T0 = ~T0;
    RETURN();
}

void OPPROTO op_bf_s(void)
{
    T2 = ~env->sr;
    env->delayed_pc = PARAM1;
    set_flag(DELAY_SLOT_CONDITIONAL);
    RETURN();
}

void OPPROTO op_bt_s(void)
{
    T2 = env->sr;
    env->delayed_pc = PARAM1;
    set_flag(DELAY_SLOT_CONDITIONAL);
    RETURN();
}

void OPPROTO op_bra(void)
{
    env->delayed_pc = PARAM1;
    set_flag(DELAY_SLOT);
    RETURN();
}

void OPPROTO op_braf_T0(void)
{
    env->delayed_pc = PARAM1 + T0;
    set_flag(DELAY_SLOT);
    RETURN();
}

void OPPROTO op_bsr(void)
{
    env->pr = PARAM1;
    env->delayed_pc = PARAM2;
    set_flag(DELAY_SLOT);
    RETURN();
}

void OPPROTO op_bsrf_T0(void)
{
    env->pr = PARAM1;
    env->delayed_pc = PARAM1 + T0;
    set_flag(DELAY_SLOT);
    RETURN();
}

void OPPROTO op_jsr_T0(void)
{
    env->pr = PARAM1;
    env->delayed_pc = T0;
    set_flag(DELAY_SLOT);
    RETURN();
}

void OPPROTO op_rts(void)
{
    env->delayed_pc = env->pr;
    set_flag(DELAY_SLOT);
    RETURN();
}

void OPPROTO op_clr_delay_slot(void)
{
    clr_flag(DELAY_SLOT);
    RETURN();
}

void OPPROTO op_clr_delay_slot_conditional(void)
{
    clr_flag(DELAY_SLOT_CONDITIONAL);
    RETURN();
}

void OPPROTO op_exit_tb(void)
{
    EXIT_TB();
    RETURN();
}

void OPPROTO op_addl_imm_T0(void)
{
    T0 += PARAM1;
    RETURN();
}

void OPPROTO op_addl_imm_T1(void)
{
    T1 += PARAM1;
    RETURN();
}

void OPPROTO op_clrmac(void)
{
    env->mach = env->macl = 0;
    RETURN();
}

void OPPROTO op_clrs(void)
{
    env->sr &= ~SR_S;
    RETURN();
}

void OPPROTO op_clrt(void)
{
    env->sr &= ~SR_T;
    RETURN();
}

void OPPROTO op_sets(void)
{
    env->sr |= SR_S;
    RETURN();
}

void OPPROTO op_sett(void)
{
    env->sr |= SR_T;
    RETURN();
}

void OPPROTO op_rte(void)
{
    env->sr = env->ssr;
    env->delayed_pc = env->spc;
    set_flag(DELAY_SLOT);
    RETURN();
}

void OPPROTO op_swapb_T0(void)
{
    T0 = (T0 & 0xffff0000) | ((T0 & 0xff) << 8) | ((T0 >> 8) & 0xff);
    RETURN();
}

void OPPROTO op_swapw_T0(void)
{
    T0 = ((T0 & 0xffff) << 16) | ((T0 >> 16) & 0xffff);
    RETURN();
}

void OPPROTO op_xtrct_T0_T1(void)
{
    T1 = ((T0 & 0xffff) << 16) | ((T1 >> 16) & 0xffff);
    RETURN();
}

void OPPROTO op_addc_T0_T1(void)
{
    helper_addc_T0_T1();
    RETURN();
}

void OPPROTO op_addv_T0_T1(void)
{
    helper_addv_T0_T1();
    RETURN();
}

void OPPROTO op_cmp_eq_T0_T1(void)
{
    cond_t(T1 == T0);
    RETURN();
}

void OPPROTO op_cmp_ge_T0_T1(void)
{
    cond_t((int32_t) T1 >= (int32_t) T0);
    RETURN();
}

void OPPROTO op_cmp_gt_T0_T1(void)
{
    cond_t((int32_t) T1 > (int32_t) T0);
    RETURN();
}

void OPPROTO op_cmp_hi_T0_T1(void)
{
    cond_t((uint32_t) T1 > (uint32_t) T0);
    RETURN();
}

void OPPROTO op_cmp_hs_T0_T1(void)
{
    cond_t((uint32_t) T1 >= (uint32_t) T0);
    RETURN();
}

void OPPROTO op_cmp_str_T0_T1(void)
{
    cond_t((T0 & 0x000000ff) == (T1 & 0x000000ff) ||
	   (T0 & 0x0000ff00) == (T1 & 0x0000ff00) ||
	   (T0 & 0x00ff0000) == (T1 & 0x00ff0000) ||
	   (T0 & 0xff000000) == (T1 & 0xff000000));
    RETURN();
}

