/* * S/390 FPU helper routines * * Copyright (c) 2009 Ulrich Hecht * Copyright (c) 2009 Alexander Graf * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "cpu.h" #include "dyngen-exec.h" #include "helper.h" #if !defined(CONFIG_USER_ONLY) #include "softmmu_exec.h" #endif /* #define DEBUG_HELPER */ #ifdef DEBUG_HELPER #define HELPER_LOG(x...) qemu_log(x) #else #define HELPER_LOG(x...) #endif static inline int float_comp_to_cc(int float_compare) { switch (float_compare) { case float_relation_equal: return 0; case float_relation_less: return 1; case float_relation_greater: return 2; case float_relation_unordered: return 3; default: cpu_abort(env, "unknown return value for float compare\n"); } } /* condition codes for binary FP ops */ uint32_t set_cc_f32(float32 v1, float32 v2) { return float_comp_to_cc(float32_compare_quiet(v1, v2, &env->fpu_status)); } uint32_t set_cc_f64(float64 v1, float64 v2) { return float_comp_to_cc(float64_compare_quiet(v1, v2, &env->fpu_status)); } /* condition codes for unary FP ops */ uint32_t set_cc_nz_f32(float32 v) { if (float32_is_any_nan(v)) { return 3; } else if (float32_is_zero(v)) { return 0; } else if (float32_is_neg(v)) { return 1; } else { return 2; } } uint32_t set_cc_nz_f64(float64 v) { if (float64_is_any_nan(v)) { return 3; } else if (float64_is_zero(v)) { return 0; } else if (float64_is_neg(v)) { return 1; } else { return 2; } } static uint32_t set_cc_nz_f128(float128 v) { if (float128_is_any_nan(v)) { return 3; } else if (float128_is_zero(v)) { return 0; } else if (float128_is_neg(v)) { return 1; } else { return 2; } } /* convert 32-bit int to 64-bit float */ void HELPER(cdfbr)(uint32_t f1, int32_t v2) { HELPER_LOG("%s: converting %d to f%d\n", __func__, v2, f1); env->fregs[f1].d = int32_to_float64(v2, &env->fpu_status); } /* convert 32-bit int to 128-bit float */ void HELPER(cxfbr)(uint32_t f1, int32_t v2) { CPU_QuadU v1; v1.q = int32_to_float128(v2, &env->fpu_status); env->fregs[f1].ll = v1.ll.upper; env->fregs[f1 + 2].ll = v1.ll.lower; } /* convert 64-bit int to 32-bit float */ void HELPER(cegbr)(uint32_t f1, int64_t v2) { HELPER_LOG("%s: converting %ld to f%d\n", __func__, v2, f1); env->fregs[f1].l.upper = int64_to_float32(v2, &env->fpu_status); } /* convert 64-bit int to 64-bit float */ void HELPER(cdgbr)(uint32_t f1, int64_t v2) { HELPER_LOG("%s: converting %ld to f%d\n", __func__, v2, f1); env->fregs[f1].d = int64_to_float64(v2, &env->fpu_status); } /* convert 64-bit int to 128-bit float */ void HELPER(cxgbr)(uint32_t f1, int64_t v2) { CPU_QuadU x1; x1.q = int64_to_float128(v2, &env->fpu_status); HELPER_LOG("%s: converted %ld to 0x%lx and 0x%lx\n", __func__, v2, x1.ll.upper, x1.ll.lower); env->fregs[f1].ll = x1.ll.upper; env->fregs[f1 + 2].ll = x1.ll.lower; } /* convert 