/* * QEMU S390x KVM implementation * * Copyright (c) 2009 Alexander Graf * Copyright IBM Corp. 2012 * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * Contributions after 2012-10-29 are licensed under the terms of the * GNU GPL, version 2 or (at your option) any later version. * * You should have received a copy of the GNU (Lesser) General Public * License along with this library; if not, see . */ #include #include #include #include #include #include "qemu-common.h" #include "qemu/timer.h" #include "sysemu/sysemu.h" #include "sysemu/kvm.h" #include "cpu.h" #include "sysemu/device_tree.h" #include "qapi/qmp/qjson.h" #include "monitor/monitor.h" /* #define DEBUG_KVM */ #ifdef DEBUG_KVM #define DPRINTF(fmt, ...) \ do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) \ do { } while (0) #endif #define IPA0_DIAG 0x8300 #define IPA0_SIGP 0xae00 #define IPA0_B2 0xb200 #define IPA0_B9 0xb900 #define IPA0_EB 0xeb00 #define PRIV_SCLP_CALL 0x20 #define PRIV_CSCH 0x30 #define PRIV_HSCH 0x31 #define PRIV_MSCH 0x32 #define PRIV_SSCH 0x33 #define PRIV_STSCH 0x34 #define PRIV_TSCH 0x35 #define PRIV_TPI 0x36 #define PRIV_SAL 0x37 #define PRIV_RSCH 0x38 #define PRIV_STCRW 0x39 #define PRIV_STCPS 0x3a #define PRIV_RCHP 0x3b #define PRIV_SCHM 0x3c #define PRIV_CHSC 0x5f #define PRIV_SIGA 0x74 #define PRIV_XSCH 0x76 #define PRIV_SQBS 0x8a #define PRIV_EQBS 0x9c #define DIAG_KVM_HYPERCALL 0x500 #define DIAG_KVM_BREAKPOINT 0x501 #define ICPT_INSTRUCTION 0x04 #define ICPT_WAITPSW 0x1c #define ICPT_SOFT_INTERCEPT 0x24 #define ICPT_CPU_STOP 0x28 #define ICPT_IO 0x40 #define SIGP_RESTART 0x06 #define SIGP_INITIAL_CPU_RESET 0x0b #define SIGP_STORE_STATUS_ADDR 0x0e #define SIGP_SET_ARCH 0x12 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { KVM_CAP_LAST_INFO }; static int cap_sync_regs; int kvm_arch_init(KVMState *s) { cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS); return 0; } unsigned long kvm_arch_vcpu_id(CPUState *cpu) { return cpu->cpu_index; } int kvm_arch_init_vcpu(CPUState *cpu) { /* nothing todo yet */ return 0; } void kvm_arch_reset_vcpu(CPUState *cpu) { /* The initial reset call is needed here to reset in-kernel * vcpu data that we can't access directly from QEMU * (i.e. with older kernels which don't support sync_regs/ONE_REG). * Before this ioctl cpu_synchronize_state() is called in common kvm * code (kvm-all) */ if (kvm_vcpu_ioctl(cpu, KVM_S390_INITIAL_RESET, NULL)) { perror("Can't reset vcpu\n"); } } int kvm_arch_put_registers(CPUState *cs, int level) { S390CPU *cpu = S390_CPU(cs); CPUS390XState *env = &cpu->env; struct kvm_one_reg reg; struct kvm_sregs sregs; struct kvm_regs regs; int ret; int i; /* always save the PSW and the GPRS*/ cs->kvm_run->psw_addr = env->psw.addr; cs->kvm_run->psw_mask = env->psw.mask; if (cap_sync_regs && cs->kvm_run->kvm_valid_regs & KVM_SYNC_GPRS) { for (i = 0; i < 16; i++) { cs->kvm_run->s.regs.gprs[i] = env->regs[i]; cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS; } } else { for (i = 0; i < 16; i++) { regs.gprs[i] = env->regs[i]; } ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s); if (ret < 0) { return ret; } } if (env->runtime_reg_dirty_mask == KVM_S390_RUNTIME_DIRTY_FULL) { reg.id = KVM_REG_S390_CPU_TIMER; reg.addr = (__u64)&(env->cputm); ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret < 0) { return ret; } reg.id = KVM_REG_S390_CLOCK_COMP; reg.addr = (__u64)&(env->ckc); ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret < 0) { return ret; } reg.id = KVM_REG_S390_TODPR; reg.addr = (__u64)&(env->todpr); ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret < 0) { return ret; } } env->runtime_reg_dirty_mask = KVM_S390_RUNTIME_DIRTY_NONE; /* Do we need to save more than that? */ if (level == KVM_PUT_RUNTIME_STATE) { return 0; } if (cap_sync_regs && cs->kvm_run->kvm_valid_regs & KVM_SYNC_ACRS && cs->kvm_run->kvm_valid_regs & KVM_SYNC_CRS) { for (i = 0; i < 16; i++) { cs->kvm_run->s.regs.acrs[i] = env->aregs[i]; cs->kvm_run->s.regs.crs[i] = env->cregs[i]; } cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS; cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS; } else { for (i = 0; i < 16; i++) { sregs.acrs[i] = env->aregs[i]; sregs.crs[i] = env->cregs[i]; } ret = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); if (ret < 0) { return ret; } } /* Finally the prefix */ if (cap_sync_regs && cs->kvm_run->kvm_valid_regs & KVM_SYNC_PREFIX) { cs->kvm_run->s.regs.prefix = env->psa; cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX; } else { /* prefix is only supported via sync regs */ } return 0; } int kvm_arch_get_registers(CPUState *cs) { S390CPU *cpu = S390_CPU(cs); CPUS390XState *env = &cpu->env; struct kvm_one_reg reg; int r; r = kvm_s390_get_registers_partial(cs); if (r < 0) { return r; } reg.id = KVM_REG_S390_CPU_TIMER; reg.addr = (__u64)&(env->cputm); r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (r < 0) { return r; } reg.id = KVM_REG_S390_CLOCK_COMP; reg.addr = (__u64)&(env->ckc); r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (r < 0) { return r; } reg.id = KVM_REG_S390_TODPR; reg.addr = (__u64)&(env->todpr); r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (r < 0) { return r; } env->runtime_reg_dirty_mask = KVM_S390_RUNTIME_DIRTY_FULL; return 0; } int kvm_s390_get_registers_partial(CPUState *cs) { S390CPU *cpu = S390_CPU(cs); CPUS390XState *env = &cpu->env; struct kvm_sregs sregs; struct kvm_regs regs; int ret; int i; if (env->runtime_reg_dirty_mask) { return 0; } /* get the PSW */ env->psw.addr = cs->kvm_run->psw_addr; env->psw.mask = cs->kvm_run->psw_mask; /* the GPRS */ if (cap_sync_regs && cs->kvm_run->kvm_valid_regs & KVM_SYNC_GPRS) { for (i = 0; i < 16; i++) { env->regs[i] = cs->kvm_run->s.regs.gprs[i]; } } else { ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); if (ret < 0) { return ret; } for (i = 0; i < 16; i++) { env->regs[i] = regs.gprs[i]; } } /* The ACRS and CRS */ if (cap_sync_regs && cs->kvm_run->kvm_valid_regs & KVM_SYNC_ACRS && cs->kvm_run->kvm_valid_regs & KVM_SYNC_CRS) { for (i = 0; i < 16; i++) { env->aregs[i] = cs->kvm_run->s.regs.acrs[i]; env->cregs[i] = cs->kvm_run->s.regs.crs[i]; } } else { ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); if (ret < 0) { return ret; } for (i = 0; i < 16; i++) { env->aregs[i] = sregs.acrs[i]; env->cregs[i] = sregs.crs[i]; } } /* Finally the prefix */ if (cap_sync_regs && cs->kvm_run->kvm_valid_regs & KVM_SYNC_PREFIX) { env->psa = cs->kvm_run->s.regs.prefix; } else { /* no prefix without sync regs */ } env->runtime_reg_dirty_mask = KVM_S390_RUNTIME_DIRTY_PARTIAL; return 0; } /* * Legacy layout for s390: * Older S390 KVM requires the topmost vma of the RAM to be * smaller than an system defined value, which is at least 256GB. * Larger systems have larger values. We put the guest between * the end of data segment (system break) and this value. We * use 32GB as a base to have enough room for the system break * to grow. We also have to use MAP parameters that avoid * read-only mapping of guest pages. */ static void *legacy_s390_alloc(ram_addr_t size) { void *mem; mem = mmap((void *) 0x800000000ULL, size, PROT_EXEC|PROT_READ|PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0); if (mem == MAP_FAILED) { fprintf(stderr, "Allocating RAM failed\n"); abort(); } return mem; } void *kvm_arch_ram_alloc(ram_addr_t size) { /* Can we use the standard allocation ? */ if (kvm_check_extension(kvm_state, KVM_CAP_S390_GMAP) && kvm_check_extension(kvm_state, KVM_CAP_S390_COW)) { return NULL; } else { return legacy_s390_alloc(size); } } int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) { static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01}; if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) || cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)diag_501, 4, 1)) { return -EINVAL; } return 0; } int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) { uint8_t t[4]; static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01}; if (cpu_memory_rw_debug(cs, bp->pc, t, 4, 0)) { return -EINVAL; } else if (memcmp(t, diag_501, 4)) { return -EINVAL; } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { return -EINVAL; } return 0; } void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) { } void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) { } int kvm_arch_process_async_events(CPUState *cs) { return cs->halted; } void kvm_s390_interrupt_internal(S390CPU *cpu, int type, uint32_t parm, uint64_t parm64, int vm) { CPUState *cs = CPU(cpu); struct kvm_s390_interrupt kvmint; int r; if (!cs->kvm_state) { return; } kvmint.type = type; kvmint.parm = parm; kvmint.parm64 = parm64; if (vm) { r = kvm_vm_ioctl(cs->kvm_state, KVM_S390_INTERRUPT, &kvmint); } else { r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint); } if (r < 0) { fprintf(stderr, "KVM failed to inject interrupt\n"); exit(1); } } void kvm_s390_virtio_irq(S390CPU *cpu, int config_change, uint64_t token) { kvm_s390_interrupt_internal(cpu, KVM_S390_INT_VIRTIO, config_change, token, 1); } void kvm_s390_interrupt(S390CPU *cpu, int type, uint32_t code) { kvm_s390_interrupt_internal(cpu, type, code, 0, 0); } static void enter_pgmcheck(S390CPU *cpu, uint16_t code) { kvm_s390_interrupt(cpu, KVM_S390_PROGRAM_INT, code); } static inline void setcc(S390CPU *cpu, uint64_t cc) { CPUS390XState *env = &cpu->env; CPUState *cs = CPU(cpu); cs->kvm_run->psw_mask &= ~(3ull << 44); cs->kvm_run->psw_mask |= (cc & 3) << 44; env->psw.mask &= ~(3ul << 44); env->psw.mask |= (cc & 3) << 44; } static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run, uint16_t ipbh0) { CPUS390XState *env = &cpu->env; uint32_t sccb; uint64_t code; int