/* * PowerPC emulation micro-operations for qemu. * * Copyright (c) 2003-2007 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ static inline uint16_t glue(ld16r, MEMSUFFIX) (target_ulong EA) { uint16_t tmp = glue(lduw, MEMSUFFIX)(EA); return ((tmp & 0xFF00) >> 8) | ((tmp & 0x00FF) << 8); } static inline int32_t glue(ld16rs, MEMSUFFIX) (target_ulong EA) { int16_t tmp = glue(lduw, MEMSUFFIX)(EA); return (int16_t)((tmp & 0xFF00) >> 8) | ((tmp & 0x00FF) << 8); } static inline uint32_t glue(ld32r, MEMSUFFIX) (target_ulong EA) { uint32_t tmp = glue(ldl, MEMSUFFIX)(EA); return ((tmp & 0xFF000000) >> 24) | ((tmp & 0x00FF0000) >> 8) | ((tmp & 0x0000FF00) << 8) | ((tmp & 0x000000FF) << 24); } #if defined(TARGET_PPC64) static inline int64_t glue(ldsl, MEMSUFFIX) (target_ulong EA) { return (int32_t)glue(ldl, MEMSUFFIX)(EA); } static inline uint64_t glue(ld64r, MEMSUFFIX) (target_ulong EA) { uint64_t tmp = glue(ldq, MEMSUFFIX)(EA); return ((tmp & 0xFF00000000000000ULL) >> 56) | ((tmp & 0x00FF000000000000ULL) >> 40) | ((tmp & 0x0000FF0000000000ULL) >> 24) | ((tmp & 0x000000FF00000000ULL) >> 8) | ((tmp & 0x00000000FF000000ULL) << 8) | ((tmp & 0x0000000000FF0000ULL) << 24) | ((tmp & 0x000000000000FF00ULL) << 40) | ((tmp & 0x00000000000000FFULL) << 54); } static inline int64_t glue(ld32rs, MEMSUFFIX) (target_ulong EA) { uint32_t tmp = glue(ldl, MEMSUFFIX)(EA); return (int32_t)((tmp & 0xFF000000) >> 24) | ((tmp