/* * SH4 emulation * * Copyright (c) 2005 Samuel Tardieu * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "exec.h" static inline void set_t(void) { env->sr |= SR_T; } static inline void clr_t(void) { env->sr &= ~SR_T; } static inline void cond_t(int cond) { if (cond) set_t(); else clr_t(); } void OPPROTO op_movl_imm_T0(void) { T0 = (uint32_t) PARAM1; RETURN(); } void OPPROTO op_movl_imm_T1(void) { T1 = (uint32_t) PARAM1; RETURN(); } void OPPROTO op_cmp_eq_imm_T0(void) { cond_t((int32_t) T0 == (int32_t) PARAM1); RETURN(); } void OPPROTO op_not_T0(void) { T0 = ~T0; RETURN(); } void OPPROTO op_bf_s(void) { env->delayed_pc = PARAM1; if (!(env->sr & SR_T)) { env->flags |= DELAY_SLOT_TRUE; } RETURN(); } void OPPROTO op_bt_s(void) { env->delayed_pc = PARAM1; if (env->sr & SR_T) { env->flags |= DELAY_SLOT_TRUE; } RETURN(); } void OPPROTO op_store_flags(void) { env->flags &= DELAY_SLOT_TRUE; env->flags |= PARAM1; RETURN(); } void OPPROTO op_bra(void) { env->delayed_pc = PARAM1; RETURN(); } void OPPROTO op_braf_T0(void) { env->delayed_pc = PARAM1 + T0; RETURN(); } void OPPROTO op_bsr(void) { env->pr = PARAM1; env->delayed_pc = PARAM2; RETURN(); } void OPPROTO op_bsrf_T0(void) { env->pr = PARAM1; env->delayed_pc = PARAM1 + T0; RETURN(); } void OPPROTO op_jsr_T0(void) { env->pr = PARAM1; env->delayed_pc = T0; RETURN(); } void OPPROTO op_rts(void) { env->delayed_pc = env->pr; RETURN(); } void OPPROTO op_addl_imm_T0(void) { T0 += PARAM1; RETURN(); } void OPPROTO op_addl_imm_T1(void) { T1 += PARAM1; RETURN(); } void OPPROTO op_clrmac(void) { env->mach = env->macl = 0; RETURN(); } void OPPROTO op_clrs(void) { env->sr &= ~SR_S; RETURN(); } void OPPROTO op_clrt(void) { env->sr &= ~SR_T; RETURN(); } void OPPROTO op_ldtlb(void) { helper_ldtlb(); RETURN(); } void OPPROTO op_sets(void) { env->sr |= SR_S; RETURN(); } void OPPROTO op_sett(void) { env->sr |= SR_T; RETURN(); } void OPPROTO op_frchg(void) { env->fpscr ^= FPSCR_FR; RETURN(); } void OPPROTO op_fschg(void) { env->fpscr ^= FPSCR_SZ; RETURN(); } void OPPROTO op_rte(void) { env->sr = env->ssr; env->delayed_pc = env->spc; RETURN(); } void OPPROTO op_swapb_T0(void) { T0 = (T0 & 0xffff0000) | ((T0 & 0xff) << 8) | ((T0 >> 8) & 0xff); RETURN(); } void OPPROTO op_swapw_T0(void) { T0 = ((T0 & 0xffff) << 16) | ((T0 >> 16) & 0xffff); RETURN(); } void OPPROTO op_xtrct_T0_T1(void) { T1 = ((T0 & 0xffff) << 16) | ((T1 >> 16) & 0xffff); RETURN(); } void OPPROTO op_add_T0_T1(void) { T1 += T0; RETURN(); } void OPPROTO op_addc_T0_T1(void) { helper_addc_T0_T1(); RETURN(); } void OPPROTO op_addv_T0_T1(void) { helper_addv_T0_T1(); RETURN(); } void OPPROTO op_cmp_eq_T0_T1(void) { cond_t(T1 == T0); RETURN(); } void OPPROTO op_cmp_ge_T0_T1(void) { cond_t((int32_t) T1 >= (int32_t) T0); RETURN(); } void OPPROTO op_cmp_gt_T0_T1(void) { cond_t((int32_t) T1 > (int32_t) T0); RETURN(); } void OPPROTO op_cmp_hi_T0_T1(void) { cond_t((uint32_t) T1 > (uint32_t) T0); RETURN(); } void