r = 0; cpu_synchronize_state(CPU(cpu)); sccb = env->regs[ipbh0 & 0xf]; code = env->regs[(ipbh0 & 0xf0) >> 4]; r = sclp_service_call(sccb, code); if (r < 0) { enter_pgmcheck(cpu, -r); } setcc(cpu, r); return 0; } static int kvm_handle_css_inst(S390CPU *cpu, struct kvm_run *run, uint8_t ipa0, uint8_t ipa1, uint8_t ipb) { int r = 0; int no_cc = 0; CPUS390XState *env = &cpu->env; CPUState *cs = CPU(cpu); if (ipa0 != 0xb2) { /* Not handled for now. */ return -1; } kvm_s390_get_registers_partial(cs); cs->kvm_vcpu_dirty = true; switch (ipa1) { case PRIV_XSCH: r = ioinst_handle_xsch(env, env->regs[1]); break; case PRIV_CSCH: r = ioinst_handle_csch(env, env->regs[1]); break; case PRIV_HSCH: r = ioinst_handle_hsch(env, env->regs[1]); break; case PRIV_MSCH: r = ioinst_handle_msch(env, env->regs[1], run->s390_sieic.ipb); break; case PRIV_SSCH: r = ioinst_handle_ssch(env, env->regs[1], run->s390_sieic.ipb); break; case PRIV_STCRW: r = ioinst_handle_stcrw(env, run->s390_sieic.ipb); break; case PRIV_STSCH: r = ioinst_handle_stsch(env, env->regs[1], run->s390_sieic.ipb); break; case PRIV_TSCH: /* We should only get tsch via KVM_EXIT_S390_TSCH. */ fprintf(stderr, "Spurious tsch intercept\n"); break; case PRIV_CHSC: r = ioinst_handle_chsc(env, run->s390_sieic.ipb); break; case PRIV_TPI: /* This should have been handled by kvm already. */ fprintf(stderr, "Spurious tpi intercept\n"); break; case PRIV_SCHM: no_cc = 1; r = ioinst_handle_schm(env, env->regs[1], env->regs[2], run->s390_sieic.ipb); break; case PRIV_RSCH: r = ioinst_handle_rsch(env, env->regs[1]); break; case PRIV_RCHP: r = ioinst_handle_rchp(env, env->regs[1]); break; case PRIV_STCPS: /* We do not provide this instruction, it is suppressed. */ no_cc = 1; r = 0; break; case PRIV_SAL: no_cc = 1; r = ioinst_handle_sal(env, env->regs[1]); break; case PRIV_SIGA: /* Not provided, set CC = 3 for subchannel not operational */ r = 3; break; default: return -1; } if (r >= 0 && !no_cc) { setcc(cpu, r); } return 0; } static int handle_priv(S390CPU *cpu, struct kvm_run *run, uint8_t ipa0, uint8_t ipa1) { int r = 0; uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16; uint8_t ipb = run->s390_sieic.ipb & 0xff; DPRINTF("KVM: PRIV: %d\n", ipa1); switch (ipa1) { case PRIV_SCLP_CALL: r = kvm_sclp_service_call(cpu, run, ipbh0); break; default: r = kvm_handle_css_inst(cpu, run, ipa0, ipa1, ipb); if (r == -1) { DPRINTF("KVM: unhandled PRIV: 0x%x\n", ipa1); } break; } return r; } static int handle_hypercall(S390CPU *cpu, struct kvm_run *run) { CPUState *cs = CPU(cpu); CPUS390XState *env = &cpu->env; kvm_s390_get_registers_partial(cs); cs->kvm_vcpu_dirty = true; env->regs[2] = s390_virtio_hypercall(env); return 0; } static int handle_diag(S390CPU *cpu, struct kvm_run *run, int ipb_code) { int r = 0; switch (ipb_code) { case DIAG_KVM_HYPERCALL: r = handle_hypercall(cpu, run); break; case DIAG_KVM_BREAKPOINT: sleep(10); break; default: DPRINTF("KVM: unknown DIAG: 0x%x\n", ipb_code); r = -1; break; } return r; } static int s390_cpu_restart(S390CPU *cpu) { kvm_s390_interrupt(cpu, KVM_S390_RESTART, 0); s390_add_running_cpu(cpu); qemu_cpu_kick(CPU(cpu)); DPRINTF("DONE: SIGP cpu restart: %p\n", &cpu->env); return 0; } static int