void OPPROTO op_tst_T0_T1(void)
{
    cond_t((T1 & T0) == 0);
    RETURN();
}

void OPPROTO op_div0s_T0_T1(void)
{
    if (T1 & 0x80000000)
	env->sr |= SR_Q;
    else
	env->sr &= ~SR_Q;
    if (T0 & 0x80000000)
	env->sr |= SR_M;
    else
	env->sr &= ~SR_M;
    cond_t((T1 ^ T0) & 0x80000000);
    RETURN();
}

void OPPROTO op_div0u(void)
{
    env->sr &= ~(SR_M | SR_Q | SR_T);
    RETURN();
}

void OPPROTO op_div1_T0_T1(void)
{
    helper_div1_T0_T1();
    RETURN();
}

void OPPROTO op_dmulsl_T0_T1(void)
{
    helper_dmulsl_T0_T1();
    RETURN();
}

void OPPROTO op_dmulul_T0_T1(void)
{
    helper_dmulul_T0_T1();
    RETURN();
}

void OPPROTO op_macl_T0_T1(void)
{
    helper_macl_T0_T1();
    RETURN();
}

void OPPROTO op_macw_T0_T1(void)
{
    helper_macw_T0_T1();
    RETURN();
}

void OPPROTO op_mull_T0_T1(void)
{
    env->macl = (T0 * T1) & 0xffffffff;
    RETURN();
}

void OPPROTO op_mulsw_T0_T1(void)
{
    env->macl = (int32_t) T0 *(int32_t) T1;
    RETURN();
}

void OPPROTO op_muluw_T0_T1(void)
{
    env->macl = (uint32_t) T0 *(uint32_t) T1;
    RETURN();
}

void OPPROTO op_neg_T0(void)
{
    T0 = -T0;
    RETURN();
}

void OPPROTO op_negc_T0(void)
{
    helper_negc_T0();
    RETURN();
}

void OPPROTO op_shad_T0_T1(void)
{
    if ((T0 & 0x80000000) == 0)
	T1 <<= (T0 & 0x1f);
    else if ((T0 & 0x1f) == 0)
	T1 = 0;
    else
	T1 = ((int32_t) T1) >> ((~T0 & 0x1f) + 1);
    RETURN();
}

void OPPROTO op_shld_T0_T1(void)
{
    if ((T0 & 0x80000000) == 0)
	T1 <<= (T0 & 0x1f);
    else if ((T0 & 0x1f) == 0)
	T1 = 0;
    else
	T1 = ((uint32_t) T1) >> ((~T0 & 0x1f) + 1);
    RETURN();
}

void OPPROTO op_subc_T0_T1(void)
{
    helper_subc_T0_T1();
    RETURN();
}

void OPPROTO op_subv_T0_T1(void)
{
    helper_subv_T0_T1();
    RETURN();
}

void OPPROTO op_trapa(void)
{
    env->tra = PARAM1 * 2;
    env->exception_index = 0x160;
    do_raise_exception();
    RETURN();
}

void OPPROTO op_cmp_pl_T0(void)
{
    cond_t((int32_t) T0 > 0);
    RETURN();
}

void OPPROTO op_cmp_pz_T0(void)
{
    cond_t((int32_t) T0 >= 0);
    RETURN();
}

void OPPROTO op_jmp_T0(void)
{
    env->delayed_pc = T0;
    set_flag(DELAY_SLOT);
    RETURN();
}

void OPPROTO op_movl_rN_rN(void)
{
    env->gregs[PARAM2] = env->gregs[PARAM1];
    RETURN();
}

void OPPROTO op_ldcl_rMplus_rN_bank(void)
{
    env->gregs[PARAM2] = env->gregs[PARAM1];
    env->gregs[PARAM1] += 4;
    RETURN();
}

#define LDSTOPS(target,load,store) \
void OPPROTO op_##load##_T0_##target (void) \
{ env ->target = T0;   RETURN(); \
} \
void OPPROTO op_##store##_##target##_T0 (void) \
{ T0 = env->target;   RETURN(); \
} \