32-bit int to 32-bit float */ void HELPER(cefbr)(uint32_t f1, int32_t v2) { env->fregs[f1].l.upper = int32_to_float32(v2, &env->fpu_status); HELPER_LOG("%s: converting %d to 0x%d in f%d\n", __func__, v2, env->fregs[f1].l.upper, f1); } /* 32-bit FP addition RR */ uint32_t HELPER(aebr)(uint32_t f1, uint32_t f2) { env->fregs[f1].l.upper = float32_add(env->fregs[f1].l.upper, env->fregs[f2].l.upper, &env->fpu_status); HELPER_LOG("%s: adding 0x%d resulting in 0x%d in f%d\n", __func__, env->fregs[f2].l.upper, env->fregs[f1].l.upper, f1); return set_cc_nz_f32(env->fregs[f1].l.upper); } /* 64-bit FP addition RR */ uint32_t HELPER(adbr)(uint32_t f1, uint32_t f2) { env->fregs[f1].d = float64_add(env->fregs[f1].d, env->fregs[f2].d, &env->fpu_status); HELPER_LOG("%s: adding 0x%ld resulting in 0x%ld in f%d\n", __func__, env->fregs[f2].d, env->fregs[f1].d, f1); return set_cc_nz_f64(env->fregs[f1].d); } /* 32-bit FP subtraction RR */ uint32_t HELPER(sebr)(uint32_t f1, uint32_t f2) { env->fregs[f1].l.upper = float32_sub(env->fregs[f1].l.upper, env->fregs[f2].l.upper, &env->fpu_status); HELPER_LOG("%s: adding 0x%d resulting in 0x%d in f%d\n", __func__, env->fregs[f2].l.upper, env->fregs[f1].l.upper, f1); return set_cc_nz_f32(env->fregs[f1].l.upper); } /* 64-bit FP subtraction RR */ uint32_t HELPER(sdbr)(uint32_t f1, uint32_t f2) { env->fregs[f1].d = float64_sub(env->fregs[f1].d, env->fregs[f2].d, &env->fpu_status); HELPER_LOG("%s: subtracting 0x%ld resulting in 0x%ld in f%d\n", __func__, env->fregs[f2].d, env->fregs[f1].d, f1); return set_cc_nz_f64(env->fregs[f1].d); } /* 32-bit FP division RR */ void HELPER(debr)(uint32_t f1, uint32_t f2) { env->fregs[f1].l.upper = float32_div(env->fregs[f1].l.upper, env->fregs[f2].l.upper, &env->fpu_status); } /* 128-bit FP division RR */ void HELPER(dxbr)(uint32_t f1, uint32_t f2) { CPU_QuadU v1; CPU_QuadU v2; CPU_QuadU res; v1.ll.upper = env->fregs[f1].ll; v1.ll.lower = env->fregs[f1 + 2].ll; v2.ll.upper = env->fregs[f2].ll; v2.ll.lower = env->fregs[f2 + 2].ll; res.q = float128_div(v1.q, v2.q, &env->fpu_status); env->fregs[f1].ll = res.ll.upper; env->fregs[f1 + 2].ll = res.ll.lower; } /* 64-bit FP multiplication RR */ void HELPER(mdbr)(uint32_t f1, uint32_t f2) { env->fregs[f1].d = float64_mul(env->fregs[f1].d, env->fregs[f2].d, &env->fpu_status); } /* 128-bit FP multiplication RR */ void HELPER(mxbr)(uint32_t f1, uint32_t f2) { CPU_QuadU v1; CPU_QuadU v2; CPU_QuadU res; v1.ll.upper = env->fregs[f1].ll; v1.ll.lower = env->fregs[f1 + 2].ll; v2.ll.upper = env->fregs[f2].ll; v2.ll.lower = env->fregs[f2 + 2].ll; res.q = float128_mul(v1.q, v2.q, &env->fpu_status); env->fregs[f1].ll = res.ll.upper; env->fregs[f1 + 2].ll = res.ll.lower; } /* convert 32-bit float to 64-bit float */ void HELPER(ldebr)(uint32_t