s390_store_status(CPUS390XState *env, uint32_t parameter) { /* XXX */ fprintf(stderr, "XXX SIGP store status\n"); return -1; } static int s390_cpu_initial_reset(S390CPU *cpu) { CPUState *cs = CPU(cpu); CPUS390XState *env = &cpu->env; int i; s390_del_running_cpu(cpu); if (kvm_vcpu_ioctl(cs, KVM_S390_INITIAL_RESET, NULL) < 0) { perror("cannot init reset vcpu"); } /* Manually zero out all registers */ cpu_synchronize_state(cs); for (i = 0; i < 16; i++) { env->regs[i] = 0; } DPRINTF("DONE: SIGP initial reset: %p\n", env); return 0; } static int handle_sigp(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) { CPUS390XState *env = &cpu->env; uint8_t order_code; uint32_t parameter; uint16_t cpu_addr; uint8_t t; int r = -1; S390CPU *target_cpu; CPUS390XState *target_env; cpu_synchronize_state(CPU(cpu)); /* get order code */ order_code = run->s390_sieic.ipb >> 28; if (order_code > 0) { order_code = env->regs[order_code]; } order_code += (run->s390_sieic.ipb & 0x0fff0000) >> 16; /* get parameters */ t = (ipa1 & 0xf0) >> 4; if (!(t % 2)) { t++; } parameter = env->regs[t] & 0x7ffffe00; cpu_addr = env->regs[ipa1 & 0x0f]; target_cpu = s390_cpu_addr2state(cpu_addr); if (target_cpu == NULL) { goto out; } target_env = &target_cpu->env; switch (order_code) { case SIGP_RESTART: r = s390_cpu_restart(target_cpu); break; case SIGP_STORE_STATUS_ADDR: r = s390_store_status(target_env, parameter); break; case SIGP_SET_ARCH: /* make the caller panic */ return -1; case SIGP_INITIAL_CPU_RESET: r = s390_cpu_initial_reset(target_cpu); break; default: fprintf(stderr, "KVM: unknown SIGP: 0x%x\n", order_code); break; } out: setcc(cpu, r ? 3 : 0); return 0; } static int handle_instruction(S390CPU *cpu, struct kvm_run *run) { unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00); uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff; int ipb_code = (run->s390_sieic.ipb & 0x0fff0000) >> 16; int r = -1; DPRINTF("handle_instruction 0x%x 0x%x\n", run->s390_sieic.ipa, run->s390_sieic.ipb); switch (ipa0) { case IPA0_B2: case IPA0_B9: case IPA0_EB: r = handle_priv(cpu, run, ipa0 >> 8, ipa1); break; case IPA0_DIAG: r = handle_diag(cpu, run, ipb_code); break; case IPA0_SIGP: r = handle_sigp(cpu, run, ipa1); break; } if (r < 0) { enter_pgmcheck(cpu, 0x0001); } return 0; } static bool is_special_wait_psw(CPUState *cs) { /* signal quiesce */ return cs->kvm_run->psw_addr == 0xfffUL; } static int handle_intercept(S390CPU *cpu) { CPUState *cs = CPU(cpu); struct kvm_run *run = cs->kvm_run; int icpt_code = run->s390_sieic.icptcode; int r = 0; DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code, (long)cs->kvm_run->psw_addr); switch (icpt_code) { case ICPT_INSTRUCTION: r = handle_instruction(cpu, run); break; case ICPT_WAITPSW: /* disabled wait, since enabled wait is handled in kernel */ if (s390_del_running_cpu(cpu) == 0) { if (is_special_wait_psw(cs)) { qemu_system_shutdown_request(); } else { QObject *data; data = qobject_from_jsonf("{ 'action': %s }", "pause"); monitor_protocol_event(QEVENT_GUEST_PANICKED, data); qobject_decref(data); vm_stop(RUN_STATE_GUEST_PANICKED); } } r = EXCP_HALTED; break; case ICPT_CPU_STOP: if (s390_del_running_cpu(cpu) == 0) { qemu_system_shutdown_request(); } r = EXCP_HALTED; break; case ICPT_SOFT_INTERCEPT: fprintf(stderr, "KVM unimplemented icpt SOFT\n"); exit(1); break; case ICPT_IO: fprintf(stderr, "KVM unimplemented icpt IO\n"); exit(1); break; default: fprintf(stderr, "Unknown intercept code: %d\n", icpt_code); exit(1); break; } return r; } static int handle_tsch(S390CPU *cpu) { CPUS390XState *env = &cpu->env; CPUState *cs = CPU(cpu); struct kvm_run *run = cs->kvm_run; int ret; kvm_s390_get_registers_partial(cs); cs->kvm_vcpu_dirty = true; ret = ioinst_handle_tsch(env, env->regs[1], run->s390_tsch.ipb); if (ret >= 0) { /* Success; set condition code. */ setcc(cpu, ret); ret = 0; } else if (ret < -1) { /* * Failure. * If an I/O interrupt had been dequeued, we have to reinject it. */ if (run->s390_tsch.dequeued) { uint16_t subchannel_id = run->s390_tsch.subchannel_id; uint16_t subchannel_nr = run->s390_tsch.subchannel_nr; uint32_t io_int_parm = run->s390_tsch.io_int_parm; uint32_t io_int_word = run->s390_tsch.io_int_word; uint32_t type = ((subchannel_id & 0xff00) << 24) | ((subchannel_id & 0x00060) << 22) | (subchannel_nr << 16); kvm_s390_interrupt_internal(cpu, type, ((uint32_t)subchannel_id << 16) | subchannel_nr, ((uint64_t)io_int_parm << 32) | io_int_word, 1); } ret = 0; } return ret; } int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) { S390CPU *cpu = S390_CPU(cs); int ret = 0; switch (run->exit_reason) { case KVM_EXIT_S390_SIEIC: ret = handle_intercept(cpu); break; case KVM_EXIT_S390_RESET: qemu_system_reset_request(); break; case KVM_EXIT_S390_TSCH: ret = handle_tsch(cpu); break; default: fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason); break; } if (ret == 0) { ret = EXCP_INTERRUPT; } return ret; } bool kvm_arch_stop_on_emulation_error(CPUState *cpu) { return true; } int kvm_arch_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) { return 1; } int kvm_arch_on_sigbus(int code, void *addr) { return 1; } void kvm_s390_io_interrupt(S390CPU *cpu, uint16_t subchannel_id, uint16_t subchannel_nr, uint32_t io_int_parm, uint32_t io_int_word) { uint32_t type; type = ((subchannel_id & 0xff00) << 24) | ((subchannel_id & 0x00060) << 22) | (subchannel_nr << 16); kvm_s390_interrupt_internal(cpu, type, ((uint32_t)subchannel_id << 16) | subchannel_nr, ((uint64_t)io_int_parm << 32) | io_int_word, 1); } void kvm_s390_crw_mchk(S390CPU *cpu) { kvm_s390_interrupt_internal(cpu, KVM_S390_MCHK, 1 << 28, 0x00400f1d40330000, 1); } void kvm_s390_enable_css_support(S390CPU *cpu) { struct kvm_enable_cap cap = {}; int r; /* Activate host kernel channel subsystem support. */ cap.cap = KVM_CAP_S390_CSS_SUPPORT; r = kvm_vcpu_ioctl(CPU(cpu), KVM_ENABLE_CAP, &cap); assert(r == 0); } void kvm_arch_init_irq_routing(KVMState *s) { } int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch, int vq, bool assign) { struct kvm_ioeventfd kick = { .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY | KVM_IOEVENTFD_FLAG_DATAMATCH, .fd = event_notifier_get_fd(notifier), .datamatch = vq, .addr = sch, .len = 8, }; if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) { return -ENOSYS; } if (!assign) { kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; } return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); }