OPPROTO op_cmp_hs_T0_T1(void) { cond_t((uint32_t) T1 >= (uint32_t) T0); RETURN(); } void OPPROTO op_cmp_str_T0_T1(void) { cond_t((T0 & 0x000000ff) == (T1 & 0x000000ff) || (T0 & 0x0000ff00) == (T1 & 0x0000ff00) || (T0 & 0x00ff0000) == (T1 & 0x00ff0000) || (T0 & 0xff000000) == (T1 & 0xff000000)); RETURN(); } void OPPROTO op_tst_T0_T1(void) { cond_t((T1 & T0) == 0); RETURN(); } void OPPROTO op_div0s_T0_T1(void) { if (T1 & 0x80000000) env->sr |= SR_Q; else env->sr &= ~SR_Q; if (T0 & 0x80000000) env->sr |= SR_M; else env->sr &= ~SR_M; cond_t((T1 ^ T0) & 0x80000000); RETURN(); } void OPPROTO op_div0u(void) { env->sr &= ~(SR_M | SR_Q | SR_T); RETURN(); } void OPPROTO op_div1_T0_T1(void) { helper_div1_T0_T1(); RETURN(); } void OPPROTO op_dmulsl_T0_T1(void) { helper_dmulsl_T0_T1(); RETURN(); } void OPPROTO op_dmulul_T0_T1(void) { helper_dmulul_T0_T1(); RETURN(); } void OPPROTO op_macl_T0_T1(void) { helper_macl_T0_T1(); RETURN(); } void OPPROTO op_macw_T0_T1(void) { helper_macw_T0_T1(); RETURN(); } void OPPROTO op_mull_T0_T1(void) { env->macl = (T0 * T1) & 0xffffffff; RETURN(); } void OPPROTO op_mulsw_T0_T1(void) { env->macl = (int32_t)(int16_t) T0 *(int32_t)(int16_t) T1; RETURN(); } void OPPROTO op_muluw_T0_T1(void) { env->macl = (uint32_t)(uint16_t) T0 *(uint32_t)(uint16_t) T1; RETURN(); } void OPPROTO op_neg_T0(void) { T0 = -T0; RETURN(); } void OPPROTO op_negc_T0(void) { helper_negc_T0(); RETURN(); } void OPPROTO op_shad_T0_T1(void) { if ((T0 & 0x80000000) == 0) T1 <<= (T0 & 0x1f); else if ((T0 & 0x1f) == 0) T1 = (T1 & 0x80000000)? 0xffffffff : 0; else T1 = ((int32_t) T1) >> ((~T0 & 0x1f) + 1); RETURN(); } void OPPROTO op_shld_T0_T1(void) { if ((T0 & 0x80000000) == 0) T1 <<= (T0 & 0x1f); else if ((T0 & 0x1f) == 0) T1 = 0; else T1 = ((uint32_t) T1) >> ((~T0 & 0x1f) + 1); RETURN(); } void OPPROTO op_subc_T0_T1(void) { helper_subc_T0_T1(); RETURN(); } void OPPROTO op_subv_T0_T1(void) { helper_subv_T0_T1(); RETURN(); } void OPPROTO op_trapa(void) { env->tra = PARAM1 << 2; env->exception_index = 0x160; do_raise_exception(); RETURN(); } void OPPROTO op_cmp_pl_T0(void) { cond_t((int32_t) T0 > 0); RETURN(); } void OPPROTO op_cmp_pz_T0(void) { cond_t((int32_t) T0 >= 0); RETURN(); } void OPPROTO op_jmp_T0(void) { env->delayed_pc = T0; RETURN(); } void OPPROTO op_movl_rN_rN(void) { env->gregs[PARAM2] = env->gregs[PARAM1]; RETURN(); } void OPPROTO op_ldcl_rMplus_rN_bank(void) { env->gregs[PARAM2] = env->gregs[PARAM1]; env->gregs[PARAM1] += 4; RETURN(); } void OPPROTO op_ldc_T0_sr(void) { env->sr = T0 & 0x700083f3; RETURN(); } void OPPROTO op_stc_sr_T0(void) { T0 = env->sr; RETURN(); } #define LDSTOPS(target,load,store) \ void OPPROTO op_##load##_T0_##target (void) \ { env ->target = T0; RETURN(); \ } \ void OPPROTO op_##store##_##target##_T0 (void) \ { T0 = env->target; RETURN(); \ } \ LDSTOPS(gbr, ldc, stc) LDSTOPS(vbr, ldc, stc) LDSTOPS(ssr, ldc, stc) LDSTOPS(spc, ldc, stc) LDSTOPS(sgr, ldc, stc) LDSTOPS(dbr, ldc, stc) LDSTOPS(mach, lds, sts) LDSTOPS(macl, lds, sts) LDSTOPS(pr, lds, sts) LDSTOPS(fpul, lds, sts) void