/* * S/390 FPU helper routines * * Copyright (c) 2009 Ulrich Hecht * Copyright (c) 2009 Alexander Graf * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/>. */ #include "cpu.h" #include "helper.h" #if !defined(CONFIG_USER_ONLY) #include "exec/softmmu_exec.h" #endif /* #define DEBUG_HELPER */ #ifdef DEBUG_HELPER #define HELPER_LOG(x...) qemu_log(x) #else #define HELPER_LOG(x...) #endif #define RET128(F) (env->retxl = F.low, F.high) #define convert_bit(mask, from, to) \ (to < from \ ? (mask / (from / to)) & to \ : (mask & from) * (to / from)) static void ieee_exception(CPUS390XState *env, uint32_t dxc, uintptr_t retaddr) { /* Install the DXC code. */ env->fpc = (env->fpc & ~0xff00) | (dxc << 8); /* Trap. */ runtime_exception(env, PGM_DATA, retaddr); } /* Should be called after any operation that may raise IEEE exceptions. */ static void handle_exceptions(CPUS390XState *env, uintptr_t retaddr) { unsigned s390_exc, qemu_exc; /* Get the exceptions raised by the current operation. Reset the fpu_status contents so that the next operation has a clean slate. */ qemu_exc = env->fpu_status.float_exception_flags; if (qemu_exc == 0) { return; } env->fpu_status.float_exception_flags = 0; /* Convert softfloat exception bits to s390 exception bits. */ s390_exc = 0; s390_exc |= convert_bit(qemu_exc, float_flag_invalid, 0x80); s390_exc |= convert_bit(qemu_exc, float_flag_divbyzero, 0x40); s390_exc |= convert_bit(qemu_exc, float_flag_overflow, 0x20); s390_exc |= convert_bit(qemu_exc, float_flag_underflow, 0x10); s390_exc |= convert_bit(qemu_exc, float_flag_inexact, 0x08); /* Install the exceptions that we raised. */ env->fpc |= s390_exc << 16; /* Send signals for enabled exceptions. */ s390_exc &= env->fpc >> 24; if (s390_exc) { ieee_exception(env, s390_exc, retaddr); } } static inline int float_comp_to_cc(CPUS390XState *env, int float_compare) { switch (float_compare) { case float_relation_equal: return 0; case float_relation_less: return 1; case float_relation_greater: return 2; case float_relation_unordered: return 3; default: cpu_abort(env, "unknown return value for float compare\n"); } } /* condition codes for unary FP ops */ uint32_t set_cc_nz_f32(float32 v) { if (float32_is_any_nan(v)) { return 3; } else if (float32_is_zero(v)) { return 0; } else if (float32_is_neg(v)) { return 1; } else { return 2; } } uint32_t set_cc_nz_f64(float64 v) { if (float64_is_any_nan(v)) { return 3; } else if (float64_is_zero(v)) { return 0; } else if (float64_is_neg(v)) { return 1; } else { return 2; } } uint32_t set_cc_nz_f128(float128 v) { if (float128_is_any_nan(v)) { return 3; } else if (float128_is_zero(v)) { return 0; } else if (float128_is_neg(v)) { return 1; } else { return 2; } } /* 32-bit FP addition */ uint64_t HELPER(aeb)(CPUS390XState *env, uint64_t f1, uint64_t f2) { float32 ret = float32_add(f1, f2, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* 64-bit FP addition */ uint64_t HELPER(adb)(CPUS390XState *env, uint64_t f1, uint64_t f2) { float64 ret = float64_add(f1, f2, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* 128-bit FP addition */ uint64_t HELPER(axb)(CPUS390XState *env, uint64_t ah, uint64_t al, uint64_t bh, uint64_t bl) { float128 ret = float128_add(make_float128(ah, al), make_float128(bh, bl), &env->fpu_status); handle_exceptions(env, GETPC()); return RET128(ret); } /* 32-bit FP subtraction */ uint64_t HELPER(seb)(CPUS390XState *env, uint64_t f1, uint64_t f2) { float32 ret = float32_sub(f1, f2, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* 64-bit FP subtraction */ uint64_t