/* * PowerPC emulation for qemu: main translation routines. * * Copyright (c) 2003-2005 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include "cpu.h" #include "exec-all.h" #include "disas.h" //#define DO_SINGLE_STEP //#define PPC_DEBUG_DISAS #ifdef USE_DIRECT_JUMP #define TBPARAM(x) #else #define TBPARAM(x) (long)(x) #endif enum { #define DEF(s, n, copy_size) INDEX_op_ ## s, #include "opc.h" #undef DEF NB_OPS, }; static uint16_t *gen_opc_ptr; static uint32_t *gen_opparam_ptr; #include "gen-op.h" #define GEN8(func, NAME) \ static GenOpFunc *NAME ## _table [8] = { \ NAME ## 0, NAME ## 1, NAME ## 2, NAME ## 3, \ NAME ## 4, NAME ## 5, NAME ## 6, NAME ## 7, \ }; \ static inline void func(int n) \ { \ NAME ## _table[n](); \ } #define GEN16(func, NAME) \ static GenOpFunc *NAME ## _table [16] = { \ NAME ## 0, NAME ## 1, NAME ## 2, NAME ## 3, \ NAME ## 4, NAME ## 5, NAME ## 6, NAME ## 7, \ NAME ## 8, NAME ## 9, NAME ## 10, NAME ## 11, \ NAME ## 12, NAME ## 13, NAME ## 14, NAME ## 15, \ }; \ static inline void func(int n) \ { \ NAME ## _table[n](); \ } #define GEN32(func, NAME) \ static GenOpFunc *NAME ## _table [32] = { \ NAME ## 0, NAME ## 1, NAME ## 2, NAME ## 3, \ NAME ## 4, NAME ## 5, NAME ## 6, NAME ## 7, \ NAME ## 8, NAME ## 9, NAME ## 10, NAME ## 11, \ NAME ## 12, NAME ## 13, NAME ## 14, NAME ## 15, \ NAME ## 16, NAME ## 17, NAME ## 18, NAME ## 19, \ NAME ## 20, NAME ## 21, NAME ## 22, NAME ## 23, \ NAME ## 24, NAME ## 25, NAME ## 26, NAME ## 27, \ NAME ## 28, NAME ## 29, NAME ## 30, NAME ## 31, \ }; \ static inline void func(int n) \ { \ NAME ## _table[n](); \ } /* Condition register moves */ GEN8(gen_op_load_crf_T0, gen_op_load_crf_T0_crf); GEN8(gen_op_load_crf_T1, gen_op_load_crf_T1_crf); GEN8(gen_op_store_T0_crf, gen_op_store_T0_crf_crf); GEN8(gen_op_store_T1_crf, gen_op_store_T1_crf_crf); /* Floating point condition and status register moves */ GEN8(gen_op_load_fpscr_T0, gen_op_load_fpscr_T0_fpscr); GEN8(gen_op_store_T0_fpscr, gen_op_store_T0_fpscr_fpscr); GEN8(gen_op_clear_fpscr, gen_op_clear_fpscr_fpscr); static GenOpFunc1 *gen_op_store_T0_fpscri_fpscr_table[8] = { &gen_op_store_T0_fpscri_fpscr0, &gen_op_store_T0_fpscri_fpscr1, &gen_op_store_T0_fpscri_fpscr2, &gen_op_store_T0_fpscri_fpscr3, &gen_op_store_T0_fpscri_fpscr4, &gen_op_store_T0_fpscri_fpscr5, &gen_op_store_T0_fpscri_fpscr6, &gen_op_store_T0_fpscri_fpscr7, }; static inline void gen_op_store_T0_fpscri(int n, uint8_t param) { (*gen_op_store_T0_fpscri_fpscr_table[n])(param); } /* Segment register moves */ GEN16(gen_op_load_sr, gen_op_load_sr); GEN16(gen_op_store_sr, gen_op_store_sr); /* General purpose registers moves */ GEN32(gen_op_load_gpr_T0, gen_op_load_gpr_T0_gpr); GEN32(gen_op_load_gpr_T1, gen_op_load_gpr_T1_gpr); GEN32(gen_op_load_gpr_T2, gen_op_load_gpr_T2_gpr); GEN32(gen_op_store_T0_gpr, gen_op_store_T0_gpr_gpr); GEN32(gen_op_store_T1_gpr, gen_op_store_T1_gpr_gpr); GEN32(gen_op_store_T2_gpr, gen_op_store_T2_gpr_gpr); /* floating point registers moves */ GEN32(gen_op_load_fpr_FT0, gen_op_load_fpr_FT0_fpr); GEN32(gen_op_load_fpr_FT1, gen_op_load_fpr_FT1_fpr); GEN32(gen_op_load_fpr_FT2, gen_op_load_fpr_FT2_fpr); GEN32(gen_op_store_FT0_fpr, gen_op_store_FT0_fpr_fpr); GEN32(gen_op_store_FT1_fpr, gen_op_store_FT1_fpr_fpr); GEN32(gen_op_store_FT2_fpr, gen_op_store_FT2_fpr_fpr); static uint8_t spr_access[1024 / 2]; /* internal defines */ typedef struct DisasContext { struct TranslationBlock *tb; target_ulong nip; uint32_t opcode; uint32_t exception; /* Routine used to access memory */ int mem_idx; /* Translation flags */ #if !defined(CONFIG_USER_ONLY) int supervisor; #endif int fpu_enabled; ppc_spr_t *spr_cb; /* Needed to check rights for mfspr/mtspr */ } DisasContext; struct opc_handler_t { /* invalid bits */ uint32_t inval; /* instruction type */ uint32_t type; /* handler */ void (*handler)(DisasContext *ctx); }; #define RET_EXCP(ctx, excp, error) \ do { \ if ((ctx)->exception == EXCP_NONE) { \ gen_op_update_nip((ctx)->nip); \ } \ gen_op_raise_exception_err((excp), (error)); \ ctx->exception = (excp); \ } while (0) #define RET_INVAL(ctx) \ RET_EXCP((ctx), EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_INVAL) #define RET_PRIVOPC(ctx) \ RET_EXCP((ctx), EXCP_PROGRAM, EXCP_INVAL | EXCP_PRIV_OPC) #define RET_PRIVREG(ctx) \ RET_EXCP((ctx), EXCP_PROGRAM, EXCP_INVAL | EXCP_PRIV_REG) #define RET_MTMSR(ctx) \ RET_EXCP((ctx), EXCP_MTMSR, 0) static inline void RET_STOP (DisasContext *ctx) { RET_EXCP(ctx, EXCP_MTMSR, 0); } static inline void RET_CHG_FLOW (DisasContext *ctx) { gen_op_raise_exception_err(EXCP_MTMSR, 0); ctx->exception = EXCP_MTMSR; } #define GEN_HANDLER(name, opc1, opc2, opc3, inval, type) \ static void gen_##name (DisasContext *ctx); \ GEN_OPCODE(name, opc1, opc2, opc3, inval, type); \ static void gen_##name (DisasContext *ctx) typedef struct opcode_t { unsigned char opc1, opc2, opc3; #if HOST_LONG_BITS == 64 /* Explicitely align to 64 bits */ unsigned char pad[5]; #else unsigned char pad[1]; #endif opc_handler_t handler; const unsigned char *oname; } opcode_t; /*** Instruction decoding ***/ #define EXTRACT_HELPER(name, shift, nb) \ static inline uint32_t name (uint32_t opcode) \ { \ return (opcode >> (shift)) & ((1 << (nb)) - 1); \ } #define EXTRACT_SHELPER(name, shift, nb) \ static inline int32_t name (uint32_t opcode) \ { \ return (int16_t)((opcode >> (shift)) & ((1 << (nb)) - 1)); \ } /* Opcode part 1 */ EXTRACT_HELPER(opc1, 26, 6); /* Opcode part 2 */ EXTRACT_HELPER(opc2, 1, 5); /* Opcode part 3 */ EXTRACT_HELPER(opc3, 6, 5); /* Update Cr0 flags */ EXTRACT_HELPER(Rc, 0, 1); /* Destination */ EXTRACT_HELPER(rD, 21, 5); /* Source */ EXTRACT_HELPER(rS, 21, 5); /* First operand */ EXTRACT_HELPER(rA, 16, 5); /* Second operand */ EXTRACT_HELPER(rB, 11, 5); /* Third operand */ EXTRACT_HELPER(rC, 6, 5); /*** Get CRn ***/ EXTRACT_HELPER(crfD, 23, 3); EXTRACT_HELPER(crfS, 18, 3); EXTRACT_HELPER(crbD, 21, 5); EXTRACT_HELPER(crbA, 16, 5); EXTRACT_HELPER(crbB, 11, 5); /* SPR / TBL */ EXTRACT_HELPER(_SPR, 11, 10); static inline uint32_t SPR (uint32_t opcode) { uint32_t sprn = _SPR(opcode); return ((sprn >> 5) & 0x1F) | ((sprn & 0x1F) << 5); } /*** Get constants ***/ EXTRACT_HELPER(IMM, 12, 8); /* 16 bits signed immediate value */ EXTRACT_SHELPER(SIMM, 0, 16); /* 16 bits unsigned immediate value */ EXTRACT_HELPER(UIMM, 0, 16); /* Bit count */ EXTRACT_HELPER(NB, 11, 5); /* Shift count */ EXTRACT_HELPER(SH, 11, 5); /* Mask start */ EXTRACT_HELPER(MB, 6, 5); /* Mask end */ EXTRACT_HELPER(ME, 1, 5); /* Trap operand */ EXTRACT_HELPER(TO, 21, 5); EXTRACT_HELPER(CRM, 12, 8); EXTRACT_HELPER(FM, 17, 8); EXTRACT_HELPER(SR, 16, 4); EXTRACT_HELPER(FPIMM, 20, 4); /*** Jump target decoding ***/ /* Displacement */ EXTRACT_SHELPER(d, 0, 16); /* Immediate address */ static inline uint32_t LI (uint32_t opcode) { return (opcode >> 0) & 0x03FFFFFC; } static inline uint32_t BD (uint32_t opcode) { return (opcode >> 0) & 0xFFFC; } EXTRACT_HELPER(BO, 21, 5); EXTRACT_HELPER(BI, 16, 5); /* Absolute/relative address */ EXTRACT_HELPER(AA, 1, 1); /* Link */ EXTRACT_HELPER(LK, 0, 1); /* Create a mask between and bits */ static inline uint32_t MASK (uint32_t start, uint32_t end) { uint32_t ret; ret = (((uint32_t)(-1)) >> (start)) ^ (((uint32_t)(-1) >> (end)) >> 1); if (start > end) return ~ret; return ret; } #if HOST_LONG_BITS == 64 #define OPC_ALIGN 8 #else #define OPC_ALIGN 4 #endif #if defined(__APPLE__) #define OPCODES_SECTION \ __attribute__ ((section("__TEXT,__opcodes"), unused, aligned (OPC_ALIGN) )) #else #define OPCODES_SECTION \ __attribute__ ((section(".opcodes"), unused, aligned (OPC_ALIGN) )) #endif #define GEN_OPCODE(name, op1, op2, op3, invl, _typ) \ OPCODES_SECTION opcode_t opc_##name = { \ .opc1 = op1, \ .opc2 = op2, \ .opc3 = op3, \ .pad = { 0, }, \ .handler = { \ .inval = invl, \ .type = _typ, \ .handler = &gen_##name, \ }, \ .oname = stringify(name), \ } #define GEN_OPCODE_MARK(name) \ OPCODES_SECTION opcode_t opc_##name = { \ .opc1 = 0xFF, \ .opc2 = 0xFF, \ .opc3 = 0xFF, \ .pad = { 0, }, \ .handler = { \ .inval = 0x00000000, \ .type = 0x00, \ .handler = NULL, \ }, \ .oname = stringify(name), \ } /* Start opcode list */ GEN_OPCODE_MARK(start); /* Invalid instruction */ GEN_HANDLER(invalid, 0x00, 0x00, 0x00, 0xFFFFFFFF, PPC_NONE) { RET_INVAL(ctx); } static opc_handler_t invalid_handler = { .inval = 0xFFFFFFFF, .type = PPC_NONE, .handler = gen_invalid, }; /*** Integer arithmetic ***/ #define __GEN_INT_ARITH2(name, opc1, opc2, opc3, inval) \ GEN_HANDLER(name, opc1, opc2, opc3, inval, PPC_INTEGER) \ { \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ gen_op_load_gpr_T1(rB(ctx->opcode)); \ gen_op_##name(); \ if (Rc(ctx->opcode) != 0) \ gen_op_set_Rc0(); \ gen_op_store_T0_gpr(rD(ctx->opcode)); \ } #define __GEN_INT_ARITH2_O(name, opc1, opc2, opc3, inval) \ GEN_HANDLER(name, opc1, opc2, opc3, inval, PPC_INTEGER) \ { \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ gen_op_load_gpr_T1(rB(ctx->opcode)); \ gen_op_##name(); \ if (Rc(ctx->opcode) != 0) \ gen_op_set_Rc0(); \ gen_op_store_T0_gpr(rD(ctx->opcode)); \ } #define __GEN_INT_ARITH1(name, opc1, opc2, opc3) \ GEN_HANDLER(name, opc1, opc2, opc3, 0x0000F800, PPC_INTEGER) \ { \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ gen_op_##name(); \ if (Rc(ctx->opcode) != 0) \ gen_op_set_Rc0(); \ gen_op_store_T0_gpr(rD(ctx->opcode)); \ } #define __GEN_INT_ARITH1_O(name, opc1, opc2, opc3) \ GEN_HANDLER(name, opc1, opc2, opc3, 0x0000F800, PPC_INTEGER) \ { \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ gen_op_##name(); \ if (Rc(ctx->opcode) != 0) \ gen_op_set_Rc0(); \ gen_op_store_T0_gpr(rD(ctx->opcode)); \ } /* Two operands arithmetic functions */ #define GEN_INT_ARITH2(name, opc1, opc2, opc3) \ __GEN_INT_ARITH2(name, opc1, opc2, opc3, 0x00000000) \ __GEN_INT_ARITH2_O(name##o, opc1, opc2, opc3 | 0x10, 0x00000000) /* Two operands arithmetic functions with no overflow allowed */ #define GEN_INT_ARITHN(name, opc1, opc2, opc3) \ __GEN_INT_ARITH2(name, opc1, opc2, opc3, 0x00000400) /* One operand arithmetic functions */ #define GEN_INT_ARITH1(name, opc1, opc2, opc3) \ __GEN_INT_ARITH1(name, opc1, opc2, opc3) \ __GEN_INT_ARITH1_O(name##o, opc1, opc2, opc3 | 0x10) /* add add. addo addo. */ GEN_INT_ARITH2 (add, 0x1F, 0x0A, 0x08); /* addc addc. addco addco. */ GEN_INT_ARITH2 (addc, 0x1F, 0x0A, 0x00); /* adde adde. addeo addeo. */ GEN_INT_ARITH2 (adde, 0x1F, 0x0A, 0x04); /* addme addme. addmeo addmeo. */ GEN_INT_ARITH1 (addme, 0x1F, 0x0A, 0x07); /* addze addze. addzeo addzeo. */ GEN_INT_ARITH1 (addze, 0x1F, 0x0A, 0x06); /* divw divw. divwo divwo. */ GEN_INT_ARITH2 (divw, 0x1F, 0x0B, 0x0F); /* divwu divwu. divwuo divwuo. */ GEN_INT_ARITH2 (divwu, 0x1F, 0x0B, 0x0E); /* mulhw mulhw. */ GEN_INT_ARITHN (mulhw, 0x1F, 0x0B, 0x02); /* mulhwu mulhwu. */ GEN_INT_ARITHN (mulhwu, 0x1F, 0x0B, 0x00); /* mullw mullw. mullwo mullwo. */ GEN_INT_ARITH2 (mullw, 0x1F, 0x0B, 0x07); /* neg neg. nego nego. */ GEN_INT_ARITH1 (neg, 0x1F, 0x08, 0x03); /* subf subf. subfo subfo. */ GEN_INT_ARITH2 (subf, 0x1F, 0x08, 0x01); /* subfc subfc. subfco subfco. */ GEN_INT_ARITH2 (subfc, 0x1F, 0x08, 0x00); /* subfe subfe. subfeo subfeo. */ GEN_INT_ARITH2 (subfe, 0x1F, 0x08, 0x04); /* subfme subfme. subfmeo subfmeo. */ GEN_INT_ARITH1 (subfme, 0x1F, 0x08, 0x07); /* subfze subfze. subfzeo subfzeo. */ GEN_INT_ARITH1 (subfze, 0x1F, 0x08, 0x06); /* addi */ GEN_HANDLER(addi, 0x0E, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { int32_t simm = SIMM(ctx->opcode); if (rA(ctx->opcode) == 0) { gen_op_set_T0(simm); } else { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_addi(simm); } gen_op_store_T0_gpr(rD(ctx->opcode)); } /* addic */ GEN_HANDLER(addic, 0x0C, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_addic(SIMM(ctx->opcode)); gen_op_store_T0_gpr(rD(ctx->opcode)); } /* addic. */ GEN_HANDLER(addic_, 0x0D, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_addic(SIMM(ctx->opcode)); gen_op_set_Rc0(); gen_op_store_T0_gpr(rD(ctx->opcode)); } /* addis */ GEN_HANDLER(addis, 0x0F, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { int32_t simm = SIMM(ctx->opcode); if (rA(ctx->opcode) == 0) { gen_op_set_T0(simm << 16); } else { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_addi(simm << 16); } gen_op_store_T0_gpr(rD(ctx->opcode)); } /* mulli */ GEN_HANDLER(mulli, 0x07, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_mulli(SIMM(ctx->opcode)); gen_op_store_T0_gpr(rD(ctx->opcode)); } /* subfic */ GEN_HANDLER(subfic, 0x08, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_subfic(SIMM(ctx->opcode)); gen_op_store_T0_gpr(rD(ctx->opcode)); } /*** Integer comparison ***/ #define GEN_CMP(name, opc) \ GEN_HANDLER(name, 0x1F, 0x00, opc, 0x00400000, PPC_INTEGER) \ { \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ gen_op_load_gpr_T1(rB(ctx->opcode)); \ gen_op_##name(); \ gen_op_store_T0_crf(crfD(ctx->opcode)); \ } /* cmp */ GEN_CMP(cmp, 0x00); /* cmpi */ GEN_HANDLER(cmpi, 0x0B, 0xFF, 0xFF, 0x00400000, PPC_INTEGER) { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_cmpi(SIMM(ctx->opcode)); gen_op_store_T0_crf(crfD(ctx->opcode)); } /* cmpl */ GEN_CMP(cmpl, 0x01); /* cmpli */ GEN_HANDLER(cmpli, 0x0A, 0xFF, 0xFF, 0x00400000, PPC_INTEGER) { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_cmpli(UIMM(ctx->opcode)); gen_op_store_T0_crf(crfD(ctx->opcode)); } /*** Integer logical ***/ #define __GEN_LOGICAL2(name, opc2, opc3) \ GEN_HANDLER(name, 0x1F, opc2, opc3, 0x00000000, PPC_INTEGER) \ { \ gen_op_load_gpr_T0(rS(ctx->opcode)); \ gen_op_load_gpr_T1(rB(ctx->opcode)); \ gen_op_##name(); \ if (Rc(ctx->opcode) != 0) \ gen_op_set_Rc0(); \ gen_op_store_T0_gpr(rA(ctx->opcode)); \ } #define GEN_LOGICAL2(name, opc) \ __GEN_LOGICAL2(name, 0x1C, opc) #define GEN_LOGICAL1(name, opc) \ GEN_HANDLER(name, 0x1F, 0x1A, opc, 0x00000000, PPC_INTEGER) \ { \ gen_op_load_gpr_T0(rS(ctx->opcode)); \ gen_op_##name(); \ if (Rc(ctx->opcode) != 0) \ gen_op_set_Rc0(); \ gen_op_store_T0_gpr(rA(ctx->opcode)); \ } /* and & and. */ GEN_LOGICAL2(and, 0x00); /* andc & andc. */ GEN_LOGICAL2(andc, 0x01); /* andi. */ GEN_HANDLER(andi_, 0x1C, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { gen_op_load_gpr_T0(rS(ctx->opcode)); gen_op_andi_(UIMM(ctx->opcode)); gen_op_set_Rc0(); gen_op_store_T0_gpr(rA(ctx->opcode)); } /* andis. */ GEN_HANDLER(andis_, 0x1D, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { gen_op_load_gpr_T0(rS(ctx->opcode)); gen_op_andi_(UIMM(ctx->opcode) << 16); gen_op_set_Rc0(); gen_op_store_T0_gpr(rA(ctx->opcode)); } /* cntlzw */ GEN_LOGICAL1(cntlzw, 0x00); /* eqv & eqv. */ GEN_LOGICAL2(eqv, 0x08); /* extsb & extsb. */ GEN_LOGICAL1(extsb, 0x1D); /* extsh & extsh. */ GEN_LOGICAL1(extsh, 0x1C); /* nand & nand. */ GEN_LOGICAL2(nand, 0x0E); /* nor & nor. */ GEN_LOGICAL2(nor, 0x03); /* or & or. */ GEN_HANDLER(or, 0x1F, 0x1C, 0x0D, 0x00000000, PPC_INTEGER) { gen_op_load_gpr_T0(rS(ctx->opcode)); /* Optimisation for mr case */ if (rS(ctx->opcode) != rB(ctx->opcode)) { gen_op_load_gpr_T1(rB(ctx->opcode)); gen_op_or(); } if (Rc(ctx->opcode) != 0) gen_op_set_Rc0(); gen_op_store_T0_gpr(rA(ctx->opcode)); } /* orc & orc. */ GEN_LOGICAL2(orc, 0x0C); /* xor & xor. */ GEN_HANDLER(xor, 0x1F, 0x1C, 0x09, 0x00000000, PPC_INTEGER) { gen_op_load_gpr_T0(rS(ctx->opcode)); /* Optimisation for "set to zero" case */ if (rS(ctx->opcode) != rB(ctx->opcode)) { gen_op_load_gpr_T1(rB(ctx->opcode)); gen_op_xor(); } else { gen_op_set_T0(0); } if (Rc(ctx->opcode) != 0) gen_op_set_Rc0(); gen_op_store_T0_gpr(rA(ctx->opcode)); } /* ori */ GEN_HANDLER(ori, 0x18, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { uint32_t uimm = UIMM(ctx->opcode); if (rS(ctx->opcode) == rA(ctx->opcode) && uimm == 0) { /* NOP */ return; } gen_op_load_gpr_T0(rS(ctx->opcode)); if (uimm != 0) gen_op_ori(uimm); gen_op_store_T0_gpr(rA(ctx->opcode)); } /* oris */ GEN_HANDLER(oris, 0x19, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { uint32_t uimm = UIMM(ctx->opcode); if (rS(ctx->opcode) == rA(ctx->opcode) && uimm == 0) { /* NOP */ return; } gen_op_load_gpr_T0(rS(ctx->opcode)); if (uimm != 0) gen_op_ori(uimm << 16); gen_op_store_T0_gpr(rA(ctx->opcode)); } /* xori */ GEN_HANDLER(xori, 0x1A, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { uint32_t uimm = UIMM(ctx->opcode); if (rS(ctx->opcode) == rA(ctx->opcode) && uimm == 0) { /* NOP */ return; } gen_op_load_gpr_T0(rS(ctx->opcode)); if (uimm != 0) gen_op_xori(uimm); gen_op_store_T0_gpr(rA(ctx->opcode)); } /* xoris */ GEN_HANDLER(xoris, 0x1B, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { uint32_t uimm = UIMM(ctx->opcode); if (rS(ctx->opcode) == rA(ctx->opcode) && uimm == 0) { /* NOP */ return; } gen_op_load_gpr_T0(rS(ctx->opcode)); if (uimm != 0) gen_op_xori(uimm << 16); gen_op_store_T0_gpr(rA(ctx->opcode)); } /*** Integer rotate ***/ /* rlwimi & rlwimi. */ GEN_HANDLER(rlwimi, 0x14, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { uint32_t mb, me; mb = MB(ctx->opcode); me = ME(ctx->opcode); gen_op_load_gpr_T0(rS(ctx->opcode)); gen_op_load_gpr_T1(rA(ctx->opcode)); gen_op_rlwimi(SH(ctx->opcode), MASK(mb, me), ~MASK(mb, me)); if (Rc(ctx->opcode) != 0) gen_op_set_Rc0(); gen_op_store_T0_gpr(rA(ctx->opcode)); } /* rlwinm & rlwinm. */ GEN_HANDLER(rlwinm, 0x15, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { uint32_t mb, me, sh; sh = SH(ctx->opcode); mb = MB(ctx->opcode); me = ME(ctx->opcode); gen_op_load_gpr_T0(rS(ctx->opcode)); #if 1 // TRY if (sh == 0) { gen_op_andi_(MASK(mb, me)); goto store; } #endif if (mb == 0) { if (me == 31) { gen_op_rotlwi(sh); goto store; #if 0 } else if (me == (31 - sh)) { gen_op_slwi(sh); goto store; #endif } } else if (me == 31) { #if 0 if (sh == (32 - mb)) { gen_op_srwi(mb); goto store; } #endif } gen_op_rlwinm(sh, MASK(mb, me)); store: if (Rc(ctx->opcode) != 0) gen_op_set_Rc0(); gen_op_store_T0_gpr(rA(ctx->opcode)); } /* rlwnm & rlwnm. */ GEN_HANDLER(rlwnm, 0x17, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { uint32_t mb, me; mb = MB(ctx->opcode); me = ME(ctx->opcode); gen_op_load_gpr_T0(rS(ctx->opcode)); gen_op_load_gpr_T1(rB(ctx->opcode)); if (mb == 0 && me == 31) { gen_op_rotl(); } else { gen_op_rlwnm(MASK(mb, me)); } if (Rc(ctx->opcode) != 0) gen_op_set_Rc0(); gen_op_store_T0_gpr(rA(ctx->opcode)); } /*** Integer shift ***/ /* slw & slw. */ __GEN_LOGICAL2(slw, 0x18, 0x00); /* sraw & sraw. */ __GEN_LOGICAL2(sraw, 0x18, 0x18); /* srawi & srawi. */ GEN_HANDLER(srawi, 0x1F, 0x18, 0x19, 0x00000000, PPC_INTEGER) { gen_op_load_gpr_T0(rS(ctx->opcode)); if (SH(ctx->opcode) != 0) gen_op_srawi(SH(ctx->opcode), MASK(32 - SH(ctx->opcode), 31)); if (Rc(ctx->opcode) != 0) gen_op_set_Rc0(); gen_op_store_T0_gpr(rA(ctx->opcode)); } /* srw & srw. */ __GEN_LOGICAL2(srw, 0x18, 0x10); /*** Floating-Point arithmetic ***/ #define _GEN_FLOAT_ACB(name, op, op1, op2, isfloat) \ GEN_HANDLER(f##name, op1, op2, 0xFF, 0x00000000, PPC_FLOAT) \ { \ if (!ctx->fpu_enabled) { \ RET_EXCP(ctx, EXCP_NO_FP, 0); \ return; \ } \ gen_op_reset_scrfx(); \ gen_op_load_fpr_FT0(rA(ctx->opcode)); \ gen_op_load_fpr_FT1(rC(ctx->opcode)); \ gen_op_load_fpr_FT2(rB(ctx->opcode)); \ gen_op_f##op(); \ if (isfloat) { \ gen_op_frsp(); \ } \ gen_op_store_FT0_fpr(rD(ctx->opcode)); \ if (Rc(ctx->opcode)) \ gen_op_set_Rc1(); \ } #define GEN_FLOAT_ACB(name, op2) \ _GEN_FLOAT_ACB(name, name, 0x3F, op2, 0); \ _GEN_FLOAT_ACB(name##s, name, 0x3B, op2, 1); #define _GEN_FLOAT_AB(name, op, op1, op2, inval, isfloat) \ GEN_HANDLER(f##name, op1, op2, 0xFF, inval, PPC_FLOAT) \ { \ if (!ctx->fpu_enabled) { \ RET_EXCP(ctx, EXCP_NO_FP, 0); \ return; \ } \ gen_op_reset_scrfx(); \ gen_op_load_fpr_FT0(rA(ctx->opcode)); \ gen_op_load_fpr_FT1(rB(ctx->opcode)); \ gen_op_f##op(); \ if (isfloat) { \ gen_op_frsp(); \ } \ gen_op_store_FT0_fpr(rD(ctx->opcode)); \ if (Rc(ctx->opcode)) \ gen_op_set_Rc1(); \ } #define GEN_FLOAT_AB(name, op2, inval) \ _GEN_FLOAT_AB(name, name, 0x3F, op2, inval, 0); \ _GEN_FLOAT_AB(name##s, name, 0x3B, op2, inval, 1); #define _GEN_FLOAT_AC(name, op, op1, op2, inval, isfloat) \ GEN_HANDLER(f##name, op1, op2, 0xFF, inval, PPC_FLOAT) \ { \ if (!ctx->fpu_enabled) { \ RET_EXCP(ctx, EXCP_NO_FP, 0); \ return; \ } \ gen_op_reset_scrfx(); \ gen_op_load_fpr_FT0(rA(ctx->opcode)); \ gen_op_load_fpr_FT1(rC(ctx->opcode)); \ gen_op_f##op(); \ if (isfloat) { \ gen_op_frsp(); \ } \ gen_op_store_FT0_fpr(rD(ctx->opcode)); \ if (Rc(ctx->opcode)) \ gen_op_set_Rc1(); \ } #define GEN_FLOAT_AC(name, op2, inval) \ _GEN_FLOAT_AC(name, name, 0x3F, op2, inval, 0); \ _GEN_FLOAT_AC(name##s, name, 0x3B, op2, inval, 1); #define GEN_FLOAT_B(name, op2, op3) \ GEN_HANDLER(f##name, 0x3F, op2, op3, 0x001F0000, PPC_FLOAT) \ { \ if (!ctx->fpu_enabled) { \ RET_EXCP(ctx, EXCP_NO_FP, 0); \ return; \ } \ gen_op_reset_scrfx(); \ gen_op_load_fpr_FT0(rB(ctx->opcode)); \ gen_op_f##name(); \ gen_op_store_FT0_fpr(rD(ctx->opcode)); \ if (Rc(ctx->opcode)) \ gen_op_set_Rc1(); \ } #define GEN_FLOAT_BS(name, op1, op2) \ GEN_HANDLER(f##name, op1, op2, 0xFF, 0x001F07C0, PPC_FLOAT) \ { \ if (!ctx->fpu_enabled) { \ RET_EXCP(ctx, EXCP_NO_FP, 0); \ return; \ } \ gen_op_reset_scrfx(); \ gen_op_load_fpr_FT0(rB(ctx->opcode)); \ gen_op_f##name(); \ gen_op_store_FT0_fpr(rD(ctx->opcode)); \ if (Rc(ctx->opcode)) \ gen_op_set_Rc1(); \ } /* fadd - fadds */ GEN_FLOAT_AB(add, 0x15, 0x000007C0); /* fdiv - fdivs */ GEN_FLOAT_AB(div, 0x12, 0x000007C0); /* fmul - fmuls */ GEN_FLOAT_AC(mul, 0x19, 0x0000F800); /* fres */ GEN_FLOAT_BS(res, 0x3B, 0x18); /* frsqrte */ GEN_FLOAT_BS(rsqrte, 0x3F, 0x1A); /* fsel */ _GEN_FLOAT_ACB(sel, sel, 0x3F, 0x17, 0); /* fsub - fsubs */ GEN_FLOAT_AB(sub, 0x14, 0x000007C0); /* Optional: */ /* fsqrt */ GEN_HANDLER(fsqrt, 0x3F, 0x16, 0xFF, 0x001F07C0, PPC_FLOAT_OPT) { if (!ctx->fpu_enabled) { RET_EXCP(ctx, EXCP_NO_FP, 0); return; } gen_op_reset_scrfx(); gen_op_load_fpr_FT0(rB(ctx->opcode)); gen_op_fsqrt(); gen_op_store_FT0_fpr(rD(ctx->opcode)); if (Rc(ctx->opcode)) gen_op_set_Rc1(); } GEN_HANDLER(fsqrts, 0x3B, 0x16, 0xFF, 0x001F07C0, PPC_FLOAT_OPT) { if (!ctx->fpu_enabled) { RET_EXCP(ctx, EXCP_NO_FP, 0); return; } gen_op_reset_scrfx(); gen_op_load_fpr_FT0(rB(ctx->opcode)); gen_op_fsqrt(); gen_op_frsp(); gen_op_store_FT0_fpr(rD(ctx->opcode)); if (Rc(ctx->opcode)) gen_op_set_Rc1(); } /*** Floating-Point multiply-and-add ***/ /* fmadd - fmadds */ GEN_FLOAT_ACB(madd, 0x1D); /* fmsub - fmsubs */ GEN_FLOAT_ACB(msub, 0x1C); /* fnmadd - fnmadds */ GEN_FLOAT_ACB(nmadd, 0x1F); /* fnmsub - fnmsubs */ GEN_FLOAT_ACB(nmsub, 0x1E); /*** Floating-Point round & convert ***/ /* fctiw */ GEN_FLOAT_B(ctiw, 0x0E, 0x00); /* fctiwz */ GEN_FLOAT_B(ctiwz, 0x0F, 0x00); /* frsp */ GEN_FLOAT_B(rsp, 0x0C, 0x00); /*** Floating-Point compare ***/ /* fcmpo */ GEN_HANDLER(fcmpo, 0x3F, 0x00, 0x00, 0x00600001, PPC_FLOAT) { if (!ctx->fpu_enabled) { RET_EXCP(ctx, EXCP_NO_FP, 0); return; } gen_op_reset_scrfx(); gen_op_load_fpr_FT0(rA(ctx->opcode)); gen_op_load_fpr_FT1(rB(ctx->opcode)); gen_op_fcmpo(); gen_op_store_T0_crf(crfD(ctx->opcode)); } /* fcmpu */ GEN_HANDLER(fcmpu, 0x3F, 0x00, 0x01, 0x00600001, PPC_FLOAT) { if (!ctx->fpu_enabled) { RET_EXCP(ctx, EXCP_NO_FP, 0); return; } gen_op_reset_scrfx(); gen_op_load_fpr_FT0(rA(ctx->opcode)); gen_op_load_fpr_FT1(rB(ctx->opcode)); gen_op_fcmpu(); gen_op_store_T0_crf(crfD(ctx->opcode)); } /*** Floating-point move ***/ /* fabs */ GEN_FLOAT_B(abs, 0x08, 0x08); /* fmr - fmr. */ GEN_HANDLER(fmr, 0x3F, 0x08, 0x02, 0x001F0000, PPC_FLOAT) { if (!ctx->fpu_enabled) { RET_EXCP(ctx, EXCP_NO_FP, 0); return; } gen_op_reset_scrfx(); gen_op_load_fpr_FT0(rB(ctx->opcode)); gen_op_store_FT0_fpr(rD(ctx->opcode)); if (Rc(ctx->opcode)) gen_op_set_Rc1(); } /* fnabs */ GEN_FLOAT_B(nabs, 0x08, 0x04); /* fneg */ GEN_FLOAT_B(neg, 0x08, 0x01); /*** Floating-Point status & ctrl register ***/ /* mcrfs */ GEN_HANDLER(mcrfs, 0x3F, 0x00, 0x02, 0x0063F801, PPC_FLOAT) { if (!ctx->fpu_enabled) { RET_EXCP(ctx, EXCP_NO_FP, 0); return; } gen_op_load_fpscr_T0(crfS(ctx->opcode)); gen_op_store_T0_crf(crfD(ctx->opcode)); gen_op_clear_fpscr(crfS(ctx->opcode)); } /* mffs */ GEN_HANDLER(mffs, 0x3F, 0x07, 0x12, 0x001FF800, PPC_FLOAT) { if (!ctx->fpu_enabled) { RET_EXCP(ctx, EXCP_NO_FP, 0); return; } gen_op_load_fpscr(); gen_op_store_FT0_fpr(rD(ctx->opcode)); if (Rc(ctx->opcode)) gen_op_set_Rc1(); } /* mtfsb0 */ GEN_HANDLER(mtfsb0, 0x3F, 0x06, 0x02, 0x001FF800, PPC_FLOAT) { uint8_t crb; if (!ctx->fpu_enabled) { RET_EXCP(ctx, EXCP_NO_FP, 0); return; } crb = crbD(ctx->opcode) >> 2; gen_op_load_fpscr_T0(crb); gen_op_andi_(~(1 << (crbD(ctx->opcode) & 0x03))); gen_op_store_T0_fpscr(crb); if (Rc(ctx->opcode)) gen_op_set_Rc1(); } /* mtfsb1 */ GEN_HANDLER(mtfsb1, 0x3F, 0x06, 0x01, 0x001FF800, PPC_FLOAT) { uint8_t crb; if (!ctx->fpu_enabled) { RET_EXCP(ctx, EXCP_NO_FP, 0); return; } crb = crbD(ctx->opcode) >> 2; gen_op_load_fpscr_T0(crb); gen_op_ori(1 << (crbD(ctx->opcode) & 0x03)); gen_op_store_T0_fpscr(crb); if (Rc(ctx->opcode)) gen_op_set_Rc1(); } /* mtfsf */ GEN_HANDLER(mtfsf, 0x3F, 0x07, 0x16, 0x02010000, PPC_FLOAT) { if (!ctx->fpu_enabled) { RET_EXCP(ctx, EXCP_NO_FP, 0); return; } gen_op_load_fpr_FT0(rB(ctx->opcode)); gen_op_store_fpscr(FM(ctx->opcode)); if (Rc(ctx->opcode)) gen_op_set_Rc1(); } /* mtfsfi */ GEN_HANDLER(mtfsfi, 0x3F, 0x06, 0x04, 0x006f0800, PPC_FLOAT) { if (!ctx->fpu_enabled) { RET_EXCP(ctx, EXCP_NO_FP, 0); return; } gen_op_store_T0_fpscri(crbD(ctx->opcode) >> 2, FPIMM(ctx->opcode)); if (Rc(ctx->opcode)) gen_op_set_Rc1(); } /*** Integer load ***/ #define op_ldst(name) (*gen_op_##name[ctx->mem_idx])() #if defined(CONFIG_USER_ONLY) #define OP_LD_TABLE(width) \ static GenOpFunc *gen_op_l##width[] = { \ &gen_op_l##width##_raw, \ &gen_op_l##width##_le_raw, \ }; #define OP_ST_TABLE(width) \ static GenOpFunc *gen_op_st##width[] = { \ &gen_op_st##width##_raw, \ &gen_op_st##width##_le_raw, \ }; /* Byte access routine are endian safe */ #define gen_op_stb_le_raw gen_op_stb_raw #define gen_op_lbz_le_raw gen_op_lbz_raw #else #define OP_LD_TABLE(width) \ static GenOpFunc *gen_op_l##width[] = { \ &gen_op_l##width##_user, \ &gen_op_l##width##_le_user, \ &gen_op_l##width##_kernel, \ &gen_op_l##width##_le_kernel, \ }; #define OP_ST_TABLE(width) \ static GenOpFunc *gen_op_st##width[] = { \ &gen_op_st##width##_user, \ &gen_op_st##width##_le_user, \ &gen_op_st##width##_kernel, \ &gen_op_st##width##_le_kernel, \ }; /* Byte access routine are endian safe */ #define gen_op_stb_le_user gen_op_stb_user #define gen_op_lbz_le_user gen_op_lbz_user #define gen_op_stb_le_kernel gen_op_stb_kernel #define gen_op_lbz_le_kernel gen_op_lbz_kernel #endif #define GEN_LD(width, opc) \ GEN_HANDLER(l##width, opc, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) \ { \ uint32_t simm = SIMM(ctx->opcode); \ if (rA(ctx->opcode) == 0) { \ gen_op_set_T0(simm); \ } else { \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ if (simm != 0) \ gen_op_addi(simm); \ } \ op_ldst(l##width); \ gen_op_store_T1_gpr(rD(ctx->opcode)); \ } #define GEN_LDU(width, opc) \ GEN_HANDLER(l##width##u, opc, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) \ { \ uint32_t simm = SIMM(ctx->opcode); \ if (rA(ctx->opcode) == 0 || \ rA(ctx->opcode) == rD(ctx->opcode)) { \ RET_INVAL(ctx); \ return; \ } \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ if (simm != 0) \ gen_op_addi(simm); \ op_ldst(l##width); \ gen_op_store_T1_gpr(rD(ctx->opcode)); \ gen_op_store_T0_gpr(rA(ctx->opcode)); \ } #define GEN_LDUX(width, opc) \ GEN_HANDLER(l##width##ux, 0x1F, 0x17, opc, 0x00000001, PPC_INTEGER) \ { \ if (rA(ctx->opcode) == 0 || \ rA(ctx->opcode) == rD(ctx->opcode)) { \ RET_INVAL(ctx); \ return; \ } \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ gen_op_load_gpr_T1(rB(ctx->opcode)); \ gen_op_add(); \ op_ldst(l##width); \ gen_op_store_T1_gpr(rD(ctx->opcode)); \ gen_op_store_T0_gpr(rA(ctx->opcode)); \ } #define GEN_LDX(width, opc2, opc3) \ GEN_HANDLER(l##width##x, 0x1F, opc2, opc3, 0x00000001, PPC_INTEGER) \ { \ if (rA(ctx->opcode) == 0) { \ gen_op_load_gpr_T0(rB(ctx->opcode)); \ } else { \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ gen_op_load_gpr_T1(rB(ctx->opcode)); \ gen_op_add(); \ } \ op_ldst(l##width); \ gen_op_store_T1_gpr(rD(ctx->opcode)); \ } #define GEN_LDS(width, op) \ OP_LD_TABLE(width); \ GEN_LD(width, op | 0x20); \ GEN_LDU(width, op | 0x21); \ GEN_LDUX(width, op | 0x01); \ GEN_LDX(width, 0x17, op | 0x00) /* lbz lbzu lbzux lbzx */ GEN_LDS(bz, 0x02); /* lha lhau lhaux lhax */ GEN_LDS(ha, 0x0A); /* lhz lhzu lhzux lhzx */ GEN_LDS(hz, 0x08); /* lwz lwzu lwzux lwzx */ GEN_LDS(wz, 0x00); /*** Integer store ***/ #define GEN_ST(width, opc) \ GEN_HANDLER(st##width, opc, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) \ { \ uint32_t simm = SIMM(ctx->opcode); \ if (rA(ctx->opcode) == 0) { \ gen_op_set_T0(simm); \ } else { \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ if (simm != 0) \ gen_op_addi(simm); \ } \ gen_op_load_gpr_T1(rS(ctx->opcode)); \ op_ldst(st##width); \ } #define GEN_STU(width, opc) \ GEN_HANDLER(st##width##u, opc, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) \ { \ uint32_t simm = SIMM(ctx->opcode); \ if (rA(ctx->opcode) == 0) { \ RET_INVAL(ctx); \ return; \ } \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ if (simm != 0) \ gen_op_addi(simm); \ gen_op_load_gpr_T1(rS(ctx->opcode)); \ op_ldst(st##width); \ gen_op_store_T0_gpr(rA(ctx->opcode)); \ } #define GEN_STUX(width, opc) \ GEN_HANDLER(st##width##ux, 0x1F, 0x17, opc, 0x00000001, PPC_INTEGER) \ { \ if (rA(ctx->opcode) == 0) { \ RET_INVAL(ctx); \ return; \ } \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ gen_op_load_gpr_T1(rB(ctx->opcode)); \ gen_op_add(); \ gen_op_load_gpr_T1(rS(ctx->opcode)); \ op_ldst(st##width); \ gen_op_store_T0_gpr(rA(ctx->opcode)); \ } #define GEN_STX(width, opc2, opc3) \ GEN_HANDLER(st##width##x, 0x1F, opc2, opc3, 0x00000001, PPC_INTEGER) \ { \ if (rA(ctx->opcode) == 0) { \ gen_op_load_gpr_T0(rB(ctx->opcode)); \ } else { \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ gen_op_load_gpr_T1(rB(ctx->opcode)); \ gen_op_add(); \ } \ gen_op_load_gpr_T1(rS(ctx->opcode)); \ op_ldst(st##width); \ } #define GEN_STS(width, op) \ OP_ST_TABLE(width); \ GEN_ST(width, op | 0x20); \ GEN_STU(width, op | 0x21); \ GEN_STUX(width, op | 0x01); \ GEN_STX(width, 0x17, op | 0x00) /* stb stbu stbux stbx */ GEN_STS(b, 0x06); /* sth sthu sthux sthx */ GEN_STS(h, 0x0C); /* stw