OPPROTO op_lds_T0_fpscr(void) { env->fpscr = T0 & 0x003fffff; env->fp_status.float_rounding_mode = T0 & 0x01 ? float_round_to_zero : float_round_nearest_even; RETURN(); } void OPPROTO op_sts_fpscr_T0(void) { T0 = env->fpscr & 0x003fffff; RETURN(); } void OPPROTO op_movt_rN(void) { env->gregs[PARAM1] = env->sr & SR_T; RETURN(); } void OPPROTO op_rotcl_Rn(void) { helper_rotcl(&env->gregs[PARAM1]); RETURN(); } void OPPROTO op_rotcr_Rn(void) { helper_rotcr(&env->gregs[PARAM1]); RETURN(); } void OPPROTO op_rotl_Rn(void) { cond_t(env->gregs[PARAM1] & 0x80000000); env->gregs[PARAM1] = (env->gregs[PARAM1] << 1) | (env->sr & SR_T); RETURN(); } void OPPROTO op_rotr_Rn(void) { cond_t(env->gregs[PARAM1] & 1); env->gregs[PARAM1] = (env->gregs[PARAM1] >> 1) | ((env->sr & SR_T) ? 0x80000000 : 0); RETURN(); } void OPPROTO op_shal_Rn(void) { cond_t(env->gregs[PARAM1] & 0x80000000); env->gregs[PARAM1] <<= 1; RETURN(); } void OPPROTO op_shar_Rn(void) { cond_t(env->gregs[PARAM1] & 1); *(int32_t *)&env->gregs[PARAM1] >>= 1; RETURN(); } void OPPROTO op_shlr_Rn(void) { cond_t(env->gregs[PARAM1] & 1); env->gregs[PARAM1] >>= 1; RETURN(); } void OPPROTO op_shll2_Rn(void) { env->gregs[PARAM1] <<= 2; RETURN(); } void OPPROTO op_shll8_Rn(void) { env->gregs[PARAM1] <<= 8; RETURN(); } void OPPROTO op_shll16_Rn(void) { env->gregs[PARAM1] <<= 16; RETURN(); } void OPPROTO op_shlr2_Rn(void) { env->gregs[PARAM1] >>= 2; RETURN(); } void OPPROTO op_shlr8_Rn(void) { env->gregs[PARAM1] >>= 8; RETURN(); } void OPPROTO op_shlr16_Rn(void) { env->gregs[PARAM1] >>= 16; RETURN(); } void OPPROTO op_movl_T0_rN(void) { env->gregs[PARAM1] = T0; RETURN(); } void OPPROTO op_movl_T1_rN(void) { env->gregs[PARAM1] = T1; RETURN(); } void OPPROTO op_movb_rN_T0(void) { T0 = (int32_t) (int8_t) (env->gregs[PARAM1] & 0xff); RETURN(); } void OPPROTO op_movub_rN_T0(void) { T0 = env->gregs[PARAM1] & 0xff; RETURN(); } void OPPROTO op_movw_rN_T0(void) { T0 = (int32_t) (int16_t) (env->gregs[PARAM1] & 0xffff); RETURN(); } void OPPROTO op_movuw_rN_T0(void) { T0 = env->gregs[PARAM1] & 0xffff; RETURN(); } void OPPROTO op_movl_rN_T0(void) { T0 = env->gregs[PARAM1]; RETURN(); } void OPPROTO op_movb_rN_T1(void) { T1 = (int32_t) (int8_t) (env->gregs[PARAM1] & 0xff); RETURN(); } void OPPROTO op_movub_rN_T1(void) { T1 = env->gregs[PARAM1] & 0xff; RETURN(); } void OPPROTO op_movw_rN_T1(void) { T1 = (int32_t) (int16_t) (env->gregs[PARAM1] & 0xffff); RETURN(); } void OPPROTO op_movuw_rN_T1(void) { T1 = env->gregs[PARAM1] & 0xffff; RETURN(); } void OPPROTO op_movl_rN_T1(void) { T1 = env->gregs[PARAM1]; RETURN(); } void OPPROTO op_movl_imm_rN(void) { env->gregs[PARAM2] = PARAM1; RETURN(); } void OPPROTO op_fmov_frN_FT0(void) { FT0 = env->fregs[PARAM1]; RETURN(); } void OPPROTO op_fmov_drN_DT0(void) { CPU_DoubleU d; d.l.upper = *(uint32_t *)&env->fregs[PARAM1]; d.l.lower = *(uint32_t *)&env->fregs[PARAM1 + 1]; DT0 = d.d; RETURN(); } void OPPROTO op_fmov_frN_FT1(void) { FT1 = env->fregs[PARAM1]; RETURN(); } void OPPROTO op_fmov_drN_DT1(void) { CPU_DoubleU d; d.l.upper = *(uint32_t *)&env->fregs[PARAM1]; d.l.lower = *(uint32_t *)&env->fregs[PARAM1 + 1]; DT1 = d.d; RETURN(); } void OPPROTO op_fmov_FT0_frN(void) { env->fregs[PARAM1] = FT0; RETURN(); } void OPPROTO op_fmov_DT0_drN(void) { CPU_DoubleU d; d.d = DT0; *(uint32_t *)&env->fregs[PARAM1] = d.l.upper; *(uint32_t *)&env->fregs[PARAM1 + 1] = d.l.lower; RETURN(); } void OPPROTO op_fadd_FT(void) { FT0 = float32_add(FT0, FT1, &env->fp_status); RETURN(); } void OPPROTO op_fadd_DT(void) { DT0 = float64_add(DT0, DT1, &env->fp_status); RETURN(); } void OPPROTO op_fsub_FT(void) { FT0 = float32_sub(FT0, FT1, &env->fp_status); RETURN(); } void OPPROTO op_fsub_DT(void) { DT0 = float64_sub(DT0, DT1, &env->fp_status); RETURN(); } void OPPROTO op_fmul_FT(void) { FT0 = float32_mul(FT0, FT1, &env->fp_status); RETURN(); } void OPPROTO op_fmul_DT(void) { DT0 = float64_mul(DT0, DT1, &env->fp_status); RETURN(); } void OPPROTO op_fdiv_FT(void) { FT0 = float32_div(FT0, FT1, &env->fp_status); RETURN(); } void OPPROTO op_fdiv_DT(void) { DT0 = float64_div(DT0, DT1, &env->fp_status); RETURN(); } void OPPROTO op_fcmp_eq_FT(void) { cond_t(float32_compare(FT0, FT1, &env->fp_status) == 0); RETURN(); } void OPPROTO op_fcmp_eq_DT(void) { cond_t(float64_compare(DT0, DT1, &env->fp_status) == 0); RETURN(); } void OPPROTO op_fcmp_gt_FT(void) { cond_t(float32_compare(FT0, FT1, &env->fp_status) == 1); RETURN(); } void OPPROTO op_fcmp_gt_DT(void) { cond_t(float64_compare(DT0, DT1, &env->fp_status) == 1); RETURN(); } void OPPROTO op_float_FT(void) { FT0 = int32_to_float32(env->fpul, &env->fp_status); RETURN(); } void OPPROTO op_float_DT(void) { DT0 = int32_to_float64(env->fpul, &env->fp_status); RETURN(); } void OPPROTO op_ftrc_FT(void) { env->fpul = float32_to_int32_round_to_zero(FT0, &env->fp_status); RETURN(); } void OPPROTO op_ftrc_DT(void) { env->fpul = float64_to_int32_round_to_zero(DT0, &env->fp_status); RETURN(); } void OPPROTO op_fneg_frN(void) { env->fregs[PARAM1] = float32_chs(env->fregs[PARAM1]); RETURN(); } void OPPROTO op_fabs_FT(void) { FT0 = float32_abs(FT0); RETURN(); } void OPPROTO op_fabs_DT(void) { DT0 = float64_abs(DT0); RETURN(); } void OPPROTO op_fcnvsd_FT_DT(void) { DT0 = float32_to_float64(FT0, &env->fp_status); RETURN(); } void OPPROTO op_fcnvds_DT_FT(void) { FT0 = float64_to_float32(DT0, &env->fp_status); RETURN(); } void OPPROTO op_fsqrt_FT(void) { FT0 = float32_sqrt(FT0, &env->fp_status); RETURN(); } void OPPROTO op_fsqrt_DT(void) { DT0 = float64_sqrt(DT0, &env->fp_status); RETURN(); } void OPPROTO op_fmov_T0_frN(void) { *(uint32_t *)&env->fregs[PARAM1] = T0; RETURN(); } void OPPROTO op_dec1_rN(void) { env->gregs[PARAM1] -= 1; RETURN(); } void OPPROTO op_dec2_rN(void) { env->gregs[PARAM1] -= 2; RETURN(); } void