HELPER(sdb)(CPUS390XState *env, uint64_t f1, uint64_t f2) { float64 ret = float64_sub(f1, f2, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* 128-bit FP subtraction */ uint64_t HELPER(sxb)(CPUS390XState *env, uint64_t ah, uint64_t al, uint64_t bh, uint64_t bl) { float128 ret = float128_sub(make_float128(ah, al), make_float128(bh, bl), &env->fpu_status); handle_exceptions(env, GETPC()); return RET128(ret); } /* 32-bit FP division */ uint64_t HELPER(deb)(CPUS390XState *env, uint64_t f1, uint64_t f2) { float32 ret = float32_div(f1, f2, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* 64-bit FP division */ uint64_t HELPER(ddb)(CPUS390XState *env, uint64_t f1, uint64_t f2) { float64 ret = float64_div(f1, f2, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* 128-bit FP division */ uint64_t HELPER(dxb)(CPUS390XState *env, uint64_t ah, uint64_t al, uint64_t bh, uint64_t bl) { float128 ret = float128_div(make_float128(ah, al), make_float128(bh, bl), &env->fpu_status); handle_exceptions(env, GETPC()); return RET128(ret); } /* 32-bit FP multiplication */ uint64_t HELPER(meeb)(CPUS390XState *env, uint64_t f1, uint64_t f2) { float32 ret = float32_mul(f1, f2, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* 64-bit FP multiplication */ uint64_t HELPER(mdb)(CPUS390XState *env, uint64_t f1, uint64_t f2) { float64 ret = float64_mul(f1, f2, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* 64/32-bit FP multiplication */ uint64_t HELPER(mdeb)(CPUS390XState *env, uint64_t f1, uint64_t f2) { float64 ret = float32_to_float64(f2, &env->fpu_status); ret = float64_mul(f1, ret, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* 128-bit FP multiplication */ uint64_t HELPER(mxb)(CPUS390XState *env, uint64_t ah, uint64_t al, uint64_t bh, uint64_t bl) { float128 ret = float128_mul(make_float128(ah, al), make_float128(bh, bl), &env->fpu_status); handle_exceptions(env, GETPC()); return RET128(ret); } /* 128/64-bit FP multiplication */ uint64_t HELPER(mxdb)(CPUS390XState *env, uint64_t ah, uint64_t al, uint64_t f2) { float128 ret = float64_to_float128(f2, &env->fpu_status); ret = float128_mul(make_float128(ah, al), ret, &env->fpu_status); handle_exceptions(env, GETPC()); return RET128(ret); } /* convert 32-bit float to 64-bit float */ uint64_t HELPER(ldeb)(CPUS390XState *env, uint64_t f2) { float64 ret = float32_to_float64(f2, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* convert 128-bit float to 64-bit float */ uint64_t HELPER(ldxb)(CPUS390XState *env, uint64_t ah, uint64_t al) { float64 ret = float128_to_float64(make_float128(ah, al), &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* convert 64-bit float to 128-bit float */ uint64_t HELPER(lxdb)(CPUS390XState *env, uint64_t f2) { float128 ret = float64_to_float128(f2, &env->fpu_status); handle_exceptions(env, GETPC()); return RET128(ret); } /* convert 32-bit float to 128-bit float */ uint64_t HELPER(lxeb)(CPUS390XState *env, uint64_t f2) { float128 ret = float32_to_float128(f2, &env->fpu_status); handle_exceptions(env, GETPC()); return RET128(ret); } /* convert 64-bit float to 32-bit float */ uint64_t HELPER(ledb)(CPUS390XState *env, uint64_t f2) { float32 ret = float64_to_float32(f2, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* convert 128-bit float to 32-bit float */ uint64_t HELPER(lexb)(CPUS390XState *env, uint64_t ah, uint64_t al) { float32 ret = float128_to_float32(make_float128(ah, al), &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* 32-bit FP compare */ uint32_t HELPER(ceb)(CPUS390XState *env, uint64_t f1, uint64_t f2) { int