stwu stwux stwx */ GEN_STS(w, 0x04); /*** Integer load and store with byte reverse ***/ /* lhbrx */ OP_LD_TABLE(hbr); GEN_LDX(hbr, 0x16, 0x18); /* lwbrx */ OP_LD_TABLE(wbr); GEN_LDX(wbr, 0x16, 0x10); /* sthbrx */ OP_ST_TABLE(hbr); GEN_STX(hbr, 0x16, 0x1C); /* stwbrx */ OP_ST_TABLE(wbr); GEN_STX(wbr, 0x16, 0x14); /*** Integer load and store multiple ***/ #define op_ldstm(name, reg) (*gen_op_##name[ctx->mem_idx])(reg) #if defined(CONFIG_USER_ONLY) static GenOpFunc1 *gen_op_lmw[] = { &gen_op_lmw_raw, &gen_op_lmw_le_raw, }; static GenOpFunc1 *gen_op_stmw[] = { &gen_op_stmw_raw, &gen_op_stmw_le_raw, }; #else static GenOpFunc1 *gen_op_lmw[] = { &gen_op_lmw_user, &gen_op_lmw_le_user, &gen_op_lmw_kernel, &gen_op_lmw_le_kernel, }; static GenOpFunc1 *gen_op_stmw[] = { &gen_op_stmw_user, &gen_op_stmw_le_user, &gen_op_stmw_kernel, &gen_op_stmw_le_kernel, }; #endif /* lmw */ GEN_HANDLER(lmw, 0x2E, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { int simm = SIMM(ctx->opcode); if (rA(ctx->opcode) == 0) { gen_op_set_T0(simm); } else { gen_op_load_gpr_T0(rA(ctx->opcode)); if (simm != 0) gen_op_addi(simm); } op_ldstm(lmw, rD(ctx->opcode)); } /* stmw */ GEN_HANDLER(stmw, 0x2F, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) { int simm = SIMM(ctx->opcode); if (rA(ctx->opcode) == 0) { gen_op_set_T0(simm); } else { gen_op_load_gpr_T0(rA(ctx->opcode)); if (simm != 0) gen_op_addi(simm); } op_ldstm(stmw, rS(ctx->opcode)); } /*** Integer load and store strings ***/ #define op_ldsts(name, start) (*gen_op_##name[ctx->mem_idx])(start) #define op_ldstsx(name, rd, ra, rb) (*gen_op_##name[ctx->mem_idx])(rd, ra, rb) #if defined(CONFIG_USER_ONLY) static GenOpFunc1 *gen_op_lswi[] = { &gen_op_lswi_raw, &gen_op_lswi_le_raw, }; static GenOpFunc3 *gen_op_lswx[] = { &gen_op_lswx_raw, &gen_op_lswx_le_raw, }; static GenOpFunc1 *gen_op_stsw[] = { &gen_op_stsw_raw, &gen_op_stsw_le_raw, }; #else static GenOpFunc1 *gen_op_lswi[] = { &gen_op_lswi_user, &gen_op_lswi_le_user, &gen_op_lswi_kernel, &gen_op_lswi_le_kernel, }; static GenOpFunc3 *gen_op_lswx[] = { &gen_op_lswx_user, &gen_op_lswx_le_user, &gen_op_lswx_kernel, &gen_op_lswx_le_kernel, }; static GenOpFunc1 *gen_op_stsw[] = { &gen_op_stsw_user, &gen_op_stsw_le_user, &gen_op_stsw_kernel, &gen_op_stsw_le_kernel, }; #endif /* lswi */ /* PowerPC32 specification says we must generate an exception if * rA is in the range of registers to be loaded. * In an other hand, IBM says this is valid, but rA won't be loaded. * For now, I'll follow the spec... */ GEN_HANDLER(lswi, 0x1F, 0x15, 0x12, 0x00000001, PPC_INTEGER) { int nb = NB(ctx->opcode); int start = rD(ctx->opcode); int ra = rA(ctx->opcode); int nr; if (nb == 0) nb = 32; nr = nb / 4; if (((start + nr) > 32 && start <= ra && (start + nr - 32) > ra) || ((start + nr) <= 32 && start <= ra && (start + nr) > ra)) { RET_EXCP(ctx, EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_LSWX); return; } if (ra == 0) { gen_op_set_T0(0); } else { gen_op_load_gpr_T0(ra); } gen_op_set_T1(nb); /* NIP cannot be restored if the memory exception comes from an helper */ gen_op_update_nip((ctx)->nip - 4); op_ldsts(lswi, start); } /* lswx */ GEN_HANDLER(lswx, 0x1F, 0x15, 0x10, 0x00000001, PPC_INTEGER) { int ra = rA(ctx->opcode); int rb = rB(ctx->opcode); if (ra == 0) { gen_op_load_gpr_T0(rb); ra = rb; } else { gen_op_load_gpr_T0(ra); gen_op_load_gpr_T1(rb); gen_op_add(); } gen_op_load_xer_bc(); /* NIP cannot be restored if the memory exception comes from an helper */ gen_op_update_nip((ctx)->nip - 4); op_ldstsx(lswx, rD(ctx->opcode), ra, rb); } /* stswi */ GEN_HANDLER(stswi, 0x1F, 0x15, 0x16, 0x00000001, PPC_INTEGER) { int nb = NB(ctx->opcode); if (rA(ctx->opcode) == 0) { gen_op_set_T0(0); } else { gen_op_load_gpr_T0(rA(ctx->opcode)); } if (nb == 0) nb = 32; gen_op_set_T1(nb); /* NIP cannot be restored if the memory exception comes from an helper */ gen_op_update_nip((ctx)->nip - 4); op_ldsts(stsw, rS(ctx->opcode)); } /* stswx */ GEN_HANDLER(stswx, 0x1F, 0x15, 0x14, 0x00000001, PPC_INTEGER) { int ra = rA(ctx->opcode); if (ra == 0) { gen_op_load_gpr_T0(rB(ctx->opcode)); ra = rB(ctx->opcode); } else { gen_op_load_gpr_T0(ra); gen_op_load_gpr_T1(rB(ctx->opcode)); gen_op_add(); } gen_op_load_xer_bc(); /* NIP cannot be restored if the memory exception comes from an helper */ gen_op_update_nip((ctx)->nip - 4); op_ldsts(stsw, rS(ctx->opcode)); } /*** Memory synchronisation ***/ /* eieio */ GEN_HANDLER(eieio, 0x1F, 0x16, 0x1A, 0x03FF0801, PPC_MEM) { } /* isync */ GEN_HANDLER(isync, 0x13, 0x16, 0xFF, 0x03FF0801, PPC_MEM) { } #define op_lwarx() (*gen_op_lwarx[ctx->mem_idx])() #define op_stwcx() (*gen_op_stwcx[ctx->mem_idx])() #if defined(CONFIG_USER_ONLY) static GenOpFunc *gen_op_lwarx[] = { &gen_op_lwarx_raw, &gen_op_lwarx_le_raw, }; static GenOpFunc *gen_op_stwcx[] = { &gen_op_stwcx_raw, &gen_op_stwcx_le_raw, }; #else static GenOpFunc *gen_op_lwarx[] = { &gen_op_lwarx_user, &gen_op_lwarx_le_user, &gen_op_lwarx_kernel, &gen_op_lwarx_le_kernel, }; static GenOpFunc *gen_op_stwcx[] = { &gen_op_stwcx_user, &gen_op_stwcx_le_user, &gen_op_stwcx_kernel, &gen_op_stwcx_le_kernel, }; #endif /* lwarx */ GEN_HANDLER(lwarx, 0x1F, 0x14, 0xFF, 0x00000001, PPC_RES) { if (rA(ctx->opcode) == 0) { gen_op_load_gpr_T0(rB(ctx->opcode)); } else { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_load_gpr_T1(rB(ctx->opcode)); gen_op_add(); } op_lwarx(); gen_op_store_T1_gpr(rD(ctx->opcode)); } /* stwcx. */ GEN_HANDLER(stwcx_, 0x1F, 0x16, 0x04, 0x00000000, PPC_RES) { if (rA(ctx->opcode) == 0) { gen_op_load_gpr_T0(rB(ctx->opcode)); } else { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_load_gpr_T1(rB(ctx->opcode)); gen_op_add(); } gen_op_load_gpr_T1(rS(ctx->opcode)); op_stwcx(); } /* sync */ GEN_HANDLER(sync, 0x1F, 0x16, 0x12, 0x03FF0801, PPC_MEM) { } /*** Floating-point load ***/ #define GEN_LDF(width, opc) \ GEN_HANDLER(l##width, opc, 0xFF, 0xFF, 0x00000000, PPC_FLOAT) \ { \ uint32_t simm = SIMM(ctx->opcode); \ if (!ctx->fpu_enabled) { \ RET_EXCP(ctx, EXCP_NO_FP, 0); \ return; \ } \ if (rA(ctx->opcode) == 0) { \ gen_op_set_T0(simm); \ } else { \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ if (simm != 0) \ gen_op_addi(simm); \ } \ op_ldst(l##width); \ gen_op_store_FT1_fpr(rD(ctx->opcode)); \ } #define GEN_LDUF(width, opc) \ GEN_HANDLER(l##width##u, opc, 0xFF, 0xFF, 0x00000000, PPC_FLOAT) \ { \ uint32_t simm = SIMM(ctx->opcode); \ if (!ctx->fpu_enabled) { \ RET_EXCP(ctx, EXCP_NO_FP, 0); \ return; \ } \ if (rA(ctx->opcode) == 0 || \ rA(ctx->opcode) == rD(ctx->opcode)) { \ RET_INVAL(ctx); \ return; \ } \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ if (simm != 0) \ gen_op_addi(simm); \ op_ldst(l##width); \ gen_op_store_FT1_fpr(rD(ctx->opcode)); \ gen_op_store_T0_gpr(rA(ctx->opcode)); \ } #define GEN_LDUXF(width, opc) \ GEN_HANDLER(l##width##ux, 0x1F, 0x17, opc, 0x00000001, PPC_FLOAT) \ { \ if (!ctx->fpu_enabled) { \ RET_EXCP(ctx, EXCP_NO_FP, 0); \ return; \ } \ if (rA(ctx->opcode) == 0 || \ rA(ctx->opcode) == rD(ctx->opcode)) { \ RET_INVAL(ctx); \ return; \ } \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ gen_op_load_gpr_T1(rB(ctx->opcode)); \ gen_op_add(); \ op_ldst(l##width); \ gen_op_store_FT1_fpr(rD(ctx->opcode)); \ gen_op_store_T0_gpr(rA(ctx->opcode)); \ } #define GEN_LDXF(width, opc2, opc3) \ GEN_HANDLER(l##width##x, 0x1F, opc2, opc3, 0x00000001, PPC_FLOAT) \ { \ if (!ctx->fpu_enabled) { \ RET_EXCP(ctx, EXCP_NO_FP, 0); \ return; \ } \ if (rA(ctx->opcode) == 0) { \ gen_op_load_gpr_T0(rB(ctx->opcode)); \ } else { \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ gen_op_load_gpr_T1(rB(ctx->opcode)); \ gen_op_add(); \ } \ op_ldst(l##width); \ gen_op_store_FT1_fpr(rD(ctx->opcode)); \ } #define GEN_LDFS(width, op) \ OP_LD_TABLE(width); \ GEN_LDF(width, op | 0x20); \ GEN_LDUF(width, op | 0x21); \ GEN_LDUXF(width, op | 0x01); \ GEN_LDXF(width, 0x17, op | 0x00) /* lfd lfdu lfdux lfdx */ GEN_LDFS(fd, 0x12); /* lfs lfsu lfsux lfsx */ GEN_LDFS(fs, 0x10); /*** Floating-point store ***/ #define GEN_STF(width, opc) \ GEN_HANDLER(st##width, opc, 0xFF, 0xFF, 0x00000000, PPC_FLOAT) \ { \ uint32_t simm = SIMM(ctx->opcode); \ if (!ctx->fpu_enabled) { \ RET_EXCP(ctx, EXCP_NO_FP, 0); \ return; \ } \ if (rA(ctx->opcode) == 0) { \ gen_op_set_T0(simm); \ } else { \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ if (simm != 0) \ gen_op_addi(simm); \ } \ gen_op_load_fpr_FT1(rS(ctx->opcode)); \ op_ldst(st##width); \ } #define GEN_STUF(width, opc) \ GEN_HANDLER(st##width##u, opc, 0xFF, 0xFF, 0x00000000, PPC_FLOAT) \ { \ uint32_t simm = SIMM(ctx->opcode); \ if (!ctx->fpu_enabled) { \ RET_EXCP(ctx, EXCP_NO_FP, 0); \ return; \ } \ if (rA(ctx->opcode) == 0) { \ RET_INVAL(ctx); \ return; \ } \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ if (simm != 0) \ gen_op_addi(simm); \ gen_op_load_fpr_FT1(rS(ctx->opcode)); \ op_ldst(st##width); \ gen_op_store_T0_gpr(rA(ctx->opcode)); \ } #define GEN_STUXF(width, opc) \ GEN_HANDLER(st##width##ux, 0x1F, 0x17, opc, 0x00000001, PPC_FLOAT) \ { \ if (!ctx->fpu_enabled) { \ RET_EXCP(ctx, EXCP_NO_FP, 0); \ return; \ } \ if (rA(ctx->opcode) == 0) { \ RET_INVAL(ctx); \ return; \ } \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ gen_op_load_gpr_T1(rB(ctx->opcode)); \ gen_op_add(); \ gen_op_load_fpr_FT1(rS(ctx->opcode)); \ op_ldst(st##width); \ gen_op_store_T0_gpr(rA(ctx->opcode)); \ } #define GEN_STXF(width, opc2, opc3) \ GEN_HANDLER(st##width##x, 0x1F, opc2, opc3, 0x00000001, PPC_FLOAT) \ { \ if (!ctx->fpu_enabled) { \ RET_EXCP(ctx, EXCP_NO_FP, 0); \ return; \ } \ if (rA(ctx->opcode) == 0) { \ gen_op_load_gpr_T0(rB(ctx->opcode)); \ } else { \ gen_op_load_gpr_T0(rA(ctx->opcode)); \ gen_op_load_gpr_T1(rB(ctx->opcode)); \ gen_op_add(); \ } \ gen_op_load_fpr_FT1(rS(ctx->opcode)); \ op_ldst(st##width); \ } #define GEN_STFS(width, op) \ OP_ST_TABLE(width); \ GEN_STF(width, op | 0x20); \ GEN_STUF(width, op | 0x21); \ GEN_STUXF(width, op | 0x01); \ GEN_STXF(width, 0x17, op | 0x00) /* stfd stfdu stfdux stfdx */ GEN_STFS(fd, 0x16); /* stfs stfsu stfsux stfsx */ GEN_STFS(fs, 0x14); /* Optional: */ /* stfiwx */ GEN_HANDLER(stfiwx, 0x1F, 0x17, 0x1E, 0x00000001, PPC_FLOAT) { if (!ctx->fpu_enabled) { RET_EXCP(ctx, EXCP_NO_FP, 0); return; } RET_INVAL(ctx); } /*** Branch ***/ static inline void gen_goto_tb(DisasContext *ctx, int n, target_ulong dest) { TranslationBlock *tb; tb = ctx->tb; if ((tb->pc & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK)) { if (n == 0) gen_op_goto_tb0(TBPARAM(tb)); else gen_op_goto_tb1(TBPARAM(tb)); gen_op_set_T1(dest); gen_op_b_T1(); gen_op_set_T0((long)tb + n); gen_op_exit_tb(); } else { gen_op_set_T1(dest); gen_op_b_T1(); gen_op_set_T0(0); gen_op_exit_tb(); } } /* b ba bl bla */ GEN_HANDLER(b, 0x12, 0xFF, 0xFF, 0x00000000, PPC_FLOW) { uint32_t li, target; /* sign extend LI */ li = ((int32_t)LI(ctx->opcode) << 6) >> 6; if (AA(ctx->opcode) == 0) target = ctx->nip + li - 4; else target = li; if (LK(ctx->opcode)) { gen_op_setlr(ctx->nip); } gen_goto_tb(ctx, 0, target); ctx->exception = EXCP_BRANCH; } #define BCOND_IM 0 #define BCOND_LR 1 #define BCOND_CTR 2 static inline void gen_bcond(DisasContext *ctx, int type) { uint32_t target = 0; uint32_t bo = BO(ctx->opcode); uint32_t bi = BI(ctx->opcode); uint32_t mask; uint32_t li; if ((bo & 0x4) == 0) gen_op_dec_ctr(); switch(type) { case BCOND_IM: li = (int32_t)((int16_t)(BD(ctx->opcode))); if (AA(ctx->opcode) == 0) { target = ctx->nip + li - 4; } else { target = li; } break; case BCOND_CTR: gen_op_movl_T1_ctr(); break; default: case BCOND_LR: gen_op_movl_T1_lr(); break; } if (LK(ctx->opcode)) { gen_op_setlr(ctx->nip); } if (bo & 0x10) { /* No CR condition */ switch (bo & 0x6) { case 0: gen_op_test_ctr(); break; case 2: gen_op_test_ctrz(); break; default: case 4: case 6: if (type == BCOND_IM) { gen_goto_tb(ctx, 0, target); } else { gen_op_b_T1(); } goto no_test; } } else { mask = 1 << (3 - (bi & 0x03)); gen_op_load_crf_T0(bi >> 2); if (bo & 0x8) { switch (bo & 0x6) { case 0: gen_op_test_ctr_true(mask); break; case 2: gen_op_test_ctrz_true(mask); break; default: case 4: case 6: gen_op_test_true(mask); break; } } else { switch (bo & 0x6) { case 0: gen_op_test_ctr_false(mask); break; case 2: gen_op_test_ctrz_false(mask); break; default: case 4: case 6: gen_op_test_false(mask); break; } } } if (type == BCOND_IM) { int l1 = gen_new_label(); gen_op_jz_T0(l1); gen_goto_tb(ctx, 0, target); gen_set_label(l1); gen_goto_tb(ctx, 1, ctx->nip); } else { gen_op_btest_T1(ctx->nip); } no_test: ctx->exception = EXCP_BRANCH; } GEN_HANDLER(bc, 0x10, 0xFF, 0xFF, 0x00000000, PPC_FLOW) { gen_bcond(ctx, BCOND_IM); } GEN_HANDLER(bcctr, 0x13, 0x10, 0x10, 0x00000000, PPC_FLOW) { gen_bcond(ctx, BCOND_CTR); } GEN_HANDLER(bclr, 0x13, 0x10, 0x00, 0x00000000, PPC_FLOW) { gen_bcond(ctx, BCOND_LR); } /*** Condition register logical ***/ #define GEN_CRLOGIC(op, opc) \ GEN_HANDLER(cr##op, 0x13, 0x01, opc, 0x00000001, PPC_INTEGER) \ { \ gen_op_load_crf_T0(crbA(ctx->opcode) >> 2); \ gen_op_getbit_T0(3 - (crbA(ctx->opcode) & 0x03)); \ gen_op_load_crf_T1(crbB(ctx->opcode) >> 2); \ gen_op_getbit_T1(3 - (crbB(ctx->opcode) & 0x03)); \ gen_op_##op(); \ gen_op_load_crf_T1(crbD(ctx->opcode) >> 2); \ gen_op_setcrfbit(~(1 << (3 - (crbD(ctx->opcode) & 0x03))), \ 3 - (crbD(ctx->opcode) & 0x03)); \ gen_op_store_T1_crf(crbD(ctx->opcode) >> 2); \ } /* crand */ GEN_CRLOGIC(and, 0x08) /* crandc */ GEN_CRLOGIC(andc, 0x04) /* creqv */ GEN_CRLOGIC(eqv, 0x09) /* crnand */ GEN_CRLOGIC(nand, 0x07) /* crnor */ GEN_CRLOGIC(nor, 0x01) /* cror */ GEN_CRLOGIC(or, 0x0E) /* crorc */ GEN_CRLOGIC(orc, 0x0D) /* crxor */ GEN_CRLOGIC(xor, 0x06) /* mcrf */ GEN_HANDLER(mcrf, 0x13, 0x00, 0xFF, 0x00000001, PPC_INTEGER) { gen_op_load_crf_T0(crfS(ctx->opcode)); gen_op_store_T0_crf(crfD(ctx->opcode)); } /*** System linkage ***/ /* rfi (supervisor only) */ GEN_HANDLER(rfi, 0x13, 0x12, 0xFF, 0x03FF8001, PPC_FLOW) { #if defined(CONFIG_USER_ONLY) RET_PRIVOPC(ctx); #else /* Restore CPU state */ if (!ctx->supervisor) { RET_PRIVOPC(ctx); return; } gen_op_rfi(); RET_CHG_FLOW(ctx); #endif } /* sc */ GEN_HANDLER(sc, 0x11, 0xFF, 0xFF, 0x03FFFFFD, PPC_FLOW) { #if defined(CONFIG_USER_ONLY) RET_EXCP(ctx, EXCP_SYSCALL_USER, 0); #else RET_EXCP(ctx, EXCP_SYSCALL, 0); #endif } /*** Trap ***/ /* tw */ GEN_HANDLER(tw, 0x1F, 0x04, 0xFF, 0x00000001, PPC_FLOW) { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_load_gpr_T1(rB(ctx->opcode)); gen_op_tw(TO(ctx->opcode)); } /* twi */ GEN_HANDLER(twi, 0x03, 0xFF, 0xFF, 0x00000000, PPC_FLOW) { gen_op_load_gpr_T0(rA(ctx->opcode)); #if 0 printf("%s: param=0x%04x T0=0x%04x\n", __func__, SIMM(ctx->opcode), TO(ctx->opcode)); #endif gen_op_twi(SIMM(ctx->opcode), TO(ctx->opcode)); } /*** Processor control ***/ static inline int check_spr_access (int spr, int rw, int supervisor) { uint32_t rights = spr_access[spr >> 1] >> (4 * (spr & 1)); #if 0 if (spr != LR && spr != CTR) { if (loglevel > 0) { fprintf(logfile, "%s reg=%d s=%d rw=%d r=0x%02x 0x%02x\n", __func__, SPR_ENCODE(spr), supervisor, rw, rights, (rights >> ((2 * supervisor) + rw)) & 1); } else { printf("%s reg=%d s=%d rw=%d r=0x%02x 0x%02x\n", __func__, SPR_ENCODE(spr), supervisor, rw, rights, (rights >> ((2 * supervisor) + rw)) & 1); } } #endif if (rights == 0) return -1; rights = rights >> (2 * supervisor); rights = rights >> rw; return rights & 1; } /* mcrxr */ GEN_HANDLER(mcrxr, 0x1F, 0x00, 0x10, 0x007FF801, PPC_MISC) { gen_op_load_xer_cr(); gen_op_store_T0_crf(crfD(ctx->opcode)); gen_op_clear_xer_cr(); } /* mfcr */ GEN_HANDLER(mfcr, 0x1F, 0x13, 0x00, 0x001FF801, PPC_MISC) { gen_op_load_cr(); gen_op_store_T0_gpr(rD(ctx->opcode)); } /* mfmsr */ GEN_HANDLER(mfmsr, 0x1F, 0x13, 0x02, 0x001FF801, PPC_MISC) { #if defined(CONFIG_USER_ONLY) RET_PRIVREG(ctx); #else if (!ctx->supervisor) { RET_PRIVREG(ctx); return; } gen_op_load_msr(); gen_op_store_T0_gpr(rD(ctx->opcode)); #endif } #if 0 #define SPR_NOACCESS ((void *)(-1)) #else static void spr_noaccess (void *opaque, int sprn) { sprn = ((sprn >> 5) & 0x1F) | ((sprn & 0x1F) << 5); printf("ERROR: try to access SPR %d !