/* * PPC emulation for qemu: main translation routines. * * Copyright (c) 2003 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "dyngen-exec.h" #include "cpu.h" #include "exec.h" #include "disas.h" //#define DO_SINGLE_STEP //#define DO_STEP_FLUSH //#define DEBUG_DISAS enum { #define DEF(s, n, copy_size) INDEX_op_ ## s, #include "opc.h" #undef DEF NB_OPS, }; static uint16_t *gen_opc_ptr; static uint32_t *gen_opparam_ptr; #include "gen-op.h" #define GEN8(func, NAME) \ static GenOpFunc *NAME ## _table [8] = { \ NAME ## 0, NAME ## 1, NAME ## 2, NAME ## 3, \ NAME ## 4, NAME ## 5, NAME ## 6, NAME ## 7, \ }; \ static inline void func(int n) \ { \ NAME ## _table[n](); \ } #define GEN16(func, NAME) \ static GenOpFunc *NAME ## _table [16] = { \ NAME ## 0, NAME ## 1, NAME ## 2, NAME ## 3, \ NAME ## 4, NAME ## 5, NAME ## 6, NAME ## 7, \ NAME ## 8, NAME ## 9, NAME ## 10, NAME ## 11, \ NAME ## 12, NAME ## 13, NAME ## 14, NAME ## 15, \ }; \ static inline void func(int n) \ { \ NAME ## _table[n](); \ } #define GEN32(func, NAME) \ static GenOpFunc *NAME ## _table [32] = { \ NAME ## 0, NAME ## 1, NAME ## 2, NAME ## 3, \ NAME ## 4, NAME ## 5, NAME ## 6, NAME ## 7, \ NAME ## 8, NAME ## 9, NAME ## 10, NAME ## 11, \ NAME ## 12, NAME ## 13, NAME ## 14, NAME ## 15, \ NAME ## 16, NAME ## 17, NAME ## 18, NAME ## 19, \ NAME ## 20, NAME ## 21, NAME ## 22, NAME ## 23, \ NAME ## 24, NAME ## 25, NAME ## 26, NAME ## 27, \ NAME ## 28, NAME ## 29, NAME ## 30, NAME ## 31, \ }; \ static inline void func(int n) \ { \ NAME ## _table[n](); \ } /* Condition register moves */ GEN8(gen_op_load_crf_T0, gen_op_load_crf_T0_crf); GEN8(gen_op_load_crf_T1, gen_op_load_crf_T1_crf); GEN8(gen_op_store_T0_crf, gen_op_store_T0_crf_crf); GEN8(gen_op_store_T1_crf, gen_op_store_T1_crf_crf); /* Floating point condition and status register moves */ GEN8(gen_op_load_fpscr_T0, gen_op_load_fpscr_T0_fpscr); GEN8(gen_op_store_T0_fpscr, gen_op_store_T0_fpscr_fpscr); GEN8(gen_op_clear_fpscr, gen_op_clear_fpscr_fpscr); static GenOpFunc1 *gen_op_store_T0_fpscri_fpscr_table[8] = { &gen_op_store_T0_fpscri_fpscr0, &gen_op_store_T0_fpscri_fpscr1, &gen_op_store_T0_fpscri_fpscr2, &gen_op_store_T0_fpscri_fpscr3, &gen_op_store_T0_fpscri_fpscr4, &gen_op_store_T0_fpscri_fpscr5, &gen_op_store_T0_fpscri_fpscr6, &gen_op_store_T0_fpscri_fpscr7, }; static inline void gen_op_store_T0_fpscri(int n, uint8_t param) { (*gen_op_store_T0_fpscri_fpscr_table[n])(param); } /* Segment register moves */ GEN16(gen_op_load_sr, gen_op_load_sr); GEN16(gen_op_store_sr, gen_op_store_sr); /* General purpose registers moves */ GEN32(gen_op_load_gpr_T0, gen_op_load_gpr_T0_gpr); GEN32(gen_op_load_gpr_T1, gen_op_load_gpr_T1_gpr); GEN32(gen_op_load_gpr_T2, gen_op_load_gpr_T2_gpr); GEN32(gen_op_store_T0_gpr, gen_op_store_T0_gpr_gpr); GEN32(gen_op_store_T1_gpr, gen_op_store_T1_gpr_gpr); GEN32(gen_op_store_T2_gpr, gen_op_store_T2_gpr_gpr); /* floating point registers moves */ GEN32(gen_op_load_fpr_FT0, gen_op_load_fpr_FT0_fpr); GEN32(gen_op_load_fpr_FT1, gen_op_load_fpr_FT1_fpr); GEN32(gen_op_load_fpr_FT2, gen_op_load_fpr_FT2_fpr); GEN32(gen_op_store_FT0_fpr, gen_op_store_FT0_fpr_fpr); GEN32(gen_op_store_FT1_fpr, gen_op_store_FT1_fpr_fpr); GEN32(gen_op_store_FT2_fpr, gen_op_store_FT2_fpr_fpr); static uint8_t spr_access[1024 / 2]; /* internal defines */ typedef struct DisasContext { struct TranslationBlock *tb; uint32_t *nip; uint32_t opcode; uint32_t exception; /* Time base offset */ uint32_t tb_offset; /* Decrementer offset */ uint32_t decr_offset; /* Execution mode */ #if !defined(CONFIG_USER_ONLY) int supervisor; #endif /* Routine used to access memory */ int mem_idx; } DisasContext; typedef struct opc_handler_t { /* invalid bits */ uint32_t inval; /* instruction type */ uint32_t type; /* handler */ void (*handler)(DisasContext *ctx); } opc_handler_t; #define RET_EXCP(excp, error) \ do { \ gen_op_queue_exception_err(excp, error); \ ctx->exception = excp; \ return; \ } while (0) #define RET_INVAL() \ RET_EXCP(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_INVAL) #define RET_PRIVOPC() \ RET_EXCP(EXCP_PROGRAM, EXCP_INVAL | EXCP_PRIV_OPC) #define RET_PRIVREG() \ RET_EXCP(EXCP_PROGRAM, EXCP_INVAL | EXCP_PRIV_REG) #define GEN_HANDLER(name, opc1, opc2, opc3, inval, type) \ static void gen_##name (DisasContext *ctx); \ GEN_OPCODE(name, opc1, opc2, opc3, inval, type); \ static void gen_##name (DisasContext *ctx) typedef struct opcode_t { unsigned char opc1, opc2, opc3; opc_handler_t handler; } opcode_t; /* XXX: move that elsewhere */ extern FILE *logfile; extern int loglevel; /*** Instruction decoding ***/ #define EXTRACT_HELPER(name, shift, nb) \ static inline uint32_t name (uint32_t opcode) \ { \ return (opcode >> (shift)) & ((1 << (nb)) - 1); \ } #define EXTRACT_SHELPER(name, shift, nb) \ static inline int32_t name (uint32_t opcode) \ { \ return s_ext16((opcode >> (shift)) & ((1 << (nb)) - 1)); \ } /* Opcode part 1 */ EXTRACT_HELPER(opc1, 26, 6); /* Opcode part 2 */ EXTRACT_HELPER(opc2, 1, 5); /* Opcode part 3 */ EXTRACT_HELPER(opc3, 6, 5); /* Update Cr0 flags */ EXTRACT_HELPER(Rc, 0, 1); /* Destination */ EXTRACT_HELPER(rD, 21, 5); /* Source */ EXTRACT_HELPER(rS, 21, 5); /* First operand */ EXTRACT_HELPER(rA, 16, 5); /* Second operand */ EXTRACT_HELPER(rB, 11, 5); /* Third operand */ EXTRACT_HELPER(rC, 6, 5); /*** Get CRn ***/ EXTRACT_HELPER(crfD, 23, 3); EXTRACT_HELPER(crfS, 18, 3); EXTRACT_HELPER(crbD, 21, 5); EXTRACT_HELPER(crbA, 16, 5); EXTRACT_HELPER(crbB, 11, 5); /* SPR / TBL */ EXTRACT_HELPER(SPR, 11, 10); /*** Get constants ***/ EXTRACT_HELPER(IMM, 12, 8); /* 16 bits signed immediate value */ EXTRACT_SHELPER(SIMM, 0, 16); /* 16 bits unsigned immediate value */ EXTRACT_HELPER(UIMM, 0, 16); /* Bit count */ EXTRACT_HELPER(NB, 11, 5); /* Shift count */ EXTRACT_HELPER(SH, 11, 5); /* Mask start */ EXTRACT_HELPER(MB, 6, 5); /* Mask end */ EXTRACT_HELPER(ME, 1, 5); /* Trap operand */ EXTRACT_HELPER(TO, 21, 5); EXTRACT_HELPER(CRM, 12, 8); EXTRACT_HELPER(FM, 17, 8); EXTRACT_HELPER(SR, 16, 4); EXTRACT_HELPER(FPIMM, 20, 4); /*** Jump target decoding ***/ /* Displacement */ EXTRACT_SHELPER(d, 0, 16); /* Immediate address */ static inline uint32_t LI (uint32_t opcode) { return (opcode >> 0) & 0x03FFFFFC; } static inline uint32_t BD (uint32_t opcode) { return (opcode >> 0) & 0xFFFC; } EXTRACT_HELPER(BO, 21, 5); EXTRACT_HELPER(BI, 16, 5); /* Absolute/relative address */ EXTRACT_HELPER(AA, 1, 1); /* Link */ EXTRACT_HELPER(LK, 0, 1); /* Create a mask between and bits */ static inline uint32_t MASK (uint32_t start, uint32_t end) { uint32_t ret; ret = (((uint32_t)(-1)) >> (start)) ^ (((uint32_t)(-1) >> (end)) >> 1); if (start > end) return ~ret; return ret; } #define GEN_OPCODE(name, op1, op2, op3, invl, _typ) \ __attribute__ ((section(".opcodes"), unused)) \ static opcode_t opc_##name = { \ .opc1 = op1, \ .opc2 = op2, \ .opc3 = op3, \ .handler = { \ .inval = invl, \ .type = _typ, \ .handler = &gen_##name, \ }, \ } #define GEN_OPCODE_MARK(name) \ __attribute__ ((section(".opcodes"), unused)) \ static opcode_t opc_##name = { \ .opc1 = 0xFF, \ .opc2 = 0xFF, \ .opc3 = 0xFF, \ .handler = { \ .inval = 0x00000000, \ .type = 0x00, \ .handler = NULL, \ }, \ } /* Start opcode list */ GEN_OPCODE_MARK(start); /* Invalid instruction */ GEN_HANDLER(invalid, 0x00, 0x00, 0x00, 0xFFFFFFFF, PPC_NONE) { RET_INVAL(); } /* Special opcode to stop emulation */ GEN_HANDLER(stop, 0x06, 0x00, 0xFF, 0x03FFFFC1, PPC_COMMON) { gen_op_queue_exception(EXCP_HLT); ctx->exception = EXCP_HLT; } /* Special opcode to call open-firmware */ GEN_HANDLER(of_enter, 0x06, 0x01, 0xFF, 0x03FFFFC1, PPC_COMMON) { gen_op_queue_exception(EXCP_OFCALL); ctx->exception = EXCP_OFCALL; } /* Special opcode to call RTAS */ GEN_HANDLER(rtas_enter, 0x06, 0x02, 0xFF, 0x03FFFFC1, PPC_COMMON) { printf("RTAS entry point !\n"); gen_op_queue_exception(EXCP_RTASCALL); ctx->exception = EXCP_RTASCALL; } static opc_handler_t invalid_handler = { .inval = 0xFFFFFFFF, .type = PPC_NONE, .handler = gen_invalid, }; /*** Integer arithmetic ***/ #define __GEN_INT_ARITH2(name, opc1, opc2, opc3, inval) \ GEN_HANDLER(name, opc1, opc2, opc3, inval, PPC_INTEGER) \ { \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ gen_op_load_gpr_T1(rB(ctx->opcode)); \ gen_op_##name(); \ if (Rc(ctx->opcode) != 0) \ gen_op_set_Rc0(); \ gen_op_store_T0_gpr(rD(ctx->opcode)); \ } #define __GEN_INT_ARITH2_O(name, opc1, opc2, opc3, inval) \ GEN_HANDLER(name, opc1, opc2, opc3, inval, PPC_INTEGER) \ { \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ gen_op_load_gpr_T1(rB(ctx->opcode)); \ gen_op_##name(); \ if (Rc(ctx->opcode) != 0) \ gen_op_set_Rc0_ov(); \ gen_op_store_T0_gpr(rD(ctx->opcode)); \ } #define __GEN_INT_ARITH1(name, opc1, opc2, opc3) \ GEN_HANDLER(name, opc1, opc2, opc3, 0x0000F800, PPC_INTEGER) \ { \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ gen_op_##name(); \ if (Rc(ctx->opcode) != 0) \ gen_op_set_Rc0(); \ gen_op_store_T0_gpr(rD(ctx->opcode)); \ } #define __GEN_INT_ARITH1_O(name, opc1, opc2, opc3) \ GEN_HANDLER(name, opc1, opc2, opc3, 0x0000F800, PPC_INTEGER) \ { \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ gen_op_##name(); \ if (Rc(ctx->opcode) != 0) \ gen_op_set_Rc0_ov(); \ gen_op_store_T0_gpr(rD(ctx->opcode)); \ } /* Two operands arithmetic functions */ #define GEN_INT_ARITH2(name, opc1, opc2, opc3) \ __GEN_INT_ARITH2(name, opc1, opc2, opc3, 0x00000000) \ __GEN_INT_ARITH2_O(name##o, opc1, opc2, opc3 | 0x10, 0x00000000) /* Two operands arithmetic functions with no overflow allowed */ #define GEN_INT_ARITHN(name, opc1, opc2, opc3) \ __GEN_INT_ARITH2(name, opc1, opc2, opc3, 0x00000400) /* One operand arithmetic functions */ #define GEN_INT_ARITH1(name, opc1, opc2, opc3) \ __GEN_INT_ARITH1(name, opc1, opc2, opc3) \ __GEN_INT_ARITH1_O(name##o, opc1, opc2, opc3 | 0x10) /* add add. addo addo. */ GEN_INT_ARITH2 (add, 0x1F, 0x0A, 0x08); /* addc addc. addco addco. */ GEN_INT_ARITH2 (addc, 0x1F, 0x0A, 0x00); /* adde adde. addeo addeo. */ GEN_INT_ARITH2 (adde, 0x1F, 0x0A, 0x04); /* addme addme. addmeo addmeo. */ GEN_INT_ARITH1 (addme, 0x1F, 0x0A, 0x07); /* addze addze. addzeo addzeo. */ GEN_INT_ARITH1 (addze, 0x1F, 0x0A, 0x06); /* divw divw. divwo divwo. */ GEN_INT_ARITH2 (divw, 0x1F, 0x0B, 0x0F); /* divwu divwu. divwuo divwuo. */ GEN_INT_ARITH2 (divwu, 0x1F, 0x0B, 0x0E); /* mulhw mulhw. */ GEN_INT_ARITHN (mulhw, 0x1F, 0x0B, 0x02); /* mulhwu mulhwu. */ GEN_INT_ARITHN (mulhwu, 0x1F, 0x0B, 0x00); /* mullw mullw. mullwo mullwo. */ GEN_INT_ARITH2 (mullw, 0x1F, 0x0B, 0x07); /* neg neg. nego nego. */ GEN_INT_ARITH1 (neg, 0x1F, 0x08, 0x03); /* subf subf. subfo subfo. */ GEN_INT_ARITH2 (subf, 0x1F, 0x08, 0x01); /* subfc subfc. subfco subfco. */ GEN_INT_ARITH2 (subfc, 0x1F, 0x08, 0x00); /* subfe subfe. subfeo subfeo. */ GEN_INT_ARITH2 (subfe, 0x1F, 0x08, 0x04); /* subfme subfme. subfmeo subfmeo. */ GEN_INT_ARITH1 (subfme, 0x1F, 0x08, 0x07); /* subfze subfze. subfzeo subfzeo. */ GEN_INT_ARITH1 (subfze, 0x1F, 0x08, 0x06); /* addi */ GEN_HANDLER(addi, 0x0E, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { int32_t simm = SIMM(ctx->opcode); if (rA(ctx->opcode) == 0) { gen_op_set_T0(simm); } else { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_addi(simm); } gen_op_store_T0_gpr(rD(ctx->opcode)); } /* addic */ GEN_HANDLER(addic, 0x0C, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_addic(SIMM(ctx->opcode)); gen_op_store_T0_gpr(rD(ctx->opcode)); } /* addic. */ GEN_HANDLER(addic_, 0x0D, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_addic(SIMM(ctx->opcode)); gen_op_set_Rc0(); gen_op_store_T0_gpr(rD(ctx->opcode)); } /* addis */ GEN_HANDLER(addis, 0x0F, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { int32_t simm = SIMM(ctx->opcode); if (rA(ctx->opcode) == 0) { gen_op_set_T0(simm << 16); } else { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_addi(simm << 16); } gen_op_store_T0_gpr(rD(ctx->opcode)); } /* mulli */ GEN_HANDLER(mulli, 0x07, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_mulli(SIMM(ctx->opcode)); gen_op_store_T0_gpr(rD(ctx->opcode)); } /* subfic */ GEN_HANDLER(subfic, 0x08, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_subfic(SIMM(ctx->opcode)); gen_op_store_T0_gpr(rD(ctx->opcode)); } /*** Integer comparison ***/ #define GEN_CMP(name, opc) \ GEN_HANDLER(name, 0x1F, 0x00, opc, 0x00400000, PPC_INTEGER) \ { \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ gen_op_load_gpr_T1(rB(ctx->opcode)); \ gen_op_##name(); \ gen_op_store_T0_crf(crfD(ctx->opcode)); \ } /* cmp */ GEN_CMP(cmp, 0x00); /* cmpi */ GEN_HANDLER(cmpi, 0x0B, 0xFF, 0xFF, 0x00400000, PPC_INTEGER) { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_cmpi(SIMM(ctx->opcode)); gen_op_store_T0_crf(crfD(ctx->opcode)); } /* cmpl */ GEN_CMP(cmpl, 0x01); /* cmpli */ GEN_HANDLER(cmpli, 0x0A, 0xFF, 0xFF, 0x00400000, PPC_INTEGER) { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_cmpli(UIMM(ctx->opcode)); gen_op_store_T0_crf(crfD(ctx->opcode)); } /*** Integer logical ***/ #define __GEN_LOGICAL2(name, opc2, opc3) \ GEN_HANDLER(name, 0x1F, opc2, opc3, 0x00000000, PPC_INTEGER) \ { \ gen_op_load_gpr_T0(rS(ctx->opcode)); \ gen_op_load_gpr_T1(rB(ctx->opcode)); \ gen_op_##name(); \ if (Rc(ctx->opcode) != 0) \ gen_op_set_Rc0(); \ gen_op_store_T0_gpr(rA(ctx->opcode)); \ } #define GEN_LOGICAL2(name, opc) \ __GEN_LOGICAL2(name, 0x1C, opc) #define GEN_LOGICAL1(name, opc) \ GEN_HANDLER(name, 0x1F, 0x1A, opc, 0x00000000, PPC_INTEGER) \ { \ gen_op_load_gpr_T0(rS(ctx->opcode)); \ gen_op_##name(); \ if (Rc(ctx->opcode) != 0) \ gen_op_set_Rc0(); \ gen_op_store_T0_gpr(rA(ctx->opcode)); \ } /* and & and. */ GEN_LOGICAL2(and, 0x00); /* andc & andc. */ GEN_LOGICAL2(andc, 0x01); /* andi. */ GEN_HANDLER(andi_, 0x1C, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { gen_op_load_gpr_T0(rS(ctx->opcode)); gen_op_andi_(UIMM(ctx->opcode)); gen_op_set_Rc0(); gen_op_store_T0_gpr(rA(ctx->opcode)); } /* andis. */ GEN_HANDLER(andis_, 0x1D, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { gen_op_load_gpr_T0(rS(ctx->opcode)); gen_op_andi_(UIMM(ctx->opcode) << 16); gen_op_set_Rc0(); gen_op_store_T0_gpr(rA(ctx->opcode)); } /* cntlzw */ GEN_LOGICAL1(cntlzw, 0x00); /* eqv & eqv. */ GEN_LOGICAL2(eqv, 0x08); /* extsb & extsb. */ GEN_LOGICAL1(extsb, 0x1D); /* extsh & extsh. */ GEN_LOGICAL1(extsh, 0x1C); /* nand & nand. */ GEN_LOGICAL2(nand, 0x0E); /* nor & nor. */ GEN_LOGICAL2(nor, 0x03); /* or & or. */ GEN_HANDLER(or, 0x1F, 0x1C, 0x0D, 0x00000000, PPC_INTEGER) { gen_op_load_gpr_T0(rS(ctx->opcode)); /* Optimisation for mr case */ if (rS(ctx->opcode) != rB(ctx->opcode)) { gen_op_load_gpr_T1(rB(ctx->opcode)); gen_op_or(); } if (Rc(ctx->opcode) != 0) gen_op_set_Rc0(); gen_op_store_T0_gpr(rA(ctx->opcode)); } /* orc & orc. */ GEN_LOGICAL2(orc, 0x0C); /* xor & xor. */ GEN_HANDLER(xor, 0x1F, 0x1C, 0x09, 0x00000000, PPC_INTEGER) { gen_op_load_gpr_T0(rS(ctx->opcode)); /* Optimisation for "set to zero" case */ if (rS(ctx->opcode) != rB(ctx->opcode)) { gen_op_load_gpr_T1(rB(ctx->opcode)); gen_op_xor(); } else { gen_op_set_T0(0); } if (Rc(ctx->opcode) != 0) gen_op_set_Rc0(); gen_op_store_T0_gpr(rA(ctx->opcode)); } /* ori */ GEN_HANDLER(ori, 0x18, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { uint32_t uimm = UIMM(ctx->opcode); if (rS(ctx->opcode) == rA(ctx->opcode) && uimm == 0) { /* NOP */ return; } gen_op_load_gpr_T0(rS(ctx->opcode)); if (uimm != 0) gen_op_ori(uimm); gen_op_store_T0_gpr(rA(ctx->opcode)); } /* oris */ GEN_HANDLER(oris, 0x19, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { uint32_t uimm = UIMM(ctx->opcode); if (rS(ctx->opcode) == rA(ctx->opcode) && uimm == 0) { /* NOP */ return; } gen_op_load_gpr_T0(rS(ctx->opcode)); if (uimm != 0) gen_op_ori(uimm << 16); gen_op_store_T0_gpr(rA(ctx->opcode)); } /* xori */ GEN_HANDLER(xori, 0x1A, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { uint32_t uimm = UIMM(ctx->opcode); if (rS(ctx->opcode) == rA(ctx->opcode) && uimm == 0) { /* NOP */ return; } gen_op_load_gpr_T0(rS(ctx->opcode)); if (uimm != 0) gen_op_xori(UIMM(ctx->opcode)); gen_op_store_T0_gpr(rA(ctx->opcode)); } /* xoris */ GEN_HANDLER(xoris, 0x1B, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { uint32_t uimm = UIMM(ctx->opcode); if (rS(ctx->opcode) == rA(ctx->opcode) && uimm == 0) { /* NOP */ return; } gen_op_load_gpr_T0(rS(ctx->opcode)); if (uimm != 0) gen_op_xori(UIMM(ctx->opcode) << 16); gen_op_store_T0_gpr(rA(ctx->opcode)); } /*** Integer rotate ***/ /* rlwimi & rlwimi. */ GEN_HANDLER(rlwimi, 0x14, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { uint32_t mb, me; mb = MB(ctx->opcode); me = ME(ctx->opcode); gen_op_load_gpr_T0(rS(ctx->opcode)); gen_op_load_gpr_T1(rA(ctx->opcode)); gen_op_rlwimi(SH(ctx->opcode), MASK(mb, me), ~MASK(mb, me)); if (Rc(ctx->opcode) != 0) gen_op_set_Rc0(); gen_op_store_T0_gpr(rA(ctx->opcode)); } /* rlwinm & rlwinm. */ GEN_HANDLER(rlwinm, 0x15, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { uint32_t mb, me, sh; sh = SH(ctx->opcode); mb = MB(ctx->opcode); me = ME(ctx->opcode); gen_op_load_gpr_T0(rS(ctx->opcode)); if (mb == 0) { if (me == 31) { gen_op_rotlwi(sh); goto store; } else if (me == (31 - sh)) { gen_op_slwi(sh); goto store; } else if (sh == 0) { gen_op_andi_(MASK(0, me)); goto store; } } else if (me == 31) { if (sh == (32 - mb)) { gen_op_srwi(mb); goto store; } else if (sh == 0) { gen_op_andi_(MASK(mb, 31)); goto store; } } gen_op_rlwinm(sh, MASK(mb, me)); store: if (Rc(ctx->opcode) != 0) gen_op_set_Rc0(); gen_op_store_T0_gpr(rA(ctx->opcode)); } /* rlwnm & rlwnm. */ GEN_HANDLER(rlwnm, 0x17, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { uint32_t mb, me; mb = MB(ctx->opcode); me = ME(ctx->opcode); gen_op_load_gpr_T0(rS(ctx->opcode)); gen_op_load_gpr_T1(rB(ctx->opcode)); if (mb == 0 && me == 31) { gen_op_rotl(); } else { gen_op_rlwnm(MASK(mb, me)); } if (Rc(ctx->opcode) != 0) gen_op_set_Rc0(); gen_op_store_T0_gpr(rA(ctx->opcode)); } /*** Integer shift ***/ /* slw & slw. */ __GEN_LOGICAL2(slw, 0x18, 0x00); /* sraw & sraw. */ __GEN_LOGICAL2(sraw, 0x18, 0x18); /* srawi & srawi. */ GEN_HANDLER(srawi, 0x1F, 0x18, 0x19, 0x00000000, PPC_INTEGER) { gen_op_load_gpr_T0(rS(ctx->opcode)); gen_op_srawi(SH(ctx->opcode), MASK(32 - SH(ctx->opcode), 31)); if (Rc(ctx->opcode) != 0) gen_op_set_Rc0(); gen_op_store_T0_gpr(rA(ctx->opcode)); } /* srw & srw. */ __GEN_LOGICAL2(srw, 0x18, 0x10); /*** Floating-Point arithmetic ***/ #define _GEN_FLOAT_ACB(name, op1, op2) \ GEN_HANDLER(f##name, op1, op2, 0xFF, 0x00000000, PPC_FLOAT) \ { \ gen_op_reset_scrfx(); \ gen_op_load_fpr_FT0(rA(ctx->opcode)); \ gen_op_load_fpr_FT1(rC(ctx->opcode)); \ gen_op_load_fpr_FT2(rB(ctx->opcode)); \ gen_op_f##name(); \ gen_op_store_FT0_fpr(rD(ctx->opcode)); \ if (Rc(ctx->opcode)) \ gen_op_set_Rc1(); \ } #define GEN_FLOAT_ACB(name, op2) \ _GEN_FLOAT_ACB(name, 0x3F, op2); \ _GEN_FLOAT_ACB(name##s, 0x3B, op2); #define _GEN_FLOAT_AB(name, op1, op2, inval) \ GEN_HANDLER(f##name, op1, op2, 0xFF, inval, PPC_FLOAT) \ { \ gen_op_reset_scrfx(); \ gen_op_load_fpr_FT0(rA(ctx->opcode)); \ gen_op_load_fpr_FT1(rB(ctx->opcode)); \ gen_op_f##name(); \ gen_op_store_FT0_fpr(rD(ctx->opcode)); \ if (Rc(ctx->opcode)) \ gen_op_set_Rc1(); \ } #define GEN_FLOAT_AB(name, op2, inval) \ _GEN_FLOAT_AB(name, 0x3F, op2, inval); \ _GEN_FLOAT_AB(name##s, 0x3B, op2, inval); #define _GEN_FLOAT_AC(name, op1, op2, inval) \ GEN_HANDLER(f##name, op1, op2, 0xFF, inval, PPC_FLOAT) \ { \ gen_op_reset_scrfx(); \ gen_op_load_fpr_FT0(rA(ctx->opcode)); \ gen_op_load_fpr_FT1(rC(ctx->opcode)); \ gen_op_f##name(); \ gen_op_store_FT0_fpr(rD(ctx->opcode)); \ if (Rc(ctx->opcode)) \ gen_op_set_Rc1(); \ } #define GEN_FLOAT_AC(name, op2, inval) \ _GEN_FLOAT_AC(name, 0x3F, op2, inval); \ _GEN_FLOAT_AC(name##s, 0x3B, op2, inval); #define GEN_FLOAT_B(name, op2, op3) \ GEN_HANDLER(f##name, 0x3F, op2, op3, 0x001F0000, PPC_FLOAT) \ { \ gen_op_reset_scrfx(); \ gen_op_load_fpr_FT0(rB(ctx->opcode)); \ gen_op_f##name(); \ gen_op_store_FT0_fpr(rD(ctx->opcode)); \ if (Rc(ctx->opcode)) \ gen_op_set_Rc1(); \ } #define GEN_FLOAT_BS(name, op2) \ GEN_HANDLER(f##name, 0x3F, op2, 0xFF, 0x001F07C0, PPC_FLOAT) \ { \ gen_op_reset_scrfx(); \ gen_op_load_fpr_FT0(rB(ctx->opcode)); \ gen_op_f##name(); \ gen_op_store_FT0_fpr(rD(ctx->opcode)); \ if (Rc(ctx->opcode)) \ gen_op_set_Rc1(); \ } /* fadd - fadds */ GEN_FLOAT_AB(add, 0x15, 0x000007C0); /* fdiv */ GEN_FLOAT_AB(div, 0x12, 0x000007C0); /* fmul */ GEN_FLOAT_AC(mul, 0x19, 0x0000F800); /* fres */ GEN_FLOAT_BS(res, 0x18); /* frsqrte */ GEN_FLOAT_BS(rsqrte, 0x1A); /* fsel */ _GEN_FLOAT_ACB(sel, 0x3F, 0x17); /* fsub */ GEN_FLOAT_AB(sub, 0x14, 0x000007C0); /* Optional: */ /* fsqrt */ GEN_FLOAT_BS(sqrt, 0x16); GEN_HANDLER(fsqrts, 0x3B, 0x16, 0xFF, 0x001F07C0, PPC_FLOAT_OPT) { gen_op_reset_scrfx(); gen_op_load_fpr_FT0(rB(ctx->opcode)); gen_op_fsqrts(); gen_op_store_FT0_fpr(rD(ctx->opcode)); if (Rc(ctx->opcode)) gen_op_set_Rc1(); } /*** Floating-Point multiply-and-add ***/ /* fmadd */ GEN_FLOAT_ACB(madd, 0x1D); /* fmsub */ GEN_FLOAT_ACB(msub, 0x1C); /* fnmadd */ GEN_FLOAT_ACB(nmadd, 0x1F); /* fnmsub */ GEN_FLOAT_ACB(nmsub, 0x1E); /*** Floating-Point round & convert ***/ /* fctiw */ GEN_FLOAT_B(ctiw, 0x0E, 0x00); /* fctiwz */ GEN_FLOAT_B(ctiwz, 0x0F, 0x00); /* frsp */ GEN_FLOAT_B(rsp, 0x0C, 0x00); /*** Floating-Point compare ***/ /* fcmpo */ GEN_HANDLER(fcmpo, 0x3F, 0x00, 0x00, 0x00600001, PPC_FLOAT) { gen_op_reset_scrfx(); gen_op_load_fpr_FT0(rA(ctx->opcode)); gen_op_load_fpr_FT1(rB(ctx->opcode)); gen_op_fcmpo(); gen_op_store_T0_crf(crfD(ctx->opcode)); } /* fcmpu */ GEN_HANDLER(fcmpu, 0x3F, 0x00, 0x01, 0x00600001, PPC_FLOAT) { gen_op_reset_scrfx(); gen_op_load_fpr_FT0(rA(ctx->opcode)); gen_op_load_fpr_FT1(rB(ctx->opcode)); gen_op_fcmpu(); gen_op_store_T0_crf(crfD(ctx->opcode)); } /*** Floating-point move ***/ /* fabs */ GEN_FLOAT_B(abs, 0x08, 0x08); /* fmr - fmr. */ GEN_HANDLER(fmr, 0x3F, 0x08, 0x02, 0x001F0000, PPC_FLOAT) { gen_op_reset_scrfx(); gen_op_load_fpr_FT0(rB(ctx->opcode)); gen_op_store_FT0_fpr(rD(ctx->opcode)); if (Rc(ctx->opcode)) gen_op_set_Rc1(); } /* fnabs */ GEN_FLOAT_B(nabs, 0x08, 0x04); /* fneg */ GEN_FLOAT_B(neg, 0x08, 0x01); /*** Floating-Point status & ctrl register ***/ /* mcrfs */ GEN_HANDLER(mcrfs, 0x3F, 0x00, 0x02, 0x0063F801, PPC_FLOAT) { gen_op_load_fpscr_T0(crfS(ctx->opcode)); gen_op_store_T0_crf(crfD(ctx->opcode)); gen_op_clear_fpscr(crfS(ctx->opcode)); } /* mffs */ GEN_HANDLER(mffs, 0x3F, 0x07, 0x12, 0x001FF800, PPC_FLOAT) { gen_op_load_fpscr(); gen_op_store_FT0_fpr(rD(ctx->opcode)); if (Rc(ctx->opcode)) gen_op_set_Rc1(); } /* mtfsb0 */ GEN_HANDLER(mtfsb0, 0x3F, 0x06, 0x02, 0x001FF800, PPC_FLOAT) { uint8_t crb; crb = crbD(ctx->opcode) >> 2; gen_op_load_fpscr_T0(crb); gen_op_andi_(~(1 << (crbD(ctx->opcode) & 0x03))); gen_op_store_T0_fpscr(crb); if (Rc(ctx->opcode)) gen_op_set_Rc1(); } /* mtfsb1 */ GEN_HANDLER(mtfsb1, 0x3F, 0x06, 0x01, 0x001FF800, PPC_FLOAT) { uint8_t crb; crb = crbD(ctx->opcode) >> 2; gen_op_load_fpscr_T0(crb); gen_op_ori(1 << (crbD(ctx->opcode) & 0x03)); gen_op_store_T0_fpscr(crb); if (Rc(ctx->opcode)) gen_op_set_Rc1(); } /* mtfsf */ GEN_HANDLER(mtfsf, 0x3F, 0x07, 0x16, 0x02010000, PPC_FLOAT) { gen_op_load_fpr_FT0(rB(ctx->opcode)); gen_op_store_fpscr(FM(ctx->opcode)); if (Rc(ctx->opcode)) gen_op_set_Rc1(); } /* mtfsfi */ GEN_HANDLER(mtfsfi, 0x3F, 0x06, 0x04, 0x006f0800, PPC_FLOAT) { gen_op_store_T0_fpscri(crbD(ctx->opcode) >> 2, FPIMM(ctx->opcode)); if (Rc(ctx->opcode)) gen_op_set_Rc1(); } /*** Integer load ***/ #if defined(CONFIG_USER_ONLY) #define op_ldst(name) gen_op_##name##_raw() #define OP_LD_TABLE(width) #define OP_ST_TABLE(width) #else #define op_ldst(name) (*gen_op_##name[ctx->mem_idx])() #define OP_LD_TABLE(width) \ static GenOpFunc *gen_op_l##width[] = { \ &gen_op_l##width##_user, \ &gen_op_l##width##_kernel, \ } #define OP_ST_TABLE(width) \ static GenOpFunc *gen_op_st##width[] = { \ &gen_op_st##width##_user, \ &gen_op_st##width##_kernel, \ } #endif #define GEN_LD(width, opc) \ GEN_HANDLER(l##width, opc, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) \ { \ uint32_t simm = SIMM(ctx->opcode); \ if (rA(ctx->opcode) == 0) { \ gen_op_set_T0(simm); \ } else { \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ if (simm != 0) \ gen_op_addi(simm); \ } \ op_ldst(l##width); \ gen_op_store_T1_gpr(rD(ctx->opcode)); \ } #define GEN_LDU(width, opc) \ GEN_HANDLER(l##width##u, opc, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) \ { \ uint32_t simm = SIMM(ctx->opcode); \ if (rA(ctx->opcode) == 0 || \ rA(ctx->opcode) == rD(ctx->opcode)) { \ RET_INVAL(); \ } \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ if (simm != 0) \ gen_op_addi(simm); \ op_ldst(l##width); \ gen_op_store_T1_gpr(rD(ctx->opcode)); \ gen_op_store_T0_gpr(rA(ctx->opcode)); \ } #define GEN_LDUX(width, opc) \ GEN_HANDLER(l##width##ux, 0x1F, 0x17, opc, 0x00000001, PPC_INTEGER) \ { \ if (rA(ctx->opcode) == 0 || \ rA(ctx->opcode) == rD(ctx->opcode)) { \ RET_INVAL(); \ } \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ gen_op_load_gpr_T1(rB(ctx->opcode)); \ gen_op_add(); \ op_ldst(l##width); \ gen_op_store_T1_gpr(rD(ctx->opcode)); \ gen_op_store_T0_gpr(rA(ctx->opcode)); \ } #define GEN_LDX(width, opc2, opc3) \ GEN_HANDLER(l##width##x, 0x1F, opc2, opc3, 0x00000001, PPC_INTEGER) \ { \ if (rA(ctx->opcode) == 0) { \ gen_op_load_gpr_T0(rB(ctx->opcode)); \ } else { \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ gen_op_load_gpr_T1(rB(ctx->opcode)); \ gen_op_add(); \ } \ op_ldst(l##width); \ gen_op_store_T1_gpr(rD(ctx->opcode)); \ } #define GEN_LDS(width, op) \ OP_LD_TABLE(width); \ GEN_LD(width, op | 0x20); \ GEN_LDU(width, op | 0x21); \ GEN_LDUX(width, op | 0x01); \ GEN_LDX(width, 0x17, op | 0x00) /* lbz lbzu lbzux lbzx */ GEN_LDS(bz, 0x02); /* lha lhau lhaux lhax */ GEN_LDS(ha, 0x0A); /* lhz lhzu lhzux lhzx */ GEN_LDS(hz, 0x08); /* lwz lwzu lwzux lwzx */ GEN_LDS(wz, 0x00); /*** Integer store ***/ #define GEN_ST(width, opc) \ GEN_HANDLER(st##width, opc, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) \ { \ uint32_t simm = SIMM(ctx->opcode); \ if (rA(ctx->opcode) == 0) { \ gen_op_set_T0(simm); \ } else { \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ if (simm != 0) \ gen_op_addi(simm); \ } \ gen_op_load_gpr_T1(rS(ctx->opcode)); \ op_ldst(st##width); \ } #define GEN_STU(width, opc) \ GEN_HANDLER(st##width##u, opc, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) \ { \ uint32_t simm = SIMM(ctx->opcode); \ if (rA(ctx->opcode) == 0) { \ RET_INVAL(); \ } \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ if (simm != 0) \ gen_op_addi(simm); \ gen_op_load_gpr_T1(rS(ctx->opcode)); \ op_ldst(st##width); \ gen_op_store_T0_gpr(rA(ctx->opcode)); \ } #define GEN_STUX(width, opc) \ GEN_HANDLER(st##width##ux, 0x1F, 0x17, opc, 0x00000001, PPC_INTEGER) \ { \ if (rA(ctx->opcode) == 0) { \ RET_INVAL(); \ } \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ gen_op_load_gpr_T1(rB(ctx->opcode)); \ gen_op_add(); \ gen_op_load_gpr_T1(rS(ctx->opcode)); \ op_ldst(st##width); \ gen_op_store_T0_gpr(rA(ctx->opcode)); \ } #define GEN_STX(width, opc2, opc3) \ GEN_HANDLER(st##width##x, 0x1F, opc2, opc3, 0x00000001, PPC_INTEGER) \ { \ if (rA(ctx->opcode) == 0) { \ gen_op_load_gpr_T0(rB(ctx->opcode)); \ } else { \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ gen_op_load_gpr_T1(rB(ctx->opcode)); \ gen_op_add(); \ } \ gen_op_load_gpr_T1(rS(ctx->opcode)); \ op_ldst(st##width); \ } #define GEN_STS(width, op) \ OP_ST_TABLE(width); \ GEN_ST(width, op | 0x20); \ GEN_STU(width, op | 0x21); \ GEN_STUX(width, op | 0x01); \ GEN_STX(width, 0x17, op | 0x00) /* stb stbu stbux stbx */ GEN_STS(b, 0x06); /* sth sthu sthux sthx */ GEN_STS(h, 0x0C); /* stw stwu stwux stwx */ GEN_STS(w, 0x04); /*** Integer load and store with byte reverse ***/ /* lhbrx */ OP_LD_TABLE(hbr); GEN_LDX(hbr, 0x16, 0x18); /* lwbrx */ OP_LD_TABLE(wbr); GEN_LDX(wbr, 0x16, 0x10); /* sthbrx */ OP_ST_TABLE(hbr); GEN_STX(hbr, 0x16, 0x1C); /* stwbrx */ OP_ST_TABLE(wbr); GEN_STX(wbr, 0x16, 0x14); /*** Integer load and store multiple ***/ #if defined(CONFIG_USER_ONLY) #define op_ldstm(name, reg) gen_op_##name##_raw(reg) #else #define op_ldstm(name, reg) (*gen_op_##name[ctx->mem_idx])(reg) static GenOpFunc1 *gen_op_lmw[] = { &gen_op_lmw_user, &gen_op_lmw_kernel, }; static GenOpFunc1 *gen_op_stmw[] = { &gen_op_stmw_user, &gen_op_stmw_kernel, }; #endif /* lmw */ GEN_HANDLER(lmw, 0x2E, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { int simm = SIMM(ctx->opcode); if (rA(ctx->opcode) == 0) { gen_op_set_T0(simm); } else { gen_op_load_gpr_T0(rA(ctx->opcode)); if (simm != 0) gen_op_addi(simm); } op_ldstm(lmw, rD(ctx->opcode)); } /* stmw */ GEN_HANDLER(stmw, 0x2F, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { int simm = SIMM(ctx->opcode); if (rA(ctx->opcode) == 0) { gen_op_set_T0(simm); } else { gen_op_load_gpr_T0(rA(ctx->opcode)); if (simm != 0) gen_op_addi(simm); } op_ldstm(stmw, rS(ctx->opcode)); } /*** Integer load and store strings ***/ #if defined(CONFIG_USER_ONLY) #define op_ldsts(name, start) gen_op_##name##_raw(start) #define op_ldstsx(name, rd, ra, rb) gen_op_##name##_raw(rd, ra, rb) #else #define op_ldsts(name, start) (*gen_op_##name[ctx->mem_idx])(start) #define op_ldstsx(name, rd, ra, rb) (*gen_op_##name[ctx->mem_idx])(rd, ra, rb) static GenOpFunc1 *gen_op_lswi[] = { &gen_op_lswi_user, &gen_op_lswi_kernel, }; static GenOpFunc3 *gen_op_lswx[] = { &gen_op_lswx_user, &gen_op_lswx_kernel, }; static GenOpFunc1 *gen_op_stsw[] = { &gen_op_stsw_user, &gen_op_stsw_kernel, }; #endif /* lswi */ /* PPC32 specification says we must generate an exception if * rA is in the range of registers to be loaded. * In an other hand, IBM says this is valid, but rA won't be loaded. * For now, I'll follow the spec... */ GEN_HANDLER(lswi, 0x1F, 0x15, 0x12, 0x00000001, PPC_INTEGER) { int nb = NB(ctx->opcode); int start = rD(ctx->opcode); int ra = rA(ctx->opcode); int nr; if (nb == 0) nb = 32; nr = nb / 4; if (((start + nr) > 32 && start <= ra && (start + nr - 32) >= ra) || ((start + nr) <= 32 && start <= ra && (start + nr) >= ra)) { RET_EXCP(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_LSWX); } if (ra == 0) { gen_op_set_T0(0); } else { gen_op_load_gpr_T0(ra); } gen_op_set_T1(nb); op_ldsts(lswi, start); } /* lswx */ GEN_HANDLER(lswx, 0x1F, 0x15, 0x10, 0x00000001, PPC_INTEGER) { int ra = rA(ctx->opcode); int rb = rB(ctx->opcode); if (ra == 0) { gen_op_load_gpr_T0(rb); ra = rb; } else { gen_op_load_gpr_T0(ra); gen_op_load_gpr_T1(rb); gen_op_add(); } gen_op_load_xer_bc(); op_ldstsx(lswx, rD(ctx->opcode), ra, rb); } /* stswi */ GEN_HANDLER(stswi, 0x1F, 0x15, 0x16, 0x00000001, PPC_INTEGER) { if (rA(ctx->opcode) == 0) { gen_op_set_T0(0); } else { gen_op_load_gpr_T0(rA(ctx->opcode)); } gen_op_set_T1(NB(ctx->opcode)); op_ldsts(stsw, rS(ctx->opcode)); } /* stswx */ GEN_HANDLER(stswx, 0x1F, 0x15, 0x14, 0x00000001, PPC_INTEGER) { int ra = rA(ctx->opcode); if (ra == 0) { gen_op_load_gpr_T0(rB(ctx->opcode)); ra = rB(ctx->opcode); } else { gen_op_load_gpr_T0(ra); gen_op_load_gpr_T1(rB(ctx->opcode)); gen_op_add(); } gen_op_load_xer_bc(); op_ldsts(stsw, rS(ctx->opcode)); } /*** Memory synchronisation ***/ /* eieio */ GEN_HANDLER(eieio, 0x1F, 0x16, 0x1A, 0x03FF0801, PPC_MEM) { } /* isync */ GEN_HANDLER(isync, 0x13, 0x16, 0xFF, 0x03FF0801, PPC_MEM) { } /* lwarx */ #if defined(CONFIG_USER_ONLY) #define op_lwarx() gen_op_lwarx_raw() #define op_stwcx() gen_op_stwcx_raw() #else #define op_lwarx() (*gen_op_lwarx[ctx->mem_idx])() static GenOpFunc *gen_op_lwarx[] = { &gen_op_lwarx_user, &gen_op_lwarx_kernel, }; #define op_stwcx() (*gen_op_stwcx[ctx->mem_idx])() static GenOpFunc *gen_op_stwcx[] = { &gen_op_stwcx_user, &gen_op_stwcx_kernel, }; #endif GEN_HANDLER(lwarx, 0x1F, 0x14, 0xFF, 0x00000001, PPC_RES) { if (rA(ctx->opcode) == 0) { gen_op_load_gpr_T0(rB(ctx->opcode)); } else { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_load_gpr_T1(rB(ctx->opcode)); gen_op_add(); } op_lwarx(); gen_op_store_T1_gpr(rD(ctx->opcode)); } /* stwcx. */ GEN_HANDLER(stwcx_, 0x1F, 0x16, 0x04, 0x00000000, PPC_RES) { if (rA(ctx->opcode) == 0) { gen_op_load_gpr_T0(rB(ctx->opcode)); } else { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_load_gpr_T1(rB(ctx->opcode)); gen_op_add(); } gen_op_load_gpr_T1(rS(ctx->opcode)); op_stwcx(); } /* sync */ GEN_HANDLER(sync, 0x1F, 0x16, 0x12, 0x03FF0801, PPC_MEM) { } /*** Floating-point load ***/ #define GEN_LDF(width, opc) \ GEN_HANDLER(l##width, opc, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) \ { \ uint32_t simm = SIMM(ctx->opcode); \ if (rA(ctx->opcode) == 0) { \ gen_op_set_T0(simm); \ } else { \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ if (simm != 0) \ gen_op_addi(simm); \ } \ op_ldst(l##width); \ gen_op_store_FT1_fpr(rD(ctx->opcode)); \ } #define GEN_LDUF(width, opc) \ GEN_HANDLER(l##width##u, opc, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) \ { \ uint32_t simm = SIMM(ctx->opcode); \ if (rA(ctx->opcode) == 0 || \ rA(ctx->opcode) == rD(ctx->opcode)) { \ RET_INVAL(); \ } \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ if (simm != 0) \ gen_op_addi(simm); \ op_ldst(l##width); \ gen_op_store_FT1_fpr(rD(ctx->opcode)); \ gen_op_store_T0_gpr(rA(ctx->opcode)); \ } #define GEN_LDUXF(width, opc) \ GEN_HANDLER(l##width##ux, 0x1F, 0x17, opc, 0x00000001, PPC_INTEGER) \ { \ if (rA(ctx->opcode) == 0 || \ rA(ctx->opcode) == rD(ctx->opcode)) { \ RET_INVAL(); \ } \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ gen_op_load_gpr_T1(rB(ctx->opcode)); \ gen_op_add(); \ op_ldst(l##width); \ gen_op_store_FT1_fpr(rD(ctx->opcode)); \ gen_op_store_T0_gpr(rA(ctx->opcode)); \ } #define GEN_LDXF(width, opc2, opc3) \ GEN_HANDLER(l##width##x, 0x1F, opc2, opc3, 0x00000001, PPC_INTEGER) \ { \ if (rA(ctx->opcode) == 0) { \ gen_op_load_gpr_T0(rB(ctx->opcode)); \ } else { \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ gen_op_load_gpr_T1(rB(ctx->opcode)); \ gen_op_add(); \ } \ op_ldst(l##width); \ gen_op_store_FT1_fpr(rD(ctx->opcode)); \ } #define GEN_LDFS(width, op) \ OP_LD_TABLE(width); \ GEN_LDF(width, op | 0x20); \ GEN_LDUF(width, op | 0x21); \ GEN_LDUXF(width, op | 0x01); \ GEN_LDXF(width, 0x17, op | 0x00) /* lfd lfdu lfdux lfdx */ GEN_LDFS(fd, 0x12); /* lfs lfsu lfsux lfsx */ GEN_LDFS(fs, 0x10); /*** Floating-point store ***/ #define GEN_STF(width, opc) \ GEN_HANDLER(st##width, opc, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) \ { \ uint32_t simm = SIMM(ctx->opcode); \ if (rA(ctx->opcode) == 0) { \ gen_op_set_T0(simm); \ } else { \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ if (simm != 0) \ gen_op_addi(simm); \ } \ gen_op_load_fpr_FT1(rS(ctx->opcode)); \ op_ldst(st##width); \ } #define GEN_STUF(width, opc) \ GEN_HANDLER(st##width##u, opc, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) \ { \ uint32_t simm = SIMM(ctx->opcode); \ if (rA(ctx->opcode) == 0) { \ RET_INVAL(); \ } \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ if (simm != 0) \ gen_op_addi(simm); \ gen_op_load_fpr_FT1(rS(ctx->opcode)); \ op_ldst(st##width); \ gen_op_store_T0_gpr(rA(ctx->opcode)); \ } #define GEN_STUXF(width, opc) \ GEN_HANDLER(st##width##ux, 0x1F, 0x17, opc, 0x00000001, PPC_INTEGER) \ { \ if (rA(ctx->opcode) == 0) { \ RET_INVAL(); \ } \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ gen_op_load_gpr_T1(rB(ctx->opcode)); \ gen_op_add(); \ gen_op_load_fpr_FT1(rS(ctx->opcode)); \ op_ldst(st##width); \ gen_op_store_T0_gpr(rA(ctx->opcode)); \ } #define GEN_STXF(width, opc2, opc3) \ GEN_HANDLER(st##width##x, 0x1F, opc2, opc3, 0x00000001, PPC_INTEGER) \ { \ if (rA(ctx->opcode) == 0) { \ gen_op_load_gpr_T0(rB(ctx->opcode)); \ } else { \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ gen_op_load_gpr_T1(rB(ctx->opcode)); \ gen_op_add(); \ } \ gen_op_load_fpr_FT1(rS(ctx->opcode)); \ op_ldst(st##width); \ } #define GEN_STFS(width, op) \ OP_ST_TABLE(width); \ GEN_STF(width, op | 0x20); \ GEN_STUF(width, op | 0x21); \ GEN_STUXF(width, op | 0x01); \ GEN_STXF(width, 0x17, op | 0x00) /* stfd stfdu stfdux stfdx */ GEN_STFS(fd, 0x16); /* stfs stfsu stfsux stfsx */ GEN_STFS(fs, 0x14); /* Optional: */ /* stfiwx */ GEN_HANDLER(stfiwx, 0x1F, 0x17, 0x1E, 0x00000001, PPC_FLOAT) { RET_INVAL(); } /*** Branch ***/ #define GEN_BCOND(name, opc1, opc2, opc3, prologue, \ bl_ctr, b_ctr, bl_ctrz, b_ctrz, b, bl, \ bl_ctr_true, b_ctr_true, bl_ctrz_true, b_ctrz_true, bl_true, b_true, \ bl_ctr_false, b_ctr_false, bl_ctrz_false, b_ctrz_false, bl_false, b_false) \ GEN_HANDLER(name, opc1, opc2, opc3, 0x00000000, PPC_FLOW) \ { \ __attribute__ ((unused)) uint32_t target; \ uint32_t bo = BO(ctx->opcode); \ uint32_t bi = BI(ctx->opcode); \ uint32_t mask; \ gen_op_update_tb(ctx->tb_offset); \ gen_op_update_decr(ctx->decr_offset); \ gen_op_process_exceptions((uint32_t)ctx->nip - 4); \ prologue; \ /* gen_op_set_T1((uint32_t)ctx->tb);*/ \ if ((bo & 0x4) == 0) \ gen_op_dec_ctr(); \ if (bo & 0x10) { \ /* No CR condition */ \ switch (bo & 0x6) { \ case 0: \ if (LK(ctx->opcode)) { \ bl_ctr; \ } else { \ b_ctr; \ } \ break; \ case 2: \ if (LK(ctx->opcode)) { \ bl_ctrz; \ } else { \ b_ctrz; \ } \ break; \ case 4: \ case 6: \ if (LK(ctx->opcode)) { \ bl; \ } else { \ b; \ } \ break; \ default: \ printf("ERROR: %s: unhandled ba case (%d)\n", __func__, bo); \ RET_INVAL(); \ break; \ } \ } else { \ mask = 1 << (3 - (bi & 0x03)); \ gen_op_load_crf_T0(bi >> 2); \ if (bo & 0x8) { \ switch (bo & 0x6) { \ case 0: \ if (LK(ctx->opcode)) { \ bl_ctr_true; \ } else { \ b_ctr_true; \ } \ break; \ case 2: \ if (LK(ctx->opcode)) { \ bl_ctrz_true; \ } else { \ b_ctrz_true; \ } \ break; \ case 4: \ case 6: \ if (LK(ctx->opcode)) { \ bl_true; \ } else { \ b_true; \ } \ break; \ default: \ printf("ERROR: %s: unhandled b case (%d)\n", __func__, bo); \ RET_INVAL(); \ break; \ } \ } else { \ switch (bo & 0x6) { \ case 0: \ if (LK(ctx->opcode)) { \ bl_ctr_false; \ } else { \ b_ctr_false; \ } \ break; \ case 2: \ if (LK(ctx->opcode)) { \ bl_ctrz_false; \ } else { \ b_ctrz_false; \ } \ break; \ case 4: \ case 6: \ if (LK(ctx->opcode)) { \ bl_false; \ } else { \ b_false; \ } \ break; \ default: \ printf("ERROR: %s: unhandled bn case (%d)\n", __func__, bo); \ RET_INVAL(); \ break; \ } \ } \ } \ ctx->exception = EXCP_BRANCH; \ } /* b ba bl bla */ GEN_HANDLER(b, 0x12, 0xFF, 0xFF, 0x00000000, PPC_FLOW) { uint32_t li = s_ext24(LI(ctx->opcode)), target; gen_op_update_tb(ctx->tb_offset); gen_op_update_decr(ctx->decr_offset); gen_op_process_exceptions((uint32_t)ctx->nip - 4); if (AA(ctx->opcode) == 0) target = (uint32_t)ctx->nip + li - 4; else target = li; // gen_op_set_T1((uint32_t)ctx->tb); if (LK(ctx->opcode)) { gen_op_bl(target, (uint32_t)ctx->nip); } else { gen_op_b(target); } ctx->exception = EXCP_BRANCH; } /* bc bca bcl bcla */ GEN_BCOND(bc, 0x10, 0xFF, 0xFF, do { uint32_t li = s_ext16(BD(ctx->opcode)); if (AA(ctx->opcode) == 0) { target = (uint32_t)ctx->nip + li - 4; } else { target = li; } } while (0), gen_op_bl_ctr((uint32_t)ctx->nip, target), gen_op_b_ctr((uint32_t)ctx->nip, target), gen_op_bl_ctrz((uint32_t)ctx->nip, target), gen_op_b_ctrz((uint32_t)ctx->nip, target), gen_op_b(target), gen_op_bl(target, (uint32_t)ctx->nip), gen_op_bl_ctr_true((uint32_t)ctx->nip, target, mask), gen_op_b_ctr_true((uint32_t)ctx->nip, target, mask), gen_op_bl_ctrz_true((uint32_t)ctx->nip, target, mask), gen_op_b_ctrz_true((uint32_t)ctx->nip, target, mask), gen_op_bl_true((uint32_t)ctx->nip, target, mask), gen_op_b_true((uint32_t)ctx->nip, target, mask), gen_op_bl_ctr_false((uint32_t)ctx->nip, target, mask), gen_op_b_ctr_false((uint32_t)ctx->nip, target, mask), gen_op_bl_ctrz_false((uint32_t)ctx->nip, target, mask), gen_op_b_ctrz_false((uint32_t)ctx->nip, target, mask), gen_op_bl_false((uint32_t)ctx->nip, target, mask), gen_op_b_false((uint32_t)ctx->nip, target, mask)); /* bcctr bcctrl */ GEN_BCOND(bcctr, 0x13, 0x10, 0x10, do { } while (0), gen_op_bctrl_ctr((uint32_t)ctx->nip), gen_op_bctr_ctr((uint32_t)ctx->nip), gen_op_bctrl_ctrz((uint32_t)ctx->nip), gen_op_bctr_ctrz((uint32_t)ctx->nip), gen_op_bctr(), gen_op_bctrl((uint32_t)ctx->nip), gen_op_bctrl_ctr_true((uint32_t)ctx->nip, mask), gen_op_bctr_ctr_true((uint32_t)ctx->nip, mask), gen_op_bctrl_ctrz_true((uint32_t)ctx->nip, mask), gen_op_bctr_ctrz_true((uint32_t)ctx->nip, mask), gen_op_bctrl_true((uint32_t)ctx->nip, mask), gen_op_bctr_true((uint32_t)ctx->nip, mask), gen_op_bctrl_ctr_false((uint32_t)ctx->nip, mask), gen_op_bctr_ctr_false((uint32_t)ctx->nip, mask), gen_op_bctrl_ctrz_false((uint32_t)ctx->nip, mask), gen_op_bctr_ctrz_false((uint32_t)ctx->nip, mask), gen_op_bctrl_false((uint32_t)ctx->nip, mask), gen_op_bctr_false((uint32_t)ctx->nip, mask)) /* bclr bclrl */ GEN_BCOND(bclr, 0x13, 0x10, 0x00, do { } while (0), gen_op_blrl_ctr((uint32_t)ctx->nip), gen_op_blr_ctr((uint32_t)ctx->nip), gen_op_blrl_ctrz((uint32_t)ctx->nip), gen_op_blr_ctrz((uint32_t)ctx->nip), gen_op_blr(), gen_op_blrl((uint32_t)ctx->nip), gen_op_blrl_ctr_true((uint32_t)ctx->nip, mask), gen_op_blr_ctr_true((uint32_t)ctx->nip, mask), gen_op_blrl_ctrz_true((uint32_t)ctx->nip, mask), gen_op_blr_ctrz_true((uint32_t)ctx->nip, mask), gen_op_blrl_true((uint32_t)ctx->nip, mask), gen_op_blr_true((uint32_t)ctx->nip, mask), gen_op_blrl_ctr_false((uint32_t)ctx->nip, mask), gen_op_blr_ctr_false((uint32_t)ctx->nip, mask), gen_op_blrl_ctrz_false((uint32_t)ctx->nip, mask), gen_op_blr_ctrz_false((uint32_t)ctx->nip, mask), gen_op_blrl_false((uint32_t)ctx->nip, mask), gen_op_blr_false((uint32_t)ctx->nip, mask)) /*** Condition register logical ***/ #define GEN_CRLOGIC(op, opc) \ GEN_HANDLER(cr##op, 0x13, 0x01, opc, 0x00000001, PPC_INTEGER) \ { \ gen_op_load_crf_T0(crbA(ctx->opcode) >> 2); \ gen_op_getbit_T0(3 - (crbA(ctx->opcode) & 0x03)); \ gen_op_load_crf_T1(crbB(ctx->opcode) >> 2); \ gen_op_getbit_T1(3 - (crbB(ctx->opcode) & 0x03)); \ gen_op_##op(); \ gen_op_load_crf_T1(crbD(ctx->opcode) >> 2); \ gen_op_setcrfbit(~(1 << (3 - (crbD(ctx->opcode) & 0x03))), \ 3 - (crbD(ctx->opcode) & 0x03)); \ gen_op_store_T1_crf(crbD(ctx->opcode) >> 2); \ } /* crand */ GEN_CRLOGIC(and, 0x08) /* crandc */ GEN_CRLOGIC(andc, 0x04) /* creqv */ GEN_CRLOGIC(eqv, 0x09) /* crnand */ GEN_CRLOGIC(nand, 0x07) /* crnor */ GEN_CRLOGIC(nor, 0x01) /* cror */ GEN_CRLOGIC(or, 0x0E) /* crorc */ GEN_CRLOGIC(orc, 0x0D) /* crxor */ GEN_CRLOGIC(xor, 0x06) /* mcrf */ GEN_HANDLER(mcrf, 0x13, 0x00, 0xFF, 0x00000001, PPC_INTEGER) { gen_op_load_crf_T0(crfS(ctx->opcode)); gen_op_store_T0_crf(crfD(ctx->opcode)); } /*** System linkage ***/ /* rfi (supervisor only) */ GEN_HANDLER(rfi, 0x13, 0x12, 0xFF, 0x03FF8001, PPC_FLOW) { #if defined(CONFIG_USER_ONLY) RET_PRIVOPC(); #else /* Restore CPU state */ if (!ctx->supervisor) { RET_PRIVOPC(); } gen_op_rfi(); ctx->exception = EXCP_RFI; #endif } /* sc */ GEN_HANDLER(sc, 0x11, 0xFF, 0xFF, 0x03FFFFFD, PPC_FLOW) { #if defined(CONFIG_USER_ONLY) gen_op_queue_exception(EXCP_SYSCALL_USER); #else gen_op_queue_exception(EXCP_SYSCALL); #endif ctx->exception = EXCP_SYSCALL; } /*** Trap ***/ /* tw */ GEN_HANDLER(tw, 0x1F, 0x04, 0xFF, 0x00000001, PPC_FLOW) { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_load_gpr_T1(rB(ctx->opcode)); gen_op_tw(TO(ctx->opcode)); } /* twi */ GEN_HANDLER(twi, 0x03, 0xFF, 0xFF, 0x00000000, PPC_FLOW) { gen_op_load_gpr_T0(rA(ctx->opcode)); #if 0 printf("%s: param=0x%04x T0=0x%04x\n", __func__, SIMM(ctx->opcode), TO(ctx->opcode)); #endif gen_op_twi(SIMM(ctx->opcode), TO(ctx->opcode)); } /*** Processor control ***/ static inline int check_spr_access (int spr, int rw, int supervisor) { uint32_t rights = spr_access[spr >> 1] >> (4 * (spr & 1)); #if 0 if (spr != LR && spr != CTR) { if (loglevel > 0) { fprintf(logfile, "%s reg=%d s=%d rw=%d r=0x%02x 0x%02x\n", __func__, SPR_ENCODE(spr), supervisor, rw, rights, (rights >> ((2 * supervisor) + rw)) & 1); } else { printf("%s reg=%d s=%d rw=%d r=0x%02x 0x%02x\n", __func__, SPR_ENCODE(spr), supervisor, rw, rights, (rights >> ((2 * supervisor) + rw)) & 1); } } #endif if (rights == 0) return -1; rights = rights >> (2 * supervisor); rights = rights >> rw; return rights & 1; } /* mcrxr */ GEN_HANDLER(mcrxr, 0x1F, 0x00, 0x10, 0x007FF801, PPC_MISC) { gen_op_load_xer_cr(); gen_op_store_T0_crf(crfD(ctx->opcode)); gen_op_clear_xer_cr(); } /* mfcr */ GEN_HANDLER(mfcr, 0x1F, 0x13, 0x00, 0x001FF801, PPC_MISC) { gen_op_load_cr(); gen_op_store_T0_gpr(rD(ctx->opcode)); } /* mfmsr */ GEN_HANDLER(mfmsr, 0x1F, 0x13, 0x02, 0x001FF801, PPC_MISC) { #if defined(CONFIG_USER_ONLY) RET_PRIVREG(); #else if (!ctx->supervisor) { RET_PRIVREG(); } gen_op_load_msr(); gen_op_store_T0_gpr(rD(ctx->opcode)); #endif } /* mfspr */ GEN_HANDLER(mfspr, 0x1F, 0x13, 0x0A, 0x00000001, PPC_MISC) { uint32_t sprn = SPR(ctx->opcode); #if defined(CONFIG_USER_ONLY) switch (check_spr_access(sprn, 0, 0)) #else switch (check_spr_access(sprn, 0, ctx->supervisor)) #endif { case -1: RET_EXCP(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_SPR); break; case 0: RET_PRIVREG(); break; default: break; } switch (sprn) { case XER: gen_op_load_xer(); break; case LR: gen_op_load_lr(); break; case CTR: gen_op_load_ctr(); break; case IBAT0U: gen_op_load_ibat(0, 0); break; case IBAT1U: gen_op_load_ibat(0, 1); break; case IBAT2U: gen_op_load_ibat(0, 2); break; case IBAT3U: gen_op_load_ibat(0, 3); break; case IBAT4U: gen_op_load_ibat(0, 4); break; case IBAT5U: gen_op_load_ibat(0, 5); break; case IBAT6U: gen_op_load_ibat(0, 6); break; case IBAT7U: gen_op_load_ibat(0, 7); break; case IBAT0L: gen_op_load_ibat(1, 0); break; case IBAT1L: gen_op_load_ibat(1, 1); break; case IBAT2L: gen_op_load_ibat(1, 2); break; case IBAT3L: gen_op_load_ibat(1, 3); break; case IBAT4L: gen_op_load_ibat(1, 4); break; case IBAT5L: gen_op_load_ibat(1, 5); break; case IBAT6L: gen_op_load_ibat(1, 6); break; case IBAT7L: gen_op_load_ibat(1, 7); break; case DBAT0U: gen_op_load_dbat(0, 0); break; case DBAT1U: gen_op_load_dbat(0, 1); break; case DBAT2U: gen_op_load_dbat(0, 2); break; case DBAT3U: gen_op_load_dbat(0, 3); break; case DBAT4U: gen_op_load_dbat(0, 4); break; case DBAT5U: gen_op_load_dbat(0, 5); break; case DBAT6U: gen_op_load_dbat(0, 6); break; case DBAT7U: gen_op_load_dbat(0, 7); break; case DBAT0L: gen_op_load_dbat(1, 0); break; case DBAT1L: gen_op_load_dbat(1, 1); break; case DBAT2L: gen_op_load_dbat(1, 2); break; case DBAT3L: gen_op_load_dbat(1, 3); break; case DBAT4L: gen_op_load_dbat(1, 4); break; case DBAT5L: gen_op_load_dbat(1, 5); break; case DBAT6L: gen_op_load_dbat(1, 6); break; case DBAT7L: gen_op_load_dbat(1, 7); break; case SDR1: gen_op_load_sdr1(); break; case V_TBL: gen_op_update_tb(ctx->tb_offset); ctx->tb_offset = 0; /* TBL is still in T0 */ break; case V_TBU: gen_op_update_tb(ctx->tb_offset); ctx->tb_offset = 0; gen_op_load_tb(1); break; case DECR: gen_op_update_decr(ctx->decr_offset); ctx->decr_offset = 0; /* decr is still in T0 */ break; default: gen_op_load_spr(sprn); break; } gen_op_store_T0_gpr(rD(ctx->opcode)); } /* mftb */ GEN_HANDLER(mftb, 0x1F, 0x13, 0x0B, 0x00000001, PPC_MISC) { uint32_t sprn = SPR(ctx->opcode); /* We need to update the time base before reading it */ switch (sprn) { case V_TBL: gen_op_update_tb(ctx->tb_offset); /* TBL is still in T0 */ break; case V_TBU: gen_op_update_tb(ctx->tb_offset); gen_op_load_tb(1); break; default: RET_INVAL(); break; } ctx->tb_offset = 0; gen_op_store_T0_gpr(rD(ctx->opcode)); } /* mtcrf */ GEN_HANDLER(mtcrf, 0x1F, 0x10, 0x04, 0x00100801, PPC_MISC) { gen_op_load_gpr_T0(rS(ctx->opcode)); gen_op_store_cr(CRM(ctx->opcode)); } /* mtmsr */ GEN_HANDLER(mtmsr, 0x1F, 0x12, 0x04, 0x001FF801, PPC_MISC) { #if defined(CONFIG_USER_ONLY) RET_PRIVREG(); #else if (!ctx->supervisor) { RET_PRIVREG(); } gen_op_load_gpr_T0(rS(ctx->opcode)); gen_op_store_msr(); /* Must stop the translation as machine state (may have) changed */ ctx->exception = EXCP_MTMSR; #endif } /* mtspr */ GEN_HANDLER(mtspr, 0x1F, 0x13, 0x0E, 0x00000001, PPC_MISC) { uint32_t sprn = SPR(ctx->opcode); #if 0 if (loglevel > 0) { fprintf(logfile, "MTSPR %d src=%d (%d)\n", SPR_ENCODE(sprn), rS(ctx->opcode), sprn); } #endif #if defined(CONFIG_USER_ONLY) switch (check_spr_access(sprn, 1, 0)) #else switch (check_spr_access(sprn, 1, ctx->supervisor)) #endif { case -1: RET_EXCP(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_SPR); break; case 0: RET_PRIVREG(); break; default: break; } gen_op_load_gpr_T0(rS(ctx->opcode)); switch (sprn) { case XER: gen_op_store_xer(); break; case LR: gen_op_andi_(~0x03); gen_op_store_lr(); break; case CTR: gen_op_store_ctr(); break; case IBAT0U: gen_op_store_ibat(0, 0); gen_op_tlbia(); break; case IBAT1U: gen_op_store_ibat(0, 1); gen_op_tlbia(); break; case IBAT2U: gen_op_store_ibat(0, 2); gen_op_tlbia(); break; case IBAT3U: gen_op_store_ibat(0, 3); gen_op_tlbia(); break; case IBAT4U: gen_op_store_ibat(0, 4); gen_op_tlbia(); break; case IBAT5U: gen_op_store_ibat(0, 5); gen_op_tlbia(); break; case IBAT6U: gen_op_store_ibat(0, 6); gen_op_tlbia(); break; case IBAT7U: gen_op_store_ibat(0, 7); gen_op_tlbia(); break; case IBAT0L: gen_op_store_ibat(1, 0); gen_op_tlbia(); break; case IBAT1L: gen_op_store_ibat(1, 1); gen_op_tlbia(); break; case IBAT2L: gen_op_store_ibat(1, 2); gen_op_tlbia(); break; case IBAT3L: gen_op_store_ibat(1, 3); gen_op_tlbia(); break; case IBAT4L: gen_op_store_ibat(1, 4); gen_op_tlbia(); break; case IBAT5L: gen_op_store_ibat(1, 5); gen_op_tlbia(); break; case IBAT6L: gen_op_store_ibat(1, 6); gen_op_tlbia(); break; case IBAT7L: gen_op_store_ibat(1, 7); gen_op_tlbia(); break; case DBAT0U: gen_op_store_dbat(0, 0); gen_op_tlbia(); break; case DBAT1U: gen_op_store_dbat(0, 1); gen_op_tlbia(); break; case DBAT2U: gen_op_store_dbat(0, 2); gen_op_tlbia(); break; case DBAT3U: gen_op_store_dbat(0, 3); gen_op_tlbia(); break; case DBAT4U: gen_op_store_dbat(0, 4); gen_op_tlbia(); break; case DBAT5U: gen_op_store_dbat(0, 5); gen_op_tlbia(); break; case DBAT6U: gen_op_store_dbat(0, 6); gen_op_tlbia(); break; case DBAT7U: gen_op_store_dbat(0, 7); gen_op_tlbia(); break; case DBAT0L: gen_op_store_dbat(1, 0); gen_op_tlbia(); break; case DBAT1L: gen_op_store_dbat(1, 1); gen_op_tlbia(); break; case DBAT2L: gen_op_store_dbat(1, 2); gen_op_tlbia(); break; case DBAT3L: gen_op_store_dbat(1, 3); gen_op_tlbia(); break; case DBAT4L: gen_op_store_dbat(1, 4); gen_op_tlbia(); break; case DBAT5L: gen_op_store_dbat(1, 5); gen_op_tlbia(); break; case DBAT6L: gen_op_store_dbat(1, 6); gen_op_tlbia(); break; case DBAT7L: gen_op_store_dbat(1, 7); gen_op_tlbia(); break; case SDR1: gen_op_store_sdr1(); gen_op_tlbia(); break; case O_TBL: gen_op_store_tb(0); ctx->tb_offset = 0; break; case O_TBU: gen_op_store_tb(1); ctx->tb_offset = 0; break; case DECR: gen_op_store_decr(); ctx->decr_offset = 0; break; default: gen_op_store_spr(sprn); break; } } /*** Cache management ***/ /* For now, all those will be implemented as nop: * this is valid, regarding the PowerPC specs... * We just have to flush tb while invalidating instruction cache lines... */ /* dcbf */ GEN_HANDLER(dcbf, 0x1F, 0x16, 0x02, 0x03E00001, PPC_CACHE) { } /* dcbi (Supervisor only) */ GEN_HANDLER(dcbi, 0x1F, 0x16, 0x0E, 0x03E00001, PPC_CACHE) { #if !defined(CONFIG_USER_ONLY) if (!ctx->supervisor) #endif { RET_PRIVOPC(); } } /* dcdst */ GEN_HANDLER(dcbst, 0x1F, 0x16, 0x01, 0x03E00001, PPC_CACHE) { } /* dcbt */ GEN_HANDLER(dcbt, 0x1F, 0x16, 0x08, 0x03E00001, PPC_CACHE) { } /* dcbtst */ GEN_HANDLER(dcbtst, 0x1F, 0x16, 0x07, 0x03E00001, PPC_CACHE) { } /* dcbz */ #if defined(CONFIG_USER_ONLY) #define op_dcbz() gen_op_dcbz_raw() #else #define op_dcbz() (*gen_op_dcbz[ctx->mem_idx])() static GenOpFunc *gen_op_dcbz[] = { &gen_op_dcbz_user, &gen_op_dcbz_kernel, }; #endif GEN_HANDLER(dcbz, 0x1F, 0x16, 0x1F, 0x03E00001, PPC_CACHE) { if (rA(ctx->opcode) == 0) { gen_op_load_gpr_T0(rB(ctx->opcode)); } else { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_load_gpr_T1(rB(ctx->opcode)); gen_op_add(); } op_dcbz(); } /* icbi */ GEN_HANDLER(icbi, 0x1F, 0x16, 0x1E, 0x03E00001, PPC_CACHE) { if (rA(ctx->opcode) == 0) { gen_op_load_gpr_T0(rB(ctx->opcode)); } else { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_load_gpr_T1(rB(ctx->opcode)); gen_op_add(); } gen_op_icbi(); } /* Optional: */ /* dcba */ GEN_HANDLER(dcba, 0x1F, 0x16, 0x07, 0x03E00001, PPC_CACHE_OPT) { } /*** Segment register manipulation ***/ /* Supervisor only: */ /* mfsr */ GEN_HANDLER(mfsr, 0x1F, 0x13, 0x12, 0x0010F801, PPC_SEGMENT) { #if defined(CONFIG_USER_ONLY) RET_PRIVREG(); #else if (!ctx->supervisor) { RET_PRIVREG(); } gen_op_load_sr(SR(ctx->opcode)); gen_op_store_T0_gpr(rD(ctx->opcode)); #endif } /* mfsrin */ GEN_HANDLER(mfsrin, 0x1F, 0x13, 0x14, 0x001F0001, PPC_SEGMENT) { #if defined(CONFIG_USER_ONLY) RET_PRIVREG(); #else if (!ctx->supervisor) { RET_PRIVREG(); } gen_op_load_gpr_T1(rB(ctx->opcode)); gen_op_load_srin(); gen_op_store_T0_gpr(rD(ctx->opcode)); #endif } /* mtsr */ GEN_HANDLER(mtsr, 0x1F, 0x12, 0x02, 0x0010F801, PPC_SEGMENT) { #if defined(CONFIG_USER_ONLY) RET_PRIVREG(); #else if (!ctx->supervisor) { RET_PRIVREG(); } gen_op_load_gpr_T0(rS(ctx->opcode)); gen_op_store_sr(SR(ctx->opcode)); gen_op_tlbia(); #endif } /* mtsrin */ GEN_HANDLER(mtsrin, 0x1F, 0x12, 0x07, 0x001F0001, PPC_SEGMENT) { #if defined(CONFIG_USER_ONLY) RET_PRIVREG(); #else if (!ctx->supervisor) { RET_PRIVREG(); } gen_op_load_gpr_T0(rS(ctx->opcode)); gen_op_load_gpr_T1(rB(ctx->opcode)); gen_op_store_srin(); gen_op_tlbia(); #endif } /*** Lookaside buffer management ***/ /* Optional & supervisor only: */ /* tlbia */ GEN_HANDLER(tlbia, 0x1F, 0x12, 0x0B, 0x03FFFC01, PPC_MEM_OPT) { #if defined(CONFIG_USER_ONLY) RET_PRIVOPC(); #else if (!ctx->supervisor) { RET_PRIVOPC(); } gen_op_tlbia(); #endif } /* tlbie */ GEN_HANDLER(tlbie, 0x1F, 0x12, 0x09, 0x03FF0001, PPC_MEM) { #if defined(CONFIG_USER_ONLY) RET_PRIVOPC(); #else if (!ctx->supervisor) { RET_PRIVOPC(); } gen_op_load_gpr_T0(rB(ctx->opcode)); gen_op_tlbie(); #endif } /* tlbsync */ GEN_HANDLER(tlbsync, 0x1F, 0x16, 0x11, 0x03FFFC01, PPC_MEM) { #if defined(CONFIG_USER_ONLY) RET_PRIVOPC(); #else if (!ctx->supervisor) { RET_PRIVOPC(); } /* This has no effect: it should ensure that all previous * tlbie have completed */ #endif } /*** External control ***/ /* Optional: */ /* eciwx */ #if defined(CONFIG_USER_ONLY) #define op_eciwx() gen_op_eciwx_raw() #define op_ecowx() gen_op_ecowx_raw() #else #define op_eciwx() (*gen_op_eciwx[ctx->mem_idx])() #define op_ecowx() (*gen_op_ecowx[ctx->mem_idx])() static GenOpFunc *gen_op_eciwx[] = { &gen_op_eciwx_user, &gen_op_eciwx_kernel, }; static GenOpFunc *gen_op_ecowx[] = { &gen_op_ecowx_user, &gen_op_ecowx_kernel, }; #endif GEN_HANDLER(eciwx, 0x1F, 0x16, 0x0D, 0x00000001, PPC_EXTERN) { /* Should check EAR[E] & alignment ! */ if (rA(ctx->opcode) == 0) { gen_op_load_gpr_T0(rB(ctx->opcode)); } else { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_load_gpr_T1(rB(ctx->opcode)); gen_op_add(); } op_eciwx(); gen_op_store_T0_gpr(rD(ctx->opcode)); } /* ecowx */ GEN_HANDLER(ecowx, 0x1F, 0x16, 0x09, 0x00000001, PPC_EXTERN) { /* Should check EAR[E] & alignment ! */ if (rA(ctx->opcode) == 0) { gen_op_load_gpr_T0(rB(ctx->opcode)); } else { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_load_gpr_T1(rB(ctx->opcode)); gen_op_add(); } gen_op_load_gpr_T2(rS(ctx->opcode)); op_ecowx(); } /* End opcode list */ GEN_OPCODE_MARK(end); /*****************************************************************************/ #include #include int fflush (FILE *stream); /* Main ppc opcodes table: * at init, all opcodes are invalids */ static opc_handler_t *ppc_opcodes[0x40]; /* Opcode types */ enum { PPC_DIRECT = 0, /* Opcode routine */ PPC_INDIRECT = 1, /* Indirect opcode table */ }; static inline int is_indirect_opcode (void *handler) { return ((unsigned long)handler & 0x03) == PPC_INDIRECT; } static inline opc_handler_t **ind_table(void *handler) { return (opc_handler_t **)((unsigned long)handler & ~3); } /* Instruction table creation */ /* Opcodes tables creation */ static void fill_new_table (opc_handler_t **table, int len) { int i; for (i = 0; i < len; i++) table[i] = &invalid_handler; } static int create_new_table (opc_handler_t **table, unsigned char idx) { opc_handler_t **tmp; tmp = malloc(0x20 * sizeof(opc_handler_t)); if (tmp == NULL) return -1; fill_new_table(tmp, 0x20); table[idx] = (opc_handler_t *)((unsigned long)tmp | PPC_INDIRECT); return 0; } static int insert_in_table (opc_handler_t **table, unsigned char idx, opc_handler_t *handler) { if (table[idx] != &invalid_handler) return -1; table[idx] = handler; return 0; } static int register_direct_insn (opc_handler_t **ppc_opcodes, unsigned char idx, opc_handler_t *handler) { if (insert_in_table(ppc_opcodes, idx, handler) < 0) { printf("*** ERROR: opcode %02x already assigned in main " "opcode table\n", idx); return -1; } return 0; } static int register_ind_in_table (opc_handler_t **table, unsigned char idx1, unsigned char idx2, opc_handler_t *handler) { if (table[idx1] == &invalid_handler) { if (create_new_table(table, idx1) < 0) { printf("*** ERROR: unable to create indirect table " "idx=%02x\n", idx1); return -1; } } else { if (!is_indirect_opcode(table[idx1])) { printf("*** ERROR: idx %02x already assigned to a direct " "opcode\n", idx1); return -1; } } if (handler != NULL && insert_in_table(ind_table(table[idx1]), idx2, handler) < 0) { printf("*** ERROR: opcode %02x already assigned in " "opcode table %02x\n", idx2, idx1); return -1; } return 0; } static int register_ind_insn (opc_handler_t **ppc_opcodes, unsigned char idx1, unsigned char idx2, opc_handler_t *handler) { int ret; ret = register_ind_in_table(ppc_opcodes, idx1, idx2, handler); return ret; } static int register_dblind_insn (opc_handler_t **ppc_opcodes, unsigned char idx1, unsigned char idx2, unsigned char idx3, opc_handler_t *handler) { if (register_ind_in_table(ppc_opcodes, idx1, idx2, NULL) < 0) { printf("*** ERROR: unable to join indirect table idx " "[%02x-%02x]\n", idx1, idx2); return -1; } if (register_ind_in_table(ind_table(ppc_opcodes[idx1]), idx2, idx3, handler) < 0) { printf("*** ERROR: unable to insert opcode " "[%02x-%02x-%02x]\n", idx1, idx2, idx3); return -1; } return 0; } static int register_insn (opc_handler_t **ppc_opcodes, opcode_t *insn) { if (insn->opc2 != 0xFF) { if (insn->opc3 != 0xFF) { if (register_dblind_insn(ppc_opcodes, insn->opc1, insn->opc2, insn->opc3, &insn->handler) < 0) return -1; } else { if (register_ind_insn(ppc_opcodes, insn->opc1, insn->opc2, &insn->handler) < 0) return -1; } } else { if (register_direct_insn(ppc_opcodes, insn->opc1, &insn->handler) < 0) return -1; } return 0; } static int test_opcode_table (opc_handler_t **table, int len) { int i, count, tmp; for (i = 0, count = 0; i < len; i++) { /* Consistency fixup */ if (table[i] == NULL) table[i] = &invalid_handler; if (table[i] != &invalid_handler) { if (is_indirect_opcode(table[i])) { tmp = test_opcode_table(ind_table(table[i]), 0x20); if (tmp == 0) { free(table[i]); table[i] = &invalid_handler; } else { count++; } } else { count++; } } } return count; } static void fix_opcode_tables (opc_handler_t **ppc_opcodes) { if (test_opcode_table(ppc_opcodes, 0x40) == 0) printf("*** WARNING: no opcode defined !\n"); } #define SPR_RIGHTS(rw, priv) (1 << ((2 * (priv)) + (rw))) #define SPR_UR SPR_RIGHTS(0, 0) #define SPR_UW SPR_RIGHTS(1, 0) #define SPR_SR SPR_RIGHTS(0, 1) #define SPR_SW SPR_RIGHTS(1, 1) #define spr_set_rights(spr, rights) \ do { \ spr_access[(spr) >> 1] |= ((rights) << (4 * ((spr) & 1))); \ } while (0) static void init_spr_rights (uint32_t pvr) { /* XER (SPR 1) */ spr_set_rights(XER, SPR_UR | SPR_UW | SPR_SR | SPR_SW); /* LR (SPR 8) */ spr_set_rights(LR, SPR_UR | SPR_UW | SPR_SR | SPR_SW); /* CTR (SPR 9) */ spr_set_rights(CTR, SPR_UR | SPR_UW | SPR_SR | SPR_SW); /* TBL (SPR 268) */ spr_set_rights(V_TBL, SPR_UR | SPR_SR); /* TBU (SPR 269) */ spr_set_rights(V_TBU, SPR_UR | SPR_SR); /* DSISR (SPR 18) */ spr_set_rights(DSISR, SPR_SR | SPR_SW); /* DAR (SPR 19) */ spr_set_rights(DAR, SPR_SR | SPR_SW); /* DEC (SPR 22) */ spr_set_rights(DECR, SPR_SR | SPR_SW); /* SDR1 (SPR 25) */ spr_set_rights(SDR1, SPR_SR | SPR_SW); /* SRR0 (SPR 26) */ spr_set_rights(SRR0, SPR_SR | SPR_SW); /* SRR1 (SPR 27) */ spr_set_rights(SRR1, SPR_SR | SPR_SW); /* SPRG0 (SPR 272) */ spr_set_rights(SPRG0, SPR_SR | SPR_SW); /* SPRG1 (SPR 273) */ spr_set_rights(SPRG1, SPR_SR | SPR_SW); /* SPRG2 (SPR 274) */ spr_set_rights(SPRG2, SPR_SR | SPR_SW); /* SPRG3 (SPR 275) */ spr_set_rights(SPRG3, SPR_SR | SPR_SW); /* ASR (SPR 280) */ spr_set_rights(ASR, SPR_SR | SPR_SW); /* EAR (SPR 282) */ spr_set_rights(EAR, SPR_SR | SPR_SW); /* TBL (SPR 284) */ spr_set_rights(O_TBL, SPR_SW); /* TBU (SPR 285) */ spr_set_rights(O_TBU, SPR_SW); /* PVR (SPR 287) */ spr_set_rights(PVR, SPR_SR); /* IBAT0U (SPR 528) */ spr_set_rights(IBAT0U, SPR_SR | SPR_SW); /* IBAT0L (SPR 529) */ spr_set_rights(IBAT0L, SPR_SR | SPR_SW); /* IBAT1U (SPR 530) */ spr_set_rights(IBAT1U, SPR_SR | SPR_SW); /* IBAT1L (SPR 531) */ spr_set_rights(IBAT1L, SPR_SR | SPR_SW); /* IBAT2U (SPR 532) */ spr_set_rights(IBAT2U, SPR_SR | SPR_SW); /* IBAT2L (SPR 533) */ spr_set_rights(IBAT2L, SPR_SR | SPR_SW); /* IBAT3U (SPR 534) */ spr_set_rights(IBAT3U, SPR_SR | SPR_SW); /* IBAT3L (SPR 535) */ spr_set_rights(IBAT3L, SPR_SR | SPR_SW); /* DBAT0U (SPR 536) */ spr_set_rights(DBAT0U, SPR_SR | SPR_SW); /* DBAT0L (SPR 537) */ spr_set_rights(DBAT0L, SPR_SR | SPR_SW); /* DBAT1U (SPR 538) */ spr_set_rights(DBAT1U, SPR_SR | SPR_SW); /* DBAT1L (SPR 539) */ spr_set_rights(DBAT1L, SPR_SR | SPR_SW); /* DBAT2U (SPR 540) */ spr_set_rights(DBAT2U, SPR_SR | SPR_SW); /* DBAT2L (SPR 541) */ spr_set_rights(DBAT2L, SPR_SR | SPR_SW); /* DBAT3U (SPR 542) */ spr_set_rights(DBAT3U, SPR_SR | SPR_SW); /* DBAT3L (SPR 543) */ spr_set_rights(DBAT3L, SPR_SR | SPR_SW); /* DABR (SPR 1013) */ spr_set_rights(DABR, SPR_SR | SPR_SW); /* FPECR (SPR 1022) */ spr_set_rights(FPECR, SPR_SR | SPR_SW); /* PIR (SPR 1023) */ spr_set_rights(PIR, SPR_SR | SPR_SW); /* Special registers for MPC740/745/750/755 (aka G3) & IBM 750 */ if ((pvr & 0xFFFF0000) == 0x00080000 || (pvr & 0xFFFF0000) == 0x70000000) { /* HID0 */ spr_set_rights(SPR_ENCODE(1008), SPR_SR | SPR_SW); /* HID1 */ spr_set_rights(SPR_ENCODE(1009), SPR_SR | SPR_SW); /* IABR */ spr_set_rights(SPR_ENCODE(1010), SPR_SR | SPR_SW); /* ICTC */ spr_set_rights(SPR_ENCODE(1019), SPR_SR | SPR_SW); /* L2CR */ spr_set_rights(SPR_ENCODE(1017), SPR_SR | SPR_SW); /* MMCR0 */ spr_set_rights(SPR_ENCODE(952), SPR_SR | SPR_SW); /* MMCR1 */ spr_set_rights(SPR_ENCODE(956), SPR_SR | SPR_SW); /* PMC1 */ spr_set_rights(SPR_ENCODE(953), SPR_SR | SPR_SW); /* PMC2 */ spr_set_rights(SPR_ENCODE(954), SPR_SR | SPR_SW); /* PMC3 */ spr_set_rights(SPR_ENCODE(957), SPR_SR | SPR_SW); /* PMC4 */ spr_set_rights(SPR_ENCODE(958), SPR_SR | SPR_SW); /* SIA */ spr_set_rights(SPR_ENCODE(955), SPR_SR | SPR_SW); /* THRM1 */ spr_set_rights(SPR_ENCODE(1020), SPR_SR | SPR_SW); /* THRM2 */ spr_set_rights(SPR_ENCODE(1021), SPR_SR | SPR_SW); /* THRM3 */ spr_set_rights(SPR_ENCODE(1022), SPR_SR | SPR_SW); /* UMMCR0 */ spr_set_rights(SPR_ENCODE(936), SPR_UR | SPR_UW); /* UMMCR1 */ spr_set_rights(SPR_ENCODE(940), SPR_UR | SPR_UW); /* UPMC1 */ spr_set_rights(SPR_ENCODE(937), SPR_UR | SPR_UW); /* UPMC2 */ spr_set_rights(SPR_ENCODE(938), SPR_UR | SPR_UW); /* UPMC3 */ spr_set_rights(SPR_ENCODE(941), SPR_UR | SPR_UW); /* UPMC4 */ spr_set_rights(SPR_ENCODE(942), SPR_UR | SPR_UW); /* USIA */ spr_set_rights(SPR_ENCODE(939), SPR_UR | SPR_UW); } /* MPC755 has special registers */ if (pvr == 0x00083100) { /* SPRG4 */ spr_set_rights(SPRG4, SPR_SR | SPR_SW); /* SPRG5 */ spr_set_rights(SPRG5, SPR_SR | SPR_SW); /* SPRG6 */ spr_set_rights(SPRG6, SPR_SR | SPR_SW); /* SPRG7 */ spr_set_rights(SPRG7, SPR_SR | SPR_SW); /* IBAT4U */ spr_set_rights(IBAT4U, SPR_SR | SPR_SW); /* IBAT4L */ spr_set_rights(IBAT4L, SPR_SR | SPR_SW); /* IBAT5U */ spr_set_rights(IBAT5U, SPR_SR | SPR_SW); /* IBAT5L */ spr_set_rights(IBAT5L, SPR_SR | SPR_SW); /* IBAT6U */ spr_set_rights(IBAT6U, SPR_SR | SPR_SW); /* IBAT6L */ spr_set_rights(IBAT6L, SPR_SR | SPR_SW); /* IBAT7U */ spr_set_rights(IBAT7U, SPR_SR | SPR_SW); /* IBAT7L */ spr_set_rights(IBAT7L, SPR_SR | SPR_SW); /* DBAT4U */ spr_set_rights(DBAT4U, SPR_SR | SPR_SW); /* DBAT4L */ spr_set_rights(DBAT4L, SPR_SR | SPR_SW); /* DBAT5U */ spr_set_rights(DBAT5U, SPR_SR | SPR_SW); /* DBAT5L */ spr_set_rights(DBAT5L, SPR_SR | SPR_SW); /* DBAT6U */ spr_set_rights(DBAT6U, SPR_SR | SPR_SW); /* DBAT6L */ spr_set_rights(DBAT6L, SPR_SR | SPR_SW); /* DBAT7U */ spr_set_rights(DBAT7U, SPR_SR | SPR_SW); /* DBAT7L */ spr_set_rights(DBAT7L, SPR_SR | SPR_SW); /* DMISS */ spr_set_rights(SPR_ENCODE(976), SPR_SR | SPR_SW); /* DCMP */ spr_set_rights(SPR_ENCODE(977), SPR_SR | SPR_SW); /* DHASH1 */ spr_set_rights(SPR_ENCODE(978), SPR_SR | SPR_SW); /* DHASH2 */ spr_set_rights(SPR_ENCODE(979), SPR_SR | SPR_SW); /* IMISS */ spr_set_rights(SPR_ENCODE(980), SPR_SR | SPR_SW); /* ICMP */ spr_set_rights(SPR_ENCODE(981), SPR_SR | SPR_SW); /* RPA */ spr_set_rights(SPR_ENCODE(982), SPR_SR | SPR_SW); /* HID2 */ spr_set_rights(SPR_ENCODE(1011), SPR_SR | SPR_SW); /* L2PM */ spr_set_rights(SPR_ENCODE(1016), SPR_SR | SPR_SW); } } /*****************************************************************************/ /* PPC "main stream" common instructions (no optional ones) */ typedef struct ppc_proc_t { int flags; void *specific; } ppc_proc_t; typedef struct ppc_def_t { unsigned long pvr; unsigned long pvr_mask; ppc_proc_t *proc; } ppc_def_t; static ppc_proc_t ppc_proc_common = { .flags = PPC_COMMON, .specific = NULL, }; static ppc_proc_t ppc_proc_G3 = { .flags = PPC_750, .specific = NULL, }; static ppc_def_t ppc_defs[] = { /* MPC740/745/750/755 (G3) */ { .pvr = 0x00080000, .pvr_mask = 0xFFFF0000, .proc = &ppc_proc_G3, }, /* IBM 750FX (G3 embedded) */ { .pvr = 0x70000000, .pvr_mask = 0xFFFF0000, .proc = &ppc_proc_G3, }, /* Fallback (generic PPC) */ { .pvr = 0x00000000, .pvr_mask = 0x00000000, .proc = &ppc_proc_common, }, }; static int create_ppc_proc (opc_handler_t **ppc_opcodes, unsigned long pvr) { opcode_t *opc; int i, flags; fill_new_table(ppc_opcodes, 0x40); for (i = 0; ; i++) { if ((ppc_defs[i].pvr & ppc_defs[i].pvr_mask) == (pvr & ppc_defs[i].pvr_mask)) { flags = ppc_defs[i].proc->flags; break; } } for (opc = &opc_start + 1; opc != &opc_end; opc++) { if ((opc->handler.type & flags) != 0) if (register_insn(ppc_opcodes, opc) < 0) { printf("*** ERROR initializing PPC instruction " "0x%02x 0x%02x 0x%02x\n", opc->opc1, opc->opc2, opc->opc3); return -1; } } fix_opcode_tables(ppc_opcodes); return 0; } /*****************************************************************************/ /* Misc PPC helpers */ FILE *stdout; void cpu_ppc_dump_state(CPUPPCState *env, FILE *f, int flags) { int i; fprintf(f, "nip=0x%08x LR=0x%08x CTR=0x%08x XER=0x%08x " "MSR=0x%08x\n", env->nip, env->lr, env->ctr, _load_xer(), _load_msr()); for (i = 0; i < 32; i++) { if ((i & 7) == 0) fprintf(f, "GPR%02d:", i); fprintf(f, " %08x", env->gpr[i]); if ((i & 7) == 7) fprintf(f, "\n"); } fprintf(f, "CR: 0x"); for (i = 0; i < 8; i++) fprintf(f, "%01x", env->crf[i]); fprintf(f, " ["); for (i = 0; i < 8; i++) { char a = '-'; if (env->crf[i] & 0x08) a = 'L'; else if (env->crf[i] & 0x04) a = 'G'; else if (env->crf[i] & 0x02) a = 'E'; fprintf(f, " %c%c", a, env->crf[i] & 0x01 ? 'O' : ' '); } fprintf(f, " ] "); fprintf(f, "TB: 0x%08x %08x\n", env->tb[1], env->tb[0]); for (i = 0; i < 16; i++) { if ((i & 3) == 0) fprintf(f, "FPR%02d:", i); fprintf(f, " %016llx", *((uint64_t *)&env->fpr[i])); if ((i & 3) == 3) fprintf(f, "\n"); } fprintf(f, "SRR0 0x%08x SRR1 0x%08x\n", env->spr[SRR0], env->spr[SRR1]); fprintf(f, "reservation 0x%08x\n", env->reserve); fflush(f); } #if !defined(CONFIG_USER_ONLY) && defined (USE_OPENFIRMWARE) int setup_machine (CPUPPCState *env, uint32_t mid); #endif CPUPPCState *cpu_ppc_init(void) { CPUPPCState *env; cpu_exec_init(); env = malloc(sizeof(CPUPPCState)); if (!env) return NULL; memset(env, 0, sizeof(CPUPPCState)); #if !defined(CONFIG_USER_ONLY) && defined (USE_OPEN_FIRMWARE) setup_machine(env, 0); #else // env->spr[PVR] = 0; /* Basic PPC */ env->spr[PVR] = 0x00080100; /* G3 CPU */ // env->spr[PVR] = 0x00083100; /* MPC755 (G3 embedded) */ // env->spr[PVR] = 0x00070100; /* IBM 750FX */ #endif env->decr = 0xFFFFFFFF; if (create_ppc_proc(ppc_opcodes, env->spr[PVR]) < 0) return NULL; init_spr_rights(env->spr[PVR]); tlb_flush(env); #if defined (DO_SINGLE_STEP) /* Single step trace mode */ msr_se = 1; #endif #if defined(CONFIG_USER_ONLY) msr_pr = 1; #endif return env; } void cpu_ppc_close(CPUPPCState *env) { /* Should also remove all opcode tables... */ free(env); } /*****************************************************************************/ void raise_exception_err (int exception_index, int error_code); int print_insn_powerpc (FILE *out, unsigned long insn, unsigned memaddr, int dialect); int gen_intermediate_code_internal (CPUState *env, TranslationBlock *tb, int search_pc) { DisasContext ctx; opc_handler_t **table, *handler; uint32_t pc_start; uint16_t *gen_opc_end; int j, lj = -1; pc_start = tb->pc; gen_opc_ptr = gen_opc_buf; gen_opc_end = gen_opc_buf + OPC_MAX_SIZE; gen_opparam_ptr = gen_opparam_buf; ctx.nip = (uint32_t *)pc_start; ctx.tb_offset = 0; ctx.decr_offset = 0; ctx.tb = tb; ctx.exception = EXCP_NONE; #if defined(CONFIG_USER_ONLY) ctx.mem_idx = 0; #else ctx.supervisor = 1 - msr_pr; ctx.mem_idx = (1 - msr_pr); #endif #if defined (DO_SINGLE_STEP) /* Single step trace mode */ msr_se = 1; #endif /* Set env in case of segfault during code fetch */ while (ctx.exception == EXCP_NONE && gen_opc_ptr < gen_opc_end) { if (search_pc) { if (loglevel > 0) fprintf(logfile, "Search PC...\n"); j = gen_opc_ptr - gen_opc_buf; if (lj < j) { lj++; while (lj < j) gen_opc_instr_start[lj++] = 0; gen_opc_pc[lj] = (uint32_t)ctx.nip; gen_opc_instr_start[lj] = 1; } } #if defined DEBUG_DISAS if (loglevel > 0) { fprintf(logfile, "----------------\n"); fprintf(logfile, "nip=%p super=%d ir=%d\n", ctx.nip, 1 - msr_pr, msr_ir); } #endif ctx.opcode = ldl_code(ctx.nip); #if defined DEBUG_DISAS if (loglevel > 0) { fprintf(logfile, "translate opcode %08x (%02x %02x %02x)\n", ctx.opcode, opc1(ctx.opcode), opc2(ctx.opcode), opc3(ctx.opcode)); } #endif ctx.nip++; ctx.tb_offset++; /* Check decrementer exception */ if (++ctx.decr_offset == env->decr + 1) ctx.exception = EXCP_DECR; table = ppc_opcodes; handler = table[opc1(ctx.opcode)]; if (is_indirect_opcode(handler)) { table = ind_table(handler); handler = table[opc2(ctx.opcode)]; if (is_indirect_opcode(handler)) { table = ind_table(handler); handler = table[opc3(ctx.opcode)]; } } /* Is opcode *REALLY* valid ? */ if ((ctx.opcode & handler->inval) != 0) { if (loglevel > 0) { if (handler->handler == &gen_invalid) { fprintf(logfile, "invalid/unsupported opcode: " "%02x -%02x - %02x (%08x) %p\n", opc1(ctx.opcode), opc2(ctx.opcode), opc3(ctx.opcode), ctx.opcode, ctx.nip - 1); } else { fprintf(logfile, "invalid bits: %08x for opcode: " "%02x -%02x - %02x (0x%08x) (%p)\n", ctx.opcode & handler->inval, opc1(ctx.opcode), opc2(ctx.opcode), opc3(ctx.opcode), ctx.opcode, ctx.nip - 1); } } else { if (handler->handler == &gen_invalid) { printf("invalid/unsupported opcode: " "%02x -%02x - %02x (%08x) %p\n", opc1(ctx.opcode), opc2(ctx.opcode), opc3(ctx.opcode), ctx.opcode, ctx.nip - 1); } else { printf("invalid bits: %08x for opcode: " "%02x -%02x - %02x (0x%08x) (%p)\n", ctx.opcode & handler->inval, opc1(ctx.opcode), opc2(ctx.opcode), opc3(ctx.opcode), ctx.opcode, ctx.nip - 1); } } (*gen_invalid)(&ctx); } else { (*(handler->handler))(&ctx); } /* Check trace mode exceptions */ if ((msr_be && ctx.exception == EXCP_BRANCH) || /* Check in single step trace mode * we need to stop except if: * - rfi, trap or syscall * - first instruction of an exception handler */ (msr_se && ((uint32_t)ctx.nip < 0x100 || (uint32_t)ctx.nip > 0xF00 || ((uint32_t)ctx.nip & 0xFC) != 0x04) && ctx.exception != EXCP_SYSCALL && ctx.exception != EXCP_RFI && ctx.exception != EXCP_TRAP)) { #if !defined(CONFIG_USER_ONLY) gen_op_queue_exception(EXCP_TRACE); #endif if (ctx.exception == EXCP_NONE) { ctx.exception = EXCP_TRACE; } } /* if too long translation, stop generation too */ if (gen_opc_ptr >= gen_opc_end || ((uint32_t)ctx.nip - pc_start) >= (TARGET_PAGE_SIZE - 32)) { if (ctx.exception == EXCP_NONE) { gen_op_b((uint32_t)ctx.nip); ctx.exception = EXCP_BRANCH; } } } /* In case of branch, this has already been done *BEFORE* the branch */ if (ctx.exception != EXCP_BRANCH && ctx.exception != EXCP_RFI) { gen_op_update_tb(ctx.tb_offset); gen_op_update_decr(ctx.decr_offset); gen_op_process_exceptions((uint32_t)ctx.nip); } #if 1 /* TO BE FIXED: T0 hasn't got a proper value, which makes tb_add_jump * do bad business and then qemu crashes ! */ gen_op_set_T0(0); #endif /* Generate the return instruction */ gen_op_exit_tb(); *gen_opc_ptr = INDEX_op_end; if (search_pc) { j = gen_opc_ptr - gen_opc_buf; lj++; while (lj <= j) gen_opc_instr_start[lj++] = 0; tb->size = 0; #if 0 if (loglevel > 0) { page_dump(logfile); } #endif } else { tb->size = (uint32_t)ctx.nip - pc_start; } #ifdef DEBUG_DISAS if (loglevel > 0) { fprintf(logfile, "---------------- excp: %04x\n", ctx.exception); cpu_ppc_dump_state(env, logfile, 0); fprintf(logfile, "IN: %s\n", lookup_symbol((void *)pc_start)); disas(logfile, (void *)pc_start, (uint32_t)ctx.nip - pc_start, 0, 0); fprintf(logfile, "\n"); fprintf(logfile, "OP:\n"); dump_ops(gen_opc_buf, gen_opparam_buf); fprintf(logfile, "\n"); } #endif return 0; } int gen_intermediate_code (CPUState *env, struct TranslationBlock *tb) { return gen_intermediate_code_internal(env, tb, 0); } int gen_intermediate_code_pc (CPUState *env, struct TranslationBlock *tb) { return gen_intermediate_code_internal(env, tb, 1); }