cmp = float32_compare_quiet(f1, f2, &env->fpu_status); handle_exceptions(env, GETPC()); return float_comp_to_cc(env, cmp); } /* 64-bit FP compare */ uint32_t HELPER(cdb)(CPUS390XState *env, uint64_t f1, uint64_t f2) { int cmp = float64_compare_quiet(f1, f2, &env->fpu_status); handle_exceptions(env, GETPC()); return float_comp_to_cc(env, cmp); } /* 128-bit FP compare */ uint32_t HELPER(cxb)(CPUS390XState *env, uint64_t ah, uint64_t al, uint64_t bh, uint64_t bl) { int cmp = float128_compare_quiet(make_float128(ah, al), make_float128(bh, bl), &env->fpu_status); handle_exceptions(env, GETPC()); return float_comp_to_cc(env, cmp); } static int swap_round_mode(CPUS390XState *env, int m3) { int ret = env->fpu_status.float_rounding_mode; switch (m3) { case 0: /* current mode */ break; case 1: /* biased round no nearest */ case 4: /* round to nearest */ set_float_rounding_mode(float_round_nearest_even, &env->fpu_status); break; case 5: /* round to zero */ set_float_rounding_mode(float_round_to_zero, &env->fpu_status); break; case 6: /* round to +inf */ set_float_rounding_mode(float_round_up, &env->fpu_status); break; case 7: /* round to -inf */ set_float_rounding_mode(float_round_down, &env->fpu_status); break; } return ret; } /* convert 64-bit int to 32-bit float */ uint64_t HELPER(cegb)(CPUS390XState *env, int64_t v2, uint32_t m3) { int hold = swap_round_mode(env, m3); float32 ret = int64_to_float32(v2, &env->fpu_status); set_float_rounding_mode(hold, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* convert 64-bit int to 64-bit float */ uint64_t HELPER(cdgb)(CPUS390XState *env, int64_t v2, uint32_t m3) { int hold = swap_round_mode(env, m3); float64 ret = int64_to_float64(v2, &env->fpu_status); set_float_rounding_mode(hold, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* convert 64-bit int to 128-bit float */ uint64_t HELPER(cxgb)(CPUS390XState *env, int64_t v2, uint32_t m3) { int hold = swap_round_mode(env, m3); float128 ret = int64_to_float128(v2, &env->fpu_status); set_float_rounding_mode(hold, &env->fpu_status); handle_exceptions(env, GETPC()); return RET128(ret); } /* convert 64-bit uint to 32-bit float */ uint64_t HELPER(celgb)(CPUS390XState *env, uint64_t v2, uint32_t m3) { int hold = swap_round_mode(env, m3); float32 ret = uint64_to_float32(v2, &env->fpu_status); set_float_rounding_mode(hold, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* convert 64-bit uint to 64-bit float */ uint64_t HELPER(cdlgb)(CPUS390XState *env, uint64_t v2, uint32_t m3) { int hold = swap_round_mode(env, m3); float64 ret = uint64_to_float64(v2, &env->fpu_status); set_float_rounding_mode(hold, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* convert 64-bit uint to 128-bit float */ uint64_t HELPER(cxlgb)(CPUS390XState *env, uint64_t v2, uint32_t m3) { int hold = swap_round_mode(env, m3); float128 ret = uint64_to_float128(v2, &env->fpu_status); set_float_rounding_mode(hold, &env->fpu_status); handle_exceptions(env, GETPC()); return RET128(ret); } /* convert 32-bit float to 64-bit int */ uint64_t HELPER(cgeb)(CPUS390XState *env, uint64_t v2, uint32_t m3) { int hold = swap_round_mode(env, m3); int64_t ret = float32_to_int64(v2, &env->fpu_status); set_float_rounding_mode(hold, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* convert 64-bit float to 64-bit int */ uint64_t HELPER(cgdb)(CPUS390XState *env, uint64_t v2, uint32_t m3) { int hold = swap_round_mode(env, m3); int64_t ret = float64_to_int64(v2, &env->fpu_status); set_float_rounding_mode(hold, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* convert 