r1, uint32_t r2) { env->fregs[r1].d = float32_to_float64(env->fregs[r2].l.upper, &env->fpu_status); } /* convert 128-bit float to 64-bit float */ void HELPER(ldxbr)(uint32_t f1, uint32_t f2) { CPU_QuadU x2; x2.ll.upper = env->fregs[f2].ll; x2.ll.lower = env->fregs[f2 + 2].ll; env->fregs[f1].d = float128_to_float64(x2.q, &env->fpu_status); HELPER_LOG("%s: to 0x%ld\n", __func__, env->fregs[f1].d); } /* convert 64-bit float to 128-bit float */ void HELPER(lxdbr)(uint32_t f1, uint32_t f2) { CPU_QuadU res; res.q = float64_to_float128(env->fregs[f2].d, &env->fpu_status); env->fregs[f1].ll = res.ll.upper; env->fregs[f1 + 2].ll = res.ll.lower; } /* convert 64-bit float to 32-bit float */ void HELPER(ledbr)(uint32_t f1, uint32_t f2) { float64 d2 = env->fregs[f2].d; env->fregs[f1].l.upper = float64_to_float32(d2, &env->fpu_status); } /* convert 128-bit float to 32-bit float */ void HELPER(lexbr)(uint32_t f1, uint32_t f2) { CPU_QuadU x2; x2.ll.upper = env->fregs[f2].ll; x2.ll.lower = env->fregs[f2 + 2].ll; env->fregs[f1].l.upper = float128_to_float32(x2.q, &env->fpu_status); HELPER_LOG("%s: to 0x%d\n", __func__, env->fregs[f1].l.upper); } /* absolute value of 32-bit float */ uint32_t HELPER(lpebr)(uint32_t f1, uint32_t f2) { float32 v1; float32 v2 = env->fregs[f2].d; v1 = float32_abs(v2); env->fregs[f1].d = v1; return set_cc_nz_f32(v1); } /* absolute value of 64-bit float */ uint32_t HELPER(lpdbr)(uint32_t f1, uint32_t f2) { float64 v1; float64 v2 = env->fregs[f2].d; v1 = float64_abs(v2); env->fregs[f1].d = v1; return set_cc_nz_f64(v1); } /* absolute value of 128-bit float */ uint32_t HELPER(lpxbr)(uint32_t f1, uint32_t f2) { CPU_QuadU v1; CPU_QuadU v2; v2.ll.upper = env->fregs[f2].ll; v2.ll.lower = env->fregs[f2 + 2].ll; v1.q = float128_abs(v2.q); env->fregs[f1].ll = v1.ll.upper; env->fregs[f1 + 2].ll = v1.ll.lower; return set_cc_nz_f128(v1.q); } /* load and test 64-bit float */ uint32_t HELPER(ltdbr)(uint32_t f1, uint32_t f2) { env->fregs[f1].d = env->fregs[f2].d; return set_cc_nz_f64(env->fregs[f1].d); } /* load and test 32-bit float */ uint32_t HELPER(ltebr)(uint32_t f1, uint32_t f2) { env->fregs[f1].l.upper = env->fregs[f2].l.upper; return set_cc_nz_f32(env->fregs[f1].l.upper); } /* load and test 128-bit float */ uint32_t HELPER(ltxbr)(uint32_t f1, uint32_t f2) { CPU_QuadU x; x.ll.upper = env->fregs[f2].ll; x.ll.lower = env->fregs[f2 + 2].ll; env->fregs[f1].ll = x.ll.upper; env->fregs[f1 + 2].ll = x.ll.lower; return set_cc_nz_f128(x.q); } /* load complement of 32-bit float */ uint32_t HELPER(lcebr)(uint32_t f1, uint32_t f2) { env->fregs[f1].l.upper = float32_chs(env->fregs[f2].l.upper); return set_cc_nz_f32(env->fregs[f1].l.upper); } /* load complement of 64-bit float */ uint32_t HELPER(lcdbr)(uint32_t f1, uint32_t