OPPROTO op_dec4_rN(void) { env->gregs[PARAM1] -= 4; RETURN(); } void OPPROTO op_dec8_rN(void) { env->gregs[PARAM1] -= 8; RETURN(); } void OPPROTO op_inc1_rN(void) { env->gregs[PARAM1] += 1; RETURN(); } void OPPROTO op_inc2_rN(void) { env->gregs[PARAM1] += 2; RETURN(); } void OPPROTO op_inc4_rN(void) { env->gregs[PARAM1] += 4; RETURN(); } void OPPROTO op_inc8_rN(void) { env->gregs[PARAM1] += 8; RETURN(); } void OPPROTO op_add_T0_rN(void) { env->gregs[PARAM1] += T0; RETURN(); } void OPPROTO op_sub_T0_rN(void) { env->gregs[PARAM1] -= T0; RETURN(); } void OPPROTO op_and_T0_rN(void) { env->gregs[PARAM1] &= T0; RETURN(); } void OPPROTO op_or_T0_rN(void) { env->gregs[PARAM1] |= T0; RETURN(); } void OPPROTO op_xor_T0_rN(void) { env->gregs[PARAM1] ^= T0; RETURN(); } void OPPROTO op_add_rN_T0(void) { T0 += env->gregs[PARAM1]; RETURN(); } void OPPROTO op_add_rN_T1(void) { T1 += env->gregs[PARAM1]; RETURN(); } void OPPROTO op_add_imm_rN(void) { env->gregs[PARAM2] += PARAM1; RETURN(); } void OPPROTO op_and_imm_rN(void) { env->gregs[PARAM2] &= PARAM1; RETURN(); } void OPPROTO op_or_imm_rN(void) { env->gregs[PARAM2] |= PARAM1; RETURN(); } void OPPROTO op_xor_imm_rN(void) { env->gregs[PARAM2] ^= PARAM1; RETURN(); } void OPPROTO op_dt_rN(void) { cond_t((--env->gregs[PARAM1]) == 0); RETURN(); } void OPPROTO op_tst_imm_rN(void) { cond_t((env->gregs[PARAM2] & PARAM1) == 0); RETURN(); } void OPPROTO op_movl_T0_T1(void) { T1 = T0; RETURN(); } void OPPROTO op_movl_fpul_FT0(void) { FT0 = *(float32 *)&env->fpul; RETURN(); } void OPPROTO op_movl_FT0_fpul(void) { *(float32 *)&env->fpul = FT0; RETURN(); } void OPPROTO op_movl_imm_PC(void) { env->pc = PARAM1; RETURN(); } void OPPROTO op_jT(void) { if (env->sr & SR_T) GOTO_LABEL_PARAM(1); RETURN(); } void OPPROTO op_jdelayed(void) { if (env->flags & DELAY_SLOT_TRUE) { env->flags &= ~DELAY_SLOT_TRUE; GOTO_LABEL_PARAM(1); } RETURN(); } void OPPROTO op_movl_delayed_pc_PC(void) { env->pc = env->delayed_pc; RETURN(); } void OPPROTO op_addl_GBR_T0(void) { T0 += env->gbr; RETURN(); } void OPPROTO op_and_imm_T0(void) { T0 &= PARAM1; RETURN(); } void OPPROTO op_or_imm_T0(void) { T0 |= PARAM1; RETURN(); } void OPPROTO op_xor_imm_T0(void) { T0 ^= PARAM1; RETURN(); } void OPPROTO op_tst_imm_T0(void) { cond_t((T0 & PARAM1) == 0); RETURN(); } void OPPROTO op_raise_illegal_instruction(void) { env->exception_index = 0x180; do_raise_exception(); RETURN(); } void OPPROTO op_raise_slot_illegal_instruction(void) { env->exception_index = 0x1a0; do_raise_exception(); RETURN(); } void OPPROTO op_debug(void) { env->exception_index = EXCP_DEBUG; cpu_loop_exit(); } void OPPROTO op_sleep(void) { env->halted = 1; env->exception_index = EXCP_HLT; cpu_loop_exit(); } /* Load and store */ #define MEMSUFFIX _raw #include "op_mem.c" #undef MEMSUFFIX #if !defined(CONFIG_USER_ONLY) #define MEMSUFFIX _user #include "op_mem.c" #undef MEMSUFFIX #define MEMSUFFIX _kernel #include "op_mem.c" #undef MEMSUFFIX #endif