128-bit float to 64-bit int */ uint64_t HELPER(cgxb)(CPUS390XState *env, uint64_t h, uint64_t l, uint32_t m3) { int hold = swap_round_mode(env, m3); float128 v2 = make_float128(h, l); int64_t ret = float128_to_int64(v2, &env->fpu_status); set_float_rounding_mode(hold, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* convert 32-bit float to 32-bit int */ uint64_t HELPER(cfeb)(CPUS390XState *env, uint64_t v2, uint32_t m3) { int hold = swap_round_mode(env, m3); int32_t ret = float32_to_int32(v2, &env->fpu_status); set_float_rounding_mode(hold, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* convert 64-bit float to 32-bit int */ uint64_t HELPER(cfdb)(CPUS390XState *env, uint64_t v2, uint32_t m3) { int hold = swap_round_mode(env, m3); int32_t ret = float64_to_int32(v2, &env->fpu_status); set_float_rounding_mode(hold, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* convert 128-bit float to 32-bit int */ uint64_t HELPER(cfxb)(CPUS390XState *env, uint64_t h, uint64_t l, uint32_t m3) { int hold = swap_round_mode(env, m3); float128 v2 = make_float128(h, l); int32_t ret = float128_to_int32(v2, &env->fpu_status); set_float_rounding_mode(hold, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* convert 32-bit float to 64-bit uint */ uint64_t HELPER(clgeb)(CPUS390XState *env, uint64_t v2, uint32_t m3) { int hold = swap_round_mode(env, m3); uint64_t ret; v2 = float32_to_float64(v2, &env->fpu_status); ret = float64_to_uint64(v2, &env->fpu_status); set_float_rounding_mode(hold, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* convert 64-bit float to 64-bit uint */ uint64_t HELPER(clgdb)(CPUS390XState *env, uint64_t v2, uint32_t m3) { int hold = swap_round_mode(env, m3); uint64_t ret = float64_to_uint64(v2, &env->fpu_status); set_float_rounding_mode(hold, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* convert 128-bit float to 64-bit uint */ uint64_t HELPER(clgxb)(CPUS390XState *env, uint64_t h, uint64_t l, uint32_t m3) { int hold = swap_round_mode(env, m3); float128 v2 = make_float128(h, l); /* ??? Not 100% correct. */ uint64_t ret = float128_to_int64(v2, &env->fpu_status); set_float_rounding_mode(hold, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* convert 32-bit float to 32-bit uint */ uint64_t HELPER(clfeb)(CPUS390XState *env, uint64_t v2, uint32_t m3) { int hold = swap_round_mode(env, m3); uint32_t ret = float32_to_uint32(v2, &env->fpu_status); set_float_rounding_mode(hold, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* convert 64-bit float to 32-bit uint */ uint64_t HELPER(clfdb)(CPUS390XState *env, uint64_t v2, uint32_t m3) { int hold = swap_round_mode(env, m3); uint32_t ret = float64_to_uint32(v2, &env->fpu_status); set_float_rounding_mode(hold, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* convert 128-bit float to 32-bit uint */ uint64_t HELPER(clfxb)(CPUS390XState *env, uint64_t h, uint64_t l, uint32_t m3) { int hold = swap_round_mode(env, m3); float128 v2 = make_float128(h, l); /* Not 100% correct. */ uint32_t ret = float128_to_int64(v2, &env->fpu_status); set_float_rounding_mode(hold, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* 32-bit FP multiply and add */ uint64_t HELPER(maeb)(CPUS390XState *env, uint64_t f1, uint64_t f2, uint64_t f3) { float32 ret = float32_muladd(f2, f3, f1, 0, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* 64-bit FP multiply and add */ uint64_t HELPER(madb)(CPUS390XState *env, uint64_t f1, uint64_t f2, uint64_t f3) { float64 ret = float64_muladd(f2, f3, f1, 0, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* 