f2) { env->fregs[f1].d = float64_chs(env->fregs[f2].d); return set_cc_nz_f64(env->fregs[f1].d); } /* load complement of 128-bit float */ uint32_t HELPER(lcxbr)(uint32_t f1, uint32_t f2) { CPU_QuadU x1, x2; x2.ll.upper = env->fregs[f2].ll; x2.ll.lower = env->fregs[f2 + 2].ll; x1.q = float128_chs(x2.q); env->fregs[f1].ll = x1.ll.upper; env->fregs[f1 + 2].ll = x1.ll.lower; return set_cc_nz_f128(x1.q); } /* 32-bit FP addition RM */ void HELPER(aeb)(uint32_t f1, uint32_t val) { float32 v1 = env->fregs[f1].l.upper; CPU_FloatU v2; v2.l = val; HELPER_LOG("%s: adding 0x%d from f%d and 0x%d\n", __func__, v1, f1, v2.f); env->fregs[f1].l.upper = float32_add(v1, v2.f, &env->fpu_status); } /* 32-bit FP division RM */ void HELPER(deb)(uint32_t f1, uint32_t val) { float32 v1 = env->fregs[f1].l.upper; CPU_FloatU v2; v2.l = val; HELPER_LOG("%s: dividing 0x%d from f%d by 0x%d\n", __func__, v1, f1, v2.f); env->fregs[f1].l.upper = float32_div(v1, v2.f, &env->fpu_status); } /* 32-bit FP multiplication RM */ void HELPER(meeb)(uint32_t f1, uint32_t val) { float32 v1 = env->fregs[f1].l.upper; CPU_FloatU v2; v2.l = val; HELPER_LOG("%s: multiplying 0x%d from f%d and 0x%d\n", __func__, v1, f1, v2.f); env->fregs[f1].l.upper = float32_mul(v1, v2.f, &env->fpu_status); } /* 32-bit FP compare RR */ uint32_t HELPER(cebr)(uint32_t f1, uint32_t f2) { float32 v1 = env->fregs[f1].l.upper; float32 v2 = env->fregs[f2].l.upper; HELPER_LOG("%s: comparing 0x%d from f%d and 0x%d\n", __func__, v1, f1, v2); return set_cc_f32(v1, v2); } /* 64-bit FP compare RR */ uint32_t HELPER(cdbr)(uint32_t f1, uint32_t f2) { float64 v1 = env->fregs[f1].d; float64 v2 = env->fregs[f2].d; HELPER_LOG("%s: comparing 0x%ld from f%d and 0x%ld\n", __func__, v1, f1, v2); return set_cc_f64(v1, v2); } /* 128-bit FP compare RR */ uint32_t HELPER(cxbr)(uint32_t f1, uint32_t f2) { CPU_QuadU v1; CPU_QuadU v2; v1.ll.upper = env->fregs[f1].ll; v1.ll.lower = env->fregs[f1 + 2].ll; v2.ll.upper = env->fregs[f2].ll; v2.ll.lower = env->fregs[f2 + 2].ll; return float_comp_to_cc(float128_compare_quiet(v1.q, v2.q, &env->fpu_status)); } /* 64-bit FP compare RM */ uint32_t HELPER(cdb)(uint32_t f1, uint64_t a2) { float64 v1 = env->fregs[f1].d; CPU_DoubleU v2; v2.ll = ldq(a2); HELPER_LOG("%s: comparing 0x%ld from f%d and 0x%lx\n", __func__, v1, f1, v2.d); return set_cc_f64(v1, v2.d); } /* 64-bit FP addition RM */ uint32_t HELPER(adb)(uint32_t f1, uint64_t a2) { float64 v1 = env->fregs[f1].d; CPU_DoubleU v2; v2.ll = ldq(a2); HELPER_LOG("%s: adding 0x%lx from f%d and 0x%lx\n", __func__, v1, f1, v2.d); env->fregs[f1].d = v1 = float64_add(v1, v2.d, &env->fpu_status); return set_cc_nz_f64(v1); } /* 32-bit FP subtraction RM */ void HELPER(seb)(uint32_t f1, uint32_t val) { float32 v1 = env->fregs[f1].l.upper; CPU_FloatU