\n", sprn); } #define SPR_NOACCESS (&spr_noaccess) #endif /* mfspr */ static inline void gen_op_mfspr (DisasContext *ctx) { void (*read_cb)(void *opaque, int sprn); uint32_t sprn = SPR(ctx->opcode); #if !defined(CONFIG_USER_ONLY) if (ctx->supervisor) read_cb = ctx->spr_cb[sprn].oea_read; else #endif read_cb = ctx->spr_cb[sprn].uea_read; if (read_cb != NULL) { if (read_cb != SPR_NOACCESS) { (*read_cb)(ctx, sprn); gen_op_store_T0_gpr(rD(ctx->opcode)); } else { /* Privilege exception */ printf("Trying to read priviledged spr %d %03x\n", sprn, sprn); RET_PRIVREG(ctx); } } else { /* Not defined */ printf("Trying to read invalid spr %d %03x\n", sprn, sprn); RET_EXCP(ctx, EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_SPR); } } GEN_HANDLER(mfspr, 0x1F, 0x13, 0x0A, 0x00000001, PPC_MISC) { gen_op_mfspr(ctx); } /* mftb */ GEN_HANDLER(mftb, 0x1F, 0x13, 0x0B, 0x00000001, PPC_TB) { gen_op_mfspr(ctx); } /* mtcrf */ /* The mask should be 0x00100801, but Mac OS X 10.4 use an alternate form */ GEN_HANDLER(mtcrf, 0x1F, 0x10, 0x04, 0x00000801, PPC_MISC) { gen_op_load_gpr_T0(rS(ctx->opcode)); gen_op_store_cr(CRM(ctx->opcode)); } /* mtmsr */ GEN_HANDLER(mtmsr, 0x1F, 0x12, 0x04, 0x001FF801, PPC_MISC) { #if defined(CONFIG_USER_ONLY) RET_PRIVREG(ctx); #else if (!ctx->supervisor) { RET_PRIVREG(ctx); return; } gen_op_load_gpr_T0(rS(ctx->opcode)); gen_op_store_msr(); /* Must stop the translation as machine state (may have) changed */ RET_MTMSR(ctx); #endif } /* mtspr */ GEN_HANDLER(mtspr, 0x1F, 0x13, 0x0E, 0x00000001, PPC_MISC) { void (*write_cb)(void *opaque, int sprn); uint32_t sprn = SPR(ctx->opcode); #if !defined(CONFIG_USER_ONLY) if (ctx->supervisor) write_cb = ctx->spr_cb[sprn].oea_write; else #endif write_cb = ctx->spr_cb[sprn].uea_write; if (write_cb != NULL) { if (write_cb != SPR_NOACCESS) { gen_op_load_gpr_T0(rS(ctx->opcode)); (*write_cb)(ctx, sprn); } else { /* Privilege exception */ printf("Trying to write priviledged spr %d %03x\n", sprn, sprn); RET_PRIVREG(ctx); } } else { /* Not defined */ printf("Trying to write invalid spr %d %03x\n", sprn, sprn); RET_EXCP(ctx, EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_SPR); } } /*** Cache management ***/ /* For now, all those will be implemented as nop: * this is valid, regarding the PowerPC specs... * We just have to flush tb while invalidating instruction cache lines... */ /* dcbf */ GEN_HANDLER(dcbf, 0x1F, 0x16, 0x02, 0x03E00001, PPC_CACHE) { if (rA(ctx->opcode) == 0) { gen_op_load_gpr_T0(rB(ctx->opcode)); } else { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_load_gpr_T1(rB(ctx->opcode)); gen_op_add(); } op_ldst(lbz); } /* dcbi (Supervisor only) */ GEN_HANDLER(dcbi, 0x1F, 0x16, 0x0E, 0x03E00001, PPC_CACHE) { #if defined(CONFIG_USER_ONLY) RET_PRIVOPC(ctx); #else if (!ctx->supervisor) { RET_PRIVOPC(ctx); return; } if (rA(ctx->opcode) == 0) { gen_op_load_gpr_T0(rB(ctx->opcode)); } else { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_load_gpr_T1(rB(ctx->opcode)); gen_op_add(); } op_ldst(lbz); op_ldst(stb); #endif } /* dcdst */ GEN_HANDLER(dcbst, 0x1F, 0x16, 0x01, 0x03E00001, PPC_CACHE) { if (rA(ctx->opcode) == 0) { gen_op_load_gpr_T0(rB(ctx->opcode)); } else { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_load_gpr_T1(rB(ctx->opcode)); gen_op_add(); } op_ldst(lbz); } /* dcbt */ GEN_HANDLER(dcbt, 0x1F, 0x16, 0x08, 0x03E00001, PPC_CACHE) { } /* dcbtst */ GEN_HANDLER(dcbtst, 0x1F, 0x16, 0x07, 0x03E00001, PPC_CACHE) { } /* dcbz */ #if defined(CONFIG_USER_ONLY) #define op_dcbz() gen_op_dcbz_raw() #else #define op_dcbz() (*gen_op_dcbz[ctx->mem_idx])() static GenOpFunc *gen_op_dcbz[] = { &gen_op_dcbz_user, &gen_op_dcbz_user, &gen_op_dcbz_kernel, &gen_op_dcbz_kernel, }; #endif GEN_HANDLER(dcbz, 0x1F, 0x16, 0x1F, 0x03E00001, PPC_CACHE) { if (rA(ctx->opcode) == 0) { gen_op_load_gpr_T0(rB(ctx->opcode)); } else { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_load_gpr_T1(rB(ctx->opcode)); gen_op_add(); } op_dcbz(); gen_op_check_reservation(); } /* icbi */ GEN_HANDLER(icbi, 0x1F, 0x16, 0x1E, 0x03E00001, PPC_CACHE) { if (rA(ctx->opcode) == 0) { gen_op_load_gpr_T0(rB(ctx->opcode)); } else { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_load_gpr_T1(rB(ctx->opcode)); gen_op_add(); } gen_op_icbi(); } /* Optional: */ /* dcba */ GEN_HANDLER(dcba, 0x1F, 0x16, 0x17, 0x03E00001, PPC_CACHE_OPT) { } /*** Segment register manipulation ***/ /* Supervisor only: */ /* mfsr */ GEN_HANDLER(mfsr, 0x1F, 0x13, 0x12, 0x0010F801, PPC_SEGMENT) { #if defined(CONFIG_USER_ONLY) RET_PRIVREG(ctx); #else if (!ctx->supervisor) { RET_PRIVREG(ctx); return; } gen_op_load_sr(SR(ctx->opcode)); gen_op_store_T0_gpr(rD(ctx->opcode)); #endif } /* mfsrin */ GEN_HANDLER(mfsrin, 0x1F, 0x13, 0x14, 0x001F0001, PPC_SEGMENT) { #if defined(CONFIG_USER_ONLY) RET_PRIVREG(ctx); #else if (!ctx->supervisor) { RET_PRIVREG(ctx); return; } gen_op_load_gpr_T1(rB(ctx->opcode)); gen_op_load_srin(); gen_op_store_T0_gpr(rD(ctx->opcode)); #endif } /* mtsr */ GEN_HANDLER(mtsr, 0x1F, 0x12, 0x06, 0x0010F801, PPC_SEGMENT) { #if defined(CONFIG_USER_ONLY) RET_PRIVREG(ctx); #else if (!ctx->supervisor) { RET_PRIVREG(ctx); return; } gen_op_load_gpr_T0(rS(ctx->opcode)); gen_op_store_sr(SR(ctx->opcode)); RET_MTMSR(ctx); #endif } /* mtsrin */ GEN_HANDLER(mtsrin, 0x1F, 0x12, 0x07, 0x001F0001, PPC_SEGMENT) { #if defined(CONFIG_USER_ONLY) RET_PRIVREG(ctx); #else if (!ctx->supervisor) { RET_PRIVREG(ctx); return; } gen_op_load_gpr_T0(rS(ctx->opcode)); gen_op_load_gpr_T1(rB(ctx->opcode)); gen_op_store_srin(); RET_MTMSR(ctx); #endif } /*** Lookaside buffer management ***/ /* Optional & supervisor only: */ /* tlbia */ GEN_HANDLER(tlbia, 0x1F, 0x12, 0x0B, 0x03FFFC01, PPC_MEM_TLBIA) { #if defined(CONFIG_USER_ONLY) RET_PRIVOPC(ctx); #else if (!ctx->supervisor) { if (loglevel) fprintf(logfile, "%s: ! supervisor\n", __func__); RET_PRIVOPC(ctx); return; } gen_op_tlbia(); RET_MTMSR(ctx); #endif } /* tlbie */ GEN_HANDLER(tlbie, 0x1F, 0x12, 0x09, 0x03FF0001, PPC_MEM) { #if defined(CONFIG_USER_ONLY) RET_PRIVOPC(ctx); #else if (!ctx->supervisor) { RET_PRIVOPC(ctx); return; } gen_op_load_gpr_T0(rB(ctx->opcode)); gen_op_tlbie(); RET_MTMSR(ctx); #endif } /* tlbsync */ GEN_HANDLER(tlbsync, 0x1F, 0x16, 0x11, 0x03FFF801, PPC_MEM) { #if defined(CONFIG_USER_ONLY) RET_PRIVOPC(ctx); #else if (!ctx->supervisor) { RET_PRIVOPC(ctx); return; } /* This has no effect: it should ensure that all previous * tlbie have completed */ RET_MTMSR(ctx); #endif } /*** External control ***/ /* Optional: */ #define op_eciwx() (*gen_op_eciwx[ctx->mem_idx])() #define op_ecowx() (*gen_op_ecowx[ctx->mem_idx])() #if defined(CONFIG_USER_ONLY) static GenOpFunc *gen_op_eciwx[] = { &gen_op_eciwx_raw, &gen_op_eciwx_le_raw, }; static