32-bit FP multiply and subtract */ uint64_t HELPER(mseb)(CPUS390XState *env, uint64_t f1, uint64_t f2, uint64_t f3) { float32 ret = float32_muladd(f2, f3, f1, float_muladd_negate_c, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* 64-bit FP multiply and subtract */ uint64_t HELPER(msdb)(CPUS390XState *env, uint64_t f1, uint64_t f2, uint64_t f3) { float64 ret = float64_muladd(f2, f3, f1, float_muladd_negate_c, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* test data class 32-bit */ uint32_t HELPER(tceb)(uint64_t f1, uint64_t m2) { float32 v1 = f1; int neg = float32_is_neg(v1); uint32_t cc = 0; if ((float32_is_zero(v1) && (m2 & (1 << (11-neg)))) || (float32_is_infinity(v1) && (m2 & (1 << (5-neg)))) || (float32_is_any_nan(v1) && (m2 & (1 << (3-neg)))) || (float32_is_signaling_nan(v1) && (m2 & (1 << (1-neg))))) { cc = 1; } else if (m2 & (1 << (9-neg))) { /* assume normalized number */ cc = 1; } /* FIXME: denormalized? */ return cc; } /* test data class 64-bit */ uint32_t HELPER(tcdb)(uint64_t v1, uint64_t m2) { int neg = float64_is_neg(v1); uint32_t cc = 0; if ((float64_is_zero(v1) && (m2 & (1 << (11-neg)))) || (float64_is_infinity(v1) && (m2 & (1 << (5-neg)))) || (float64_is_any_nan(v1) && (m2 & (1 << (3-neg)))) || (float64_is_signaling_nan(v1) && (m2 & (1 << (1-neg))))) { cc = 1; } else if (m2 & (1 << (9-neg))) { /* assume normalized number */ cc = 1; } /* FIXME: denormalized? */ return cc; } /* test data class 128-bit */ uint32_t HELPER(tcxb)(uint64_t ah, uint64_t al, uint64_t m2) { float128 v1 = make_float128(ah, al); int neg = float128_is_neg(v1); uint32_t cc = 0; if ((float128_is_zero(v1) && (m2 & (1 << (11-neg)))) || (float128_is_infinity(v1) && (m2 & (1 << (5-neg)))) || (float128_is_any_nan(v1) && (m2 & (1 << (3-neg)))) || (float128_is_signaling_nan(v1) && (m2 & (1 << (1-neg))))) { cc = 1; } else if (m2 & (1 << (9-neg))) { /* assume normalized number */ cc = 1; } /* FIXME: denormalized? */ return cc; } /* square root 32-bit */ uint64_t HELPER(sqeb)(CPUS390XState *env, uint64_t f2) { float32 ret = float32_sqrt(f2, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* square root 64-bit */ uint64_t HELPER(sqdb)(CPUS390XState *env, uint64_t f2) { float64 ret = float64_sqrt(f2, &env->fpu_status); handle_exceptions(env, GETPC()); return ret; } /* square root 128-bit */ uint64_t HELPER(sqxb)(CPUS390XState *env, uint64_t ah, uint64_t al) { float128 ret = float128_sqrt(make_float128(ah, al), &env->fpu_status); handle_exceptions(env, GETPC()); return RET128(ret); } static const int fpc_to_rnd[4] = { float_round_nearest_even, float_round_to_zero, float_round_up, float_round_down }; /* set fpc */ void HELPER(sfpc)(CPUS390XState *env, uint64_t fpc) { /* Install everything in the main FPC. */ env->fpc = fpc; /* Install the rounding mode in the shadow fpu_status. */ set_float_rounding_mode(fpc_to_rnd[fpc & 3], &env->fpu_status); } /* set fpc and signal */ void HELPER(sfas)(CPUS390XState *env, uint64_t val) { uint32_t signalling = env->fpc; uint32_t source = val; uint32_t s390_exc; /* The contents of the source operand are placed in the FPC register; then the flags in the FPC register are set to the logical OR of the signalling flags and the source flags. */ env->fpc = source | (signalling & 0x00ff0000); set_float_rounding_mode(fpc_to_rnd[source & 3], &env->fpu_status); /* If any signalling flag is 1 and the corresponding source mask is also 1, a simulated-iee-exception trap occurs. */ s390_exc = (signalling >> 16) & (source >> 24); if (s390_exc) { ieee_exception(env, s390_exc | 3, GETPC()); } }