/* * S/390 condition code helper routines * * Copyright (c) 2009 Ulrich Hecht * Copyright (c) 2009 Alexander Graf * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "cpu.h" #include "dyngen-exec.h" #include "helper.h" /* #define DEBUG_HELPER */ #ifdef DEBUG_HELPER #define HELPER_LOG(x...) qemu_log(x) #else #define HELPER_LOG(x...) #endif static inline uint32_t cc_calc_ltgt_32(CPUS390XState *env, int32_t src, int32_t dst) { if (src == dst) { return 0; } else if (src < dst) { return 1; } else { return 2; } } static inline uint32_t cc_calc_ltgt0_32(CPUS390XState *env, int32_t dst) { return cc_calc_ltgt_32(env, dst, 0); } static inline uint32_t cc_calc_ltgt_64(CPUS390XState *env, int64_t src, int64_t dst) { if (src == dst) { return 0; } else if (src < dst) { return 1; } else { return 2; } } static inline uint32_t cc_calc_ltgt0_64(CPUS390XState *env, int64_t dst) { return cc_calc_ltgt_64(env, dst, 0); } static inline uint32_t cc_calc_ltugtu_32(CPUS390XState *env, uint32_t src, uint32_t dst) { if (src == dst) { return 0; } else if (src < dst) { return 1; } else { return 2; } } static inline uint32_t cc_calc_ltugtu_64(CPUS390XState *env, uint64_t src, uint64_t dst) { if (src == dst) { return 0; } else if (src < dst) { return 1; } else { return 2; } } static inline uint32_t cc_calc_tm_32(CPUS390XState *env, uint32_t val, uint32_t mask) { uint16_t r = val & mask; HELPER_LOG("%s: val 0x%x mask 0x%x\n", __func__, val, mask); if (r == 0 || mask == 0) { return 0; } else if (r == mask) { return 3; } else { return 1; } } /* set condition code for test under mask */ static inline uint32_t cc_calc_tm_64(CPUS390XState *env, uint64_t val, uint32_t mask) { uint16_t r = val & mask; HELPER_LOG("%s: val 0x%lx mask 0x%x r 0x%x\n", __func__, val, mask, r); if (r == 0 || mask == 0) { return 0; } else if (r == mask) { return 3; } else { while (!(mask & 0x8000)) { mask <<= 1; val <<= 1; } if (val & 0x8000) { return 2; } else { return 1; } } } static inline uint32_t cc_calc_nz(CPUS390XState *env, uint64_t dst) { return !!dst; } static inline uint32_t cc_calc_add_64(CPUS390XState *env, int64_t a1, int64_t a2, int64_t ar) { if ((a1 > 0 && a2 > 0 && ar < 0) || (a1 < 0 && a2 < 0 && ar > 0)) { return 3; /* overflow */ } else { if (ar < 0) { return 1; } else if (ar > 0) { return 2; } else { return 0; } } } static inline uint32_t cc_calc_addu_64(CPUS390XState *env, uint64_t a1, uint64_t a2, uint64_t ar) { if (ar == 0) { if (a1) { return 2; } else { return 0; } } else { if (ar < a1 || ar < a2) { return 3; } else { return 1; } } } static inline uint32_t cc_calc_sub_64(CPUS390XState *env, int64_t a1, int64_t a2, int64_t ar) { if ((a1 > 0 && a2 < 0 && ar < 0) || (a1 < 0 && a2 > 0 && ar > 0)) { return 3; /* overflow */ } else { if (ar < 0) { return 1; } else if (ar > 0) { return 2; } else { return 0; } } } static inline uint32_t cc_calc_subu_64(CPUS390XState *env, uint64_t a1, uint64_t a2, uint64_t ar) { if (ar == 0) { return 2; } else { if (a2 > a1) { return 1; } else { return 3; } } } static inline uint32_t cc_calc_abs_64(CPUS390XState *env, int64_t dst) { if ((uint64_t)dst == 0x8000000000000000ULL) { return 3; } else if (dst) { return 1; } else { return 0; } } static inline uint32_t cc_calc_nabs_64(CPUS390XState *env, int64_t dst) { return !!dst; } static inline uint32_t cc_calc_comp_64(CPUS390XState *env, int64_t dst) { if ((uint64_t)dst == 0x8000000000000000ULL) { return 3; } else if (dst < 0) { return 1; } else if (dst > 0) { return 2; } else { return 0; } } static inline uint32_t cc_calc_add_32(CPUS390XState *env, int32_t a1, int32_t a2, int32_t ar) { if ((a1 > 0 && a2 > 0 && ar < 0) || (a1 < 0 && a2 < 0 && ar > 0)) { return 3; /* overflow */ } else { if (ar < 0) { return 1; } else if (ar > 0) { return 2; } else { return 0; } } } static inline uint32_t cc_calc_addu_32(CPUS390XState *env, uint32_t a1, uint32_t a2, uint32_t ar) { if (ar == 0) { if (a1) { return 2; } else { return 0; } } else { if (ar < a1 || ar < a2) { return 3; } else { return 1; } } } static inline uint32_t cc_calc_sub_32(CPUS390XState *env, int32_t a1, int32_t a2, int32_t ar) { if ((a1 > 0 && a2 < 0 && ar < 0) || (a1 < 0 && a2 > 0 && ar > 0)) { return 3; /* overflow */ } else { if (ar < 0) { return 1; } else if (ar > 0) { return 2; } else { return 0; } } } static inline uint32_t cc_calc_subu_32(CPUS390XState *env, uint32_t a1, uint32_t a2, uint32_t ar) { if (ar == 0) { return 2; } else { if (a2 > a1) { return 1; } else { return 3; } } } static inline uint32_t cc_calc_abs_32(CPUS390XState *env, int32_t dst) { if ((uint32_t)dst == 0x80000000UL) { return 3; } else if (dst) { return 1; } else { return 0; } } static inline uint32_t cc_calc_nabs_32(CPUS390XState *env, int32_t dst) { return !!dst; } static inline uint32_t cc_calc_comp_32(CPUS390XState *env, int32_t dst) { if ((uint32_t)dst == 0x80000000UL) { return 3; } else if (dst < 0) { return 1; } else if (dst > 0) { return 2; } else { return 0; } } /* calculate condition code for insert character under mask insn */ static inline uint32_t cc_calc_icm_32(CPUS390XState *env, uint32_t mask, uint32_t val) { uint32_t cc; HELPER_LOG("%s: mask 0x%x val %d\n", __func__, mask, val); if (mask == 0xf) { if (!val) { return 0; } else if (val & 0x80000000) { return 1; } else { return 2; } } if (!val || !mask) { cc = 0; } else { while (mask != 1) { mask >>= 1; val >>= 8; } if (val & 0x80) { cc = 1; } else { cc = 2; } } return cc; } static inline uint32_t cc_calc_slag(CPUS390XState *env, uint64_t src, uint64_t shift) { uint64_t mask = ((1ULL << shift) - 1ULL) << (64 - shift); uint64_t match, r; /* check if the sign bit stays the same */ if (src & (1ULL << 63)) { match = mask; } else { match = 0; } if ((src & mask) != match) { /* overflow */ return 3; } r = ((src << shift) & ((1ULL << 63) - 1)) | (src & (1ULL << 63)); if ((int64_t)r == 0) { return 0; } else if ((int64_t)r < 0) { return 1; } return 2; } static inline uint32_t do_calc_cc(CPUS390XState *env, uint32_t cc_op, uint64_t src, uint64_t dst, uint64_t vr) { uint32_t r = 0; switch (cc_op) { case CC_OP_CONST0: case CC_OP_CONST1: case CC_OP_CONST2: case CC_OP_CONST3: /* cc_op value _is_ cc */ r = cc_op; break; case CC_OP_LTGT0_32: r = cc_calc_ltgt0_32(env, dst); break; case CC_OP_LTGT0_64: r = cc_calc_ltgt0_64(env, dst); break; case CC_OP_LTGT_32: r = cc_calc_ltgt_32(env, src, dst); break; case CC_OP_LTGT_64: r = cc_calc_ltgt_64(env, src, dst); break; case CC_OP_LTUGTU_32: r = cc_calc_ltugtu_32(env, src, dst); break; case CC_OP_LTUGTU_64: r = cc_calc_ltugtu_64(env, src, dst); break; case CC_OP_TM_32: r = cc_calc_tm_32(env, src, dst); break; case CC_OP_TM_64: r = cc_calc_tm_64(env, src, dst); break; case CC_OP_NZ: r = cc_calc_nz(env, dst); break; case CC_OP_ADD_64: r = cc_calc_add_64(env, src, dst, vr); break; case CC_OP_ADDU_64: r = cc_calc_addu_64(env, src, dst, vr); break; case CC_OP_SUB_64: r = cc_calc_sub_64(env, src, dst, vr); break; case CC_OP_SUBU_64: r = cc_calc_subu_64(env, src, dst, vr); break; case CC_OP_ABS_64: r = cc_calc_abs_64(env, dst); break; case CC_OP_NABS_64: r = cc_calc_nabs_64(env, dst); break; case CC_OP_COMP_64: r = cc_calc_comp_64(env, dst); break; case CC_OP_ADD_32: r = cc_calc_add_32(env, src, dst, vr); break; case CC_OP_ADDU_32: r = cc_calc_addu_32(env, src, dst, vr); break; case CC_OP_SUB_32: r = cc_calc_sub_32(env, src, dst, vr); break; case CC_OP_SUBU_32: r = cc_calc_subu_32(env, src, dst, vr); break; case CC_OP_ABS_32: r = cc_calc_abs_64(env, dst); break; case CC_OP_NABS_32: r = cc_calc_nabs_64(env, dst); break; case CC_OP_COMP_32: r = cc_calc_comp_32(env, dst); break; case CC_OP_ICM: r = cc_calc_icm_32(env, src, dst); break; case CC_OP_SLAG: r = cc_calc_slag(env, src, dst); break; case CC_OP_LTGT_F32: r = set_cc_f32(src, dst); break; case CC_OP_LTGT_F64: r = set_cc_f64(src, dst); break; case CC_OP_NZ_F32: r = set_cc_nz_f32(dst); break; case CC_OP_NZ_F64: r = set_cc_nz_f64(dst); break; default: cpu_abort(env, "Unknown CC operation: %s\n", cc_name(cc_op)); } HELPER_LOG("%s: %15s 0x%016lx 0x%016lx 0x%016lx = %d\n", __func__, cc_name(cc_op), src, dst, vr, r); return r; } uint32_t calc_cc(CPUS390XState *env, uint32_t cc_op, uint64_t src, uint64_t dst, uint64_t vr) { return do_calc_cc(env, cc_op, src, dst, vr); } uint32_t HELPER(calc_cc)(uint32_t cc_op, uint64_t src, uint64_t dst, uint64_t vr) { return do_calc_cc(env, cc_op, src, dst, vr); } /* insert psw mask and condition code into r1 */ void HELPER(ipm)(uint32_t cc, uint32_t r1) { uint64_t r = env->regs[r1]; r &= 0xffffffff00ffffffULL; r |= (cc << 28) | ((env->psw.mask >> 40) & 0xf); env->regs[r1] = r; HELPER_LOG("%s: cc %d psw.mask 0x%lx r1 0x%lx\n", __func__, cc, env->psw.mask, r); } #ifndef CONFIG_USER_ONLY void HELPER(load_psw)(uint64_t mask, uint64_t addr) { load_psw(env, mask, addr); cpu_loop_exit(env); } void HELPER(sacf)(uint64_t a1) { HELPER_LOG("%s: %16" PRIx64 "\n", __func__, a1); switch (a1 & 0xf00) { case 0x000: env->psw.mask &= ~PSW_MASK_ASC; env->psw.mask |= PSW_ASC_PRIMARY; break; case 0x100: env->psw.mask &= ~PSW_MASK_ASC; env->psw.mask |= PSW_ASC_SECONDARY; break; case 0x300: env->psw.mask &= ~PSW_MASK_ASC; env->psw.mask |= PSW_ASC_HOME; break; default: qemu_log("unknown sacf mode: %" PRIx64 "\n", a1); program_interrupt(env, PGM_SPECIFICATION, 2); break; } } #endif