GenOpFunc *gen_op_ecowx[] = { &gen_op_ecowx_raw, &gen_op_ecowx_le_raw, }; #else static GenOpFunc *gen_op_eciwx[] = { &gen_op_eciwx_user, &gen_op_eciwx_le_user, &gen_op_eciwx_kernel, &gen_op_eciwx_le_kernel, }; static GenOpFunc *gen_op_ecowx[] = { &gen_op_ecowx_user, &gen_op_ecowx_le_user, &gen_op_ecowx_kernel, &gen_op_ecowx_le_kernel, }; #endif /* eciwx */ GEN_HANDLER(eciwx, 0x1F, 0x16, 0x0D, 0x00000001, PPC_EXTERN) { /* Should check EAR[E] & alignment ! */ if (rA(ctx->opcode) == 0) { gen_op_load_gpr_T0(rB(ctx->opcode)); } else { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_load_gpr_T1(rB(ctx->opcode)); gen_op_add(); } op_eciwx(); gen_op_store_T0_gpr(rD(ctx->opcode)); } /* ecowx */ GEN_HANDLER(ecowx, 0x1F, 0x16, 0x09, 0x00000001, PPC_EXTERN) { /* Should check EAR[E] & alignment ! */ if (rA(ctx->opcode) == 0) { gen_op_load_gpr_T0(rB(ctx->opcode)); } else { gen_op_load_gpr_T0(rA(ctx->opcode)); gen_op_load_gpr_T1(rB(ctx->opcode)); gen_op_add(); } gen_op_load_gpr_T2(rS(ctx->opcode)); op_ecowx(); } /* End opcode list */ GEN_OPCODE_MARK(end); #include "translate_init.c" /*****************************************************************************/ /* Misc PowerPC helpers */ void cpu_dump_state(CPUState *env, FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...), int flags) { #if defined(TARGET_PPC64) || 1 #define FILL "" #define REGX "%016llx" #define RGPL 4 #define RFPL 4 #else #define FILL " " #define REGX "%08llx" #define RGPL 8 #define RFPL 4 #endif int i; cpu_fprintf(f, "NIP " REGX " LR " REGX " CTR " REGX "\n", env->nip, env->lr, env->ctr); cpu_fprintf(f, "MSR " REGX FILL " XER %08x TB %08x %08x DECR %08x\n", do_load_msr(env), do_load_xer(env), cpu_ppc_load_tbu(env), cpu_ppc_load_tbl(env), cpu_ppc_load_decr(env)); for (i = 0; i < 32; i++) { if ((i & (RGPL - 1)) == 0) cpu_fprintf(f, "GPR%02d", i); cpu_fprintf(f, " " REGX, env->gpr[i]); if ((i & (RGPL - 1)) == (RGPL - 1)) cpu_fprintf(f, "\n"); } cpu_fprintf(f, "CR "); for (i = 0; i < 8; i++) cpu_fprintf(f, "%01x", env->crf[i]); cpu_fprintf(f, " ["); for (i = 0; i < 8; i++) { char a = '-'; if (env->crf[i] & 0x08) a = 'L'; else if (env->crf[i] & 0x04) a = 'G'; else if (env->crf[i] & 0x02) a = 'E'; cpu_fprintf(f, " %c%c", a, env->crf[i] & 0x01 ? 'O' : ' '); } cpu_fprintf(f, " ] " FILL "RES " REGX "\n", env->reserve); for (i = 0; i < 32; i++) { if ((i & (RFPL - 1)) == 0) cpu_fprintf(f, "FPR%02d", i); cpu_fprintf(f, " %016llx", *((uint64_t *)&env->fpr[i])); if ((i & (RFPL - 1)) == (RFPL - 1)) cpu_fprintf(f, "\n"); } cpu_fprintf(f, "SRR0 " REGX " SRR1 " REGX " " FILL FILL FILL "SDR1 " REGX "\n", env->spr[SPR_SRR0], env->spr[SPR_SRR1], env->sdr1); #undef REGX #undef RGPL #undef RFPL #undef FILL } /*****************************************************************************/ int gen_intermediate_code_internal (CPUState *env, TranslationBlock *tb, int search_pc) { DisasContext ctx, *ctxp = &ctx; opc_handler_t **table, *handler; target_ulong pc_start; uint16_t *gen_opc_end; int j, lj = -1; pc_start = tb->pc; gen_opc_ptr = gen_opc_buf; gen_opc_end = gen_opc_buf + OPC_MAX_SIZE; gen_opparam_ptr = gen_opparam_buf; nb_gen_labels = 0; ctx.nip = pc_start; ctx.tb = tb; ctx.exception = EXCP_NONE; ctx.spr_cb = env->spr_cb; #if defined(CONFIG_USER_ONLY) ctx.mem_idx = msr_le; #else ctx.supervisor = 1 - msr_pr; ctx.mem_idx = ((1 - msr_pr) << 1) | msr_le; #endif ctx.fpu_enabled = msr_fp; #if defined (DO_SINGLE_STEP) && 0 /* Single step trace mode */ msr_se = 1; #endif /* Set env in case of segfault during code fetch */ while (ctx.exception == EXCP_NONE && gen_opc_ptr < gen_opc_end) { if (search_pc) { j = gen_opc_ptr - gen_opc_buf; if (lj < j) { lj++; while (lj < j) gen_opc_instr_start[lj++] = 0; gen_opc_pc[lj] = ctx.nip; gen_opc_instr_start[lj] = 1; } } #if defined PPC_DEBUG_DISAS if (loglevel & CPU_LOG_TB_IN_ASM) { fprintf(logfile, "----------------\n"); fprintf(logfile, "nip=%08x super=%d ir=%d\n", ctx.nip, 1 - msr_pr, msr_ir); } #endif ctx.opcode = ldl_code(ctx.nip); if (msr_le) { ctx.opcode = ((ctx.opcode & 0xFF000000) >> 24) | ((ctx.opcode & 0x00FF0000) >> 8) | ((ctx.opcode & 0x0000FF00) << 8) | ((ctx.opcode & 0x000000FF) << 24); } #if defined PPC_DEBUG_DISAS if (loglevel & CPU_LOG_TB_IN_ASM) { fprintf(logfile, "translate opcode %08x (%02x %02x %02x) (%s)\n", ctx.opcode, opc1(ctx.opcode), opc2(ctx.opcode), opc3(ctx.opcode), msr_le ? "little" : "big"); } #endif ctx.nip += 4; table = env->opcodes; handler = table[opc1(ctx.opcode)]; if (is_indirect_opcode(handler)) { table = ind_table(handler); handler = table[opc2(ctx.opcode)]; if (is_indirect_opcode(handler)) { table = ind_table(handler); handler = table[opc3(ctx.opcode)]; } } /* Is opcode *REALLY* valid ? */ if (handler->handler == &gen_invalid) { if (loglevel > 0) { fprintf(logfile, "invalid/unsupported opcode: " "%02x - %02x - %02x (%08x) 0x%08x %d\n", opc1(ctx.opcode), opc2(ctx.opcode), opc3(ctx.opcode), ctx.opcode, ctx.nip - 4, msr_ir); } else { printf("invalid/unsupported opcode: " "%02x - %02x - %02x (%08x) 0x%08x %d\n", opc1(ctx.opcode), opc2(ctx.opcode), opc3(ctx.opcode), ctx.opcode, ctx.nip - 4, msr_ir); } } else { if ((ctx.opcode & handler->inval) != 0) { if (loglevel > 0) { fprintf(logfile, "invalid bits: %08x for opcode: " "%02x -%02x - %02x (0x%08x) (0x%08x)\n", ctx.opcode & handler->inval, opc1(ctx.opcode), opc2(ctx.opcode), opc3(ctx.opcode), ctx.opcode, ctx.nip - 4); } else { printf("invalid bits: %08x for opcode: " "%02x -%02x - %02x (0x%08x) (0x%08x)\n", ctx.opcode & handler->inval, opc1(ctx.opcode), opc2(ctx.opcode), opc3(ctx.opcode), ctx.opcode, ctx.nip - 4); } RET_INVAL(ctxp); break; } } (*(handler->handler))(&ctx); /* Check trace mode exceptions */ if ((msr_be && ctx.exception == EXCP_BRANCH) || /* Check in single step trace mode * we need to stop except if: * - rfi, trap or syscall * - first instruction of an exception handler */ (msr_se && (ctx.nip < 0x100 || ctx.nip > 0xF00 || (ctx.nip & 0xFC) != 0x04) && ctx.exception != EXCP_SYSCALL && ctx.exception != EXCP_SYSCALL_USER && ctx.exception != EXCP_TRAP)) { RET_EXCP(ctxp, EXCP_TRACE, 0); } /* if we reach a page boundary, stop generation */ if ((ctx.nip & (TARGET_PAGE_SIZE - 1)) == 0) { break; } #if defined (DO_SINGLE_STEP) break; #endif } if (ctx.exception == EXCP_NONE) { gen_goto_tb(&ctx, 0, ctx.nip); } else if (ctx.exception != EXCP_BRANCH) { gen_op_set_T0(0); } #if 1 /* TO BE FIXED: T0 hasn't got a proper value, which makes tb_add_jump * do bad business and then qemu crashes ! */ gen_op_set_T0(0); #endif /* Generate the return instruction */ gen_op_exit_tb(); *gen_opc_ptr = INDEX_op_end; if (search_pc) { j = gen_opc_ptr - gen_opc_buf; lj++; while (lj <= j) gen_opc_instr_start[lj++] = 0; tb->size = 0; #if 0 if (loglevel > 0) { page_dump(logfile); } #endif } else { tb->size = ctx.nip - pc_start; } #ifdef DEBUG_DISAS if (loglevel & CPU_LOG_TB_CPU) { fprintf(logfile, "---------------- excp: %04x\n", ctx.exception); cpu_dump_state(env, logfile, fprintf, 0); } if (loglevel & CPU_LOG_TB_IN_ASM) { fprintf(logfile, "IN: %s\n", lookup_symbol(pc_start)); target_disas(logfile, pc_start, ctx.nip - pc_start, 0); fprintf(logfile, "\n"); } if (loglevel & CPU_LOG_TB_OP) { fprintf(logfile, "OP:\n"); dump_ops(gen_opc_buf, gen_opparam_buf); fprintf(logfile, "\n"); } #endif return 0; } int gen_intermediate_code (CPUState *env, struct TranslationBlock *tb) { return gen_intermediate_code_internal(env, tb, 0); } int gen_intermediate_code_pc (CPUState *env, struct TranslationBlock *tb) { return gen_intermediate_code_internal(env, tb, 1); }