v2; v2.l = val; env->fregs[f1].l.upper = float32_sub(v1, v2.f, &env->fpu_status); } /* 64-bit FP subtraction RM */ uint32_t HELPER(sdb)(uint32_t f1, uint64_t a2) { float64 v1 = env->fregs[f1].d; CPU_DoubleU v2; v2.ll = ldq(a2); env->fregs[f1].d = v1 = float64_sub(v1, v2.d, &env->fpu_status); return set_cc_nz_f64(v1); } /* 64-bit FP multiplication RM */ void HELPER(mdb)(uint32_t f1, uint64_t a2) { float64 v1 = env->fregs[f1].d; CPU_DoubleU v2; v2.ll = ldq(a2); HELPER_LOG("%s: multiplying 0x%lx from f%d and 0x%ld\n", __func__, v1, f1, v2.d); env->fregs[f1].d = float64_mul(v1, v2.d, &env->fpu_status); } /* 64-bit FP division RM */ void HELPER(ddb)(uint32_t f1, uint64_t a2) { float64 v1 = env->fregs[f1].d; CPU_DoubleU v2; v2.ll = ldq(a2); HELPER_LOG("%s: dividing 0x%lx from f%d by 0x%ld\n", __func__, v1, f1, v2.d); env->fregs[f1].d = float64_div(v1, v2.d, &env->fpu_status); } static void set_round_mode(int m3) { switch (m3) { case 0: /* current mode */ break; case 1: /* biased round no nearest */ case 4: /* round to nearest */ set_float_rounding_mode(float_round_nearest_even, &env->fpu_status); break; case 5: /* round to zero */ set_float_rounding_mode(float_round_to_zero, &env->fpu_status); break; case 6: /* round to +inf */ set_float_rounding_mode(float_round_up, &env->fpu_status); break; case 7: /* round to -inf */ set_float_rounding_mode(float_round_down, &env->fpu_status); break; } } /* convert 32-bit float to 64-bit int */ uint32_t HELPER(cgebr)(uint32_t r1, uint32_t f2, uint32_t m3) { float32 v2 = env->fregs[f2].l.upper; set_round_mode(m3); env->regs[r1] = float32_to_int64(v2, &env->fpu_status); return set_cc_nz_f32(v2); } /* convert 64-bit float to 64-bit int */ uint32_t HELPER(cgdbr)(uint32_t r1, uint32_t f2, uint32_t m3) { float64 v2 = env->fregs[f2].d; set_round_mode(m3); env->regs[r1] = float64_to_int64(v2, &env->fpu_status); return set_cc_nz_f64(v2); } /* convert 128-bit float to 64-bit int */ uint32_t HELPER(cgxbr)(uint32_t r1, uint32_t f2, uint32_t m3) { CPU_QuadU v2; v2.ll.upper = env->fregs[f2].ll; v2.ll.lower = env->fregs[f2 + 2].ll; set_round_mode(m3); env->regs[r1] = float128_to_int64(v2.q, &env->fpu_status); if (float128_is_any_nan(v2.q)) { return 3; } else if (float128_is_zero(v2.q)) { return 0; } else if (float128_is_neg(v2.q)) { return 1; } else { return 2; } } /* convert 32-bit float to 32-bit int */ uint32_t HELPER(cfebr)(uint32_t r1, uint32_t f2, uint32_t m3) { float32 v2 = env->fregs[f2].l.upper; set_round_mode(m3); env->regs[r1] = (env->regs[r1] & 0xffffffff00000000ULL) | float32_to_int32(v2, &env->fpu_status); return set_cc_nz_f32(v2); } /* convert 64-bit float to 32-bit int */ uint32_t HELPER(cfdbr)(uint32_t r1, uint32_t f2, uint32_t m3) { float64 v2 = env->fregs[f2].d; set_round_mode(m3); env->regs[r1] = (env->regs[r1] & 0xffffffff00000000ULL) | float64_to_int32(v2, &env->fpu_status); return set_cc_nz_f64(v2); } /* convert 128-bit float to 32-bit int */ uint32_t HELPER(cfxbr)(uint32_t r1, uint32_t f2, uint32_t m3) { CPU_QuadU v2; v2.ll.upper = env->fregs[f2].ll; v2.ll.lower = env->fregs[f2 + 2].ll; env->regs[r1] = (env->regs[r1] & 0xffffffff00000000ULL) | float128_to_int32(v2.q, &env->fpu_status); return set_cc_nz_f128(v2.q); } /* load 32-bit FP zero */ void HELPER(lzer)(uint32_t f1) { env->fregs[f1].l.upper = float32_zero; } /* load 64-bit FP zero */ void HELPER(lzdr)(uint32_t f1) { env->fregs[f1].d = float64_zero; } /* load 128-bit FP zero */ void HELPER(lzxr)(uint32_t f1) { CPU_QuadU x; x.q = float64_to_float128(float64_zero, &env->fpu_status); env->fregs[f1].ll = x.ll.upper; env->fregs[f1 + 1].ll = x.ll.lower; } /* 128-bit FP subtraction RR */ uint32_t HELPER(sxbr)(uint32_t f1, uint32_t f2) { CPU_QuadU v1; CPU_QuadU v2; CPU_QuadU res; v1.ll.upper = env->fregs[f1].ll; v1.ll.lower = env->fregs[f1 + 2].ll; v2.ll.upper = env->fregs[f2].ll; v2.ll.lower = env->fregs[f2 + 2].ll; res.q = float128_sub(v1.q, v2.q, &env->fpu_status); env->fregs[f1].ll = res.ll.upper; env->fregs[f1 + 2].ll = res.ll.lower; return set_cc_nz_f128(res.q); } /* 128-bit FP addition RR */ uint32_t HELPER(axbr)(uint32_t f1, uint32_t f2) { CPU_QuadU v1; CPU_QuadU v2; CPU_QuadU res; v1.ll.upper = env->fregs[f1].ll; v1.ll.lower = env->fregs[f1 + 2].ll; v2.ll.upper = env->fregs[f2].ll; v2.ll.lower = env->fregs[f2 + 2].ll; res.q = float128_add(v1.q, v2.q, &env->fpu_status); env->fregs[f1].ll = res.ll.upper; env->fregs[f1 + 2].ll = res.ll.lower; return set_cc_nz_f128(res.q); } /* 32-bit FP multiplication RR */ void HELPER(meebr)(uint32_t f1, uint32_t f2) { env->fregs[f1].l.upper = float32_mul(env->fregs[f1].l.upper, env->fregs[f2].l.upper, &env->fpu_status); } /* 64-bit FP division RR */ void HELPER(ddbr)(uint32_t f1, uint32_t f2) { env->fregs[f1].d = float64_div(env->fregs[f1].d, env->fregs[f2].d, &env->fpu_status); } /* 64-bit FP multiply and add RM */ void HELPER(madb)(uint32_t f1, uint64_t a2, uint32_t f3) { CPU_DoubleU v2; HELPER_LOG("%s: f1 %d a2 0x%lx f3 %d\n", __func__, f1, a2, f3); v2.ll = ldq(a2); env->fregs[f1].d = float64_add(env->fregs[f1].d, float64_mul(v2.d, env->fregs[f3].d, &env->fpu_status), &env->fpu_status); } /* 64-bit FP multiply and add RR */ void HELPER(madbr)(uint32_t f1, uint32_t f3, uint32_t f2) { HELPER_LOG("%s: f1 %d f2 %d f3 %d\n", __func__, f1, f2, f3); env->fregs[f1].d = float64_add(float64_mul(env->fregs[f2].d, env->fregs[f3].d, &env->fpu_status), env->fregs[f1].d, &env->fpu_status); } /* 64-bit FP multiply and subtract RR */ void HELPER(msdbr)(uint32_t f1, uint32_t f3, uint32_t f2) { HELPER_LOG("%s: f1 %d f2 %d f3 %d\n", __func__, f1, f2, f3); env->fregs[f1].d = float64_sub(float64_mul(env->fregs[f2].d, env->fregs[f3].d, &env->fpu_status), env->fregs[f1].d, &env->fpu_status); } /* 32-bit FP multiply and add RR */ void HELPER(maebr)(uint32_t f1, uint32_t f3, uint32_t f2) { env->fregs[f1].l.upper = float32_add(env->fregs[f1].l.upper, float32_mul(env->fregs[f2].l.upper, env->fregs[f3].l.upper, &env->fpu_status), &env->fpu_status); } /* convert 32-bit float to 64-bit float */ void HELPER(ldeb)(uint32_t f1, uint64_t a2) { uint32_t v2; v2 = ldl(a2); env->fregs[f1].d = float32_to_float64(v2, &env->fpu_status); } /* convert 64-bit float to 128-bit float */ void HELPER(lxdb)(uint32_t f1, uint64_t a2) { CPU_DoubleU v2; CPU_QuadU v1; v2.ll = ldq(a2); v1.q = float64_to_float128(v2.d, &env->fpu_status); env->fregs[f1].ll = v1.ll.upper; env->fregs[f1 + 2].ll = v1.ll.lower; } /* test data class 32-bit */ uint32_t HELPER(tceb)(uint32_t f1, uint64_t m2) { float32 v1 = env->fregs[f1].l.upper; int neg = float32_is_neg(v1); uint32_t cc = 0; HELPER_LOG("%s: v1 0x%lx m2 0x%lx neg %d\n", __func__, (long)v1, m2, neg); if ((float32_is_zero(v1) && (m2 & (1 << (11-neg)))) || (float32_is_infinity(v1) && (m2 & (1 << (5-neg)))) || (float32_is_any_nan(v1) && (m2 & (1 << (3-neg)))) || (float32_is_signaling_nan(v1) && (m2 & (1 << (1-neg))))) { cc = 1; } else if (m2 & (1 << (9-neg))) { /* assume normalized number */ cc = 1; } /* FIXME: denormalized? */ return cc; } /* test data class 64-bit */ uint32_t HELPER(tcdb)(uint32_t f1, uint64_t m2) { float64 v1 = env->fregs[f1].d; int neg = float64_is_neg(v1); uint32_t cc = 0; HELPER_LOG("%s: v1 0x%lx m2 0x%lx neg %d\n", __func__, v1, m2, neg); if ((float64_is_zero(v1) && (m2 & (1 << (11-neg)))) || (float64_is_infinity(v1) && (m2 & (1 << (5-neg)))) || (float64_is_any_nan(v1) && (m2 & (1 << (3-neg)))) || (float64_is_signaling_nan(v1) && (m2 & (1 << (1-neg))))) { cc = 1; } else if (m2 & (1 << (9-neg))) { /* assume normalized number */ cc = 1; } /* FIXME: denormalized? */ return cc; } /* test data class 128-bit */ uint32_t HELPER(tcxb)(uint32_t f1, uint64_t m2) { CPU_QuadU v1; uint32_t cc = 0; int neg; v1.ll.upper = env->fregs[f1].ll; v1.ll.lower = env->fregs[f1 + 2].ll; neg = float128_is_neg(v1.q); if ((float128_is_zero(v1.q) && (m2 & (1 << (11-neg)))) || (float128_is_infinity(v1.q) && (m2 & (1 << (5-neg)))) || (float128_is_any_nan(v1.q) && (m2 & (1 << (3-neg)))) || (float128_is_signaling_nan(v1.q) && (m2 & (1 << (1-neg))))) { cc = 1; } else if (m2 & (1 << (9-neg))) { /* assume normalized number */ cc = 1; } /* FIXME: denormalized? */ return cc; } /* square root 64-bit RR */ void HELPER(sqdbr)(uint32_t f1, uint32_t f2) { env->fregs[f1].d = float64_sqrt(env->fregs[f2].d, &env->fpu_status); }