LDSTOPS(sr, ldc, stc)
    LDSTOPS(gbr, ldc, stc)
    LDSTOPS(vbr, ldc, stc)
    LDSTOPS(ssr, ldc, stc)
    LDSTOPS(spc, ldc, stc)
    LDSTOPS(sgr, ldc, stc)
    LDSTOPS(dbr, ldc, stc)
    LDSTOPS(mach, lds, sts)
    LDSTOPS(macl, lds, sts)
    LDSTOPS(pr, lds, sts)

void OPPROTO op_movt_rN(void)
{
    env->gregs[PARAM1] = env->sr & SR_T;
    RETURN();
}

void OPPROTO op_rotcl_Rn(void)
{
    helper_rotcl(&env->gregs[PARAM1]);
    RETURN();
}

void OPPROTO op_rotcr_Rn(void)
{
    helper_rotcr(&env->gregs[PARAM1]);
    RETURN();
}

void OPPROTO op_rotl_Rn(void)
{
    cond_t(env->gregs[PARAM1] & 0x80000000);
    env->gregs[PARAM1] = (env->gregs[PARAM1] << 1) | (env->sr & SR_T);
    RETURN();
}

void OPPROTO op_rotr_Rn(void)
{
    cond_t(env->gregs[PARAM1] & 1);
    env->gregs[PARAM1] = (env->gregs[PARAM1] >> 1) |
	((env->sr & SR_T) ? 0x80000000 : 0);
    RETURN();
}

void OPPROTO op_shal_Rn(void)
{
    cond_t(env->gregs[PARAM1] & 0x80000000);
    env->gregs[PARAM1] <<= 1;
    RETURN();
}

void OPPROTO op_shar_Rn(void)
{
    cond_t(env->gregs[PARAM1] & 1);
    *(int32_t *) & env->gregs[PARAM1] >>= 1;
    RETURN();
}

void OPPROTO op_shlr_Rn(void)
{
    cond_t(env->gregs[PARAM1] & 1);
    *(uint32_t *) & env->gregs[PARAM1] >>= 1;
    RETURN();
}

void OPPROTO op_shll2_Rn(void)
{
    env->gregs[PARAM1] <<= 2;
    RETURN();
}

void OPPROTO op_shll8_Rn(void)
{
    env->gregs[PARAM1] <<= 8;
    RETURN();
}

void OPPROTO op_shll16_Rn(void)
{
    env->gregs[PARAM1] <<= 16;
    RETURN();
}

void OPPROTO op_shlr2_Rn(void)
{
    *(uint32_t *) & env->gregs[PARAM1] >>= 2;
    RETURN();
}

void OPPROTO op_shlr8_Rn(void)
{
    *(uint32_t *) & env->gregs[PARAM1] >>= 8;
    RETURN();
}

void OPPROTO op_shlr16_Rn(void)
{
    *(uint32_t *) & env->gregs[PARAM1] >>= 16;
    RETURN();
}

void OPPROTO op_tasb_rN(void)
{
    cond_t(*(int8_t *) env->gregs[PARAM1] == 0);
    *(int8_t *) env->gregs[PARAM1] |= 0x80;
    RETURN();
}

void OPPROTO op_movl_T0_rN(void)
{
    env->gregs[PARAM1] = T0;
    RETURN();
}

void OPPROTO op_movl_T1_rN(void)
{
    env->gregs[PARAM1] = T1;
    RETURN();
}

void OPPROTO op_movb_rN_T0(void)
{
    T0 = (int32_t) (int8_t) (env->gregs[PARAM1] & 0xff);
    RETURN();
}

void OPPROTO op_movub_rN_T0(void)
{
    T0 = env->gregs[PARAM1] & 0xff;
    RETURN();
}

void OPPROTO op_movw_rN_T0(void)
{
    T0 = (int32_t) (int16_t) (env->gregs[PARAM1] & 0xffff);
    RETURN();
}

void OPPROTO op_movuw_rN_T0(void)
{
    T0 = env->gregs[PARAM1] & 0xffff;
    RETURN();
}

void OPPROTO op_movl_rN_T0(void)
{
    T0 = env->gregs[PARAM1];
    RETURN();
}

void OPPROTO op_movb_rN_T1(void)
{
    T1 = (int32_t) (int8_t) (env->gregs[PARAM1] & 0xff);
    RETURN();
}

void OPPROTO op_movub_rN_T1(void)
{
    T1 = env->gregs[PARAM1] & 0xff;
    RETURN();
}

void OPPROTO op_movw_rN_T1(void)
{
    T1 = (int32_t) (int16_t) (env->gregs[PARAM1] & 0xffff);
    RETURN();
}

void OPPROTO op_movuw_rN_T1(void)
{
    T1 = env->gregs[PARAM1] & 0xffff;
    RETURN();
}

void OPPROTO op_movl_rN_T1(void)
{
    T1 = env->gregs[PARAM1];
    RETURN();
}

void OPPROTO op_movl_imm_rN(void)
{
    env->gregs[PARAM2] = PARAM1;
    RETURN();
}

void OPPROTO op_dec1_rN(void)
{
    env->gregs[PARAM1] -= 1;
    RETURN();
}

void OPPROTO op_dec2_rN(void)
{
    env->gregs[PARAM1] -= 2;
    RETURN();
}

void OPPROTO op_dec4_rN(void)
{
    env->gregs[PARAM1] -= 4;
    RETURN();
}

void OPPROTO op_inc1_rN(void)
{
    env->gregs[PARAM1] += 1;
    RETURN();
}

void OPPROTO op_inc2_rN(void)
{
    env->gregs[PARAM1] += 2;
    RETURN();
}

void OPPROTO op_inc4_rN(void)
{
    env->gregs[PARAM1] += 4;
    RETURN();
}

void OPPROTO op_add_T0_rN(void)
{
    env->gregs[PARAM1] += T0;
    RETURN();
}

void OPPROTO op_sub_T0_rN(void)
{
    env->gregs[PARAM1] -= T0;
    RETURN();
}

void OPPROTO op_and_T0_rN(void)
{
    env->gregs[PARAM1] &= T0;
    RETURN();
}

void OPPROTO op_or_T0_rN(void)
{
    env->gregs[PARAM1] |= T0;
    RETURN();
}

void OPPROTO op_xor_T0_rN(void)
{
    env->gregs[PARAM1] ^= T0;
    RETURN();
}

void OPPROTO op_add_rN_T0(void)
{
    T0 += env->gregs[PARAM1];
    RETURN();
}

void OPPROTO op_add_rN_T1(void)
{
    T1 += env->gregs[PARAM1];
    RETURN();
}

void OPPROTO op_add_imm_rN(void)
{
    env->gregs[PARAM2] += PARAM1;
    RETURN();
}

void OPPROTO op_and_imm_rN(void)
{
    env->gregs[PARAM2] &= PARAM1;
    RETURN();
}

void OPPROTO op_or_imm_rN(void)
{
    env->gregs[PARAM2] |= PARAM1;
    RETURN();
}

void OPPROTO op_xor_imm_rN(void)
{
    env->gregs[PARAM2] ^= PARAM1;
    RETURN();
}

void OPPROTO op_dt_rN(void)
{
    cond_t((--env->gregs[PARAM1]) == 0);
    RETURN();
}

void OPPROTO op_tst_imm_rN(void)
{
    cond_t((env->gregs[PARAM2] & PARAM1) == 0);
    RETURN();
}

void OPPROTO op_movl_T0_T1(void)
{
    T1 = T0;
    RETURN();
}

void OPPROTO op_goto_tb0(void)
{
    GOTO_TB(op_goto_tb0, PARAM1, 0);
    RETURN();
}

void OPPROTO op_goto_tb1(void)
{
    GOTO_TB(op_goto_tb1, PARAM1, 1);
    RETURN();
}

void OPPROTO op_movl_imm_PC(void)
{
    env->pc = PARAM1;
    RETURN();
}

void OPPROTO op_jT(void)
{
    if (env->sr & SR_T)
	GOTO_LABEL_PARAM(1);
    RETURN();
}

void OPPROTO op_jTT2(void)
{
    if (T2 & SR_T)
	GOTO_LABEL_PARAM(1);
    RETURN();
}

void OPPROTO op_movl_delayed_pc_PC(void)
{
    env->pc = env->delayed_pc;
    RETURN();
}

void OPPROTO op_addl_GBR_T0(void)
{
    T0 += env->gbr;
    RETURN();
}

void OPPROTO op_and_imm_T0(void)
{
    T0 &= PARAM1;
    RETURN();
}

void OPPROTO op_or_imm_T0(void)
{
    T0 |= PARAM1;
    RETURN();
}

void OPPROTO op_xor_imm_T0(void)
{
    T0 ^= PARAM1;
    RETURN();
}

void OPPROTO op_tst_imm_T0(void)
{
    cond_t((T0 & PARAM1) == 0);
    RETURN();
}

void OPPROTO op_raise_illegal_instruction(void)
{
    env->exception_index = 0x180;
    do_raise_exception();
    RETURN();
}

void OPPROTO op_raise_slot_illegal_instruction(void)
{
    env->exception_index = 0x1a0;
    do_raise_exception();
    RETURN();
}

void OPPROTO op_debug(void)
{
    env->exception_index = EXCP_DEBUG;
    cpu_loop_exit();
}

/* Load and store */
#define MEMSUFFIX _raw
#include "op_mem.c"
#undef MEMSUFFIX
#if !defined(CONFIG_USER_ONLY)
#define MEMSUFFIX _user
#include "op_mem.c"
#undef MEMSUFFIX

#define MEMSUFFIX _kernel
#include "op_mem.c"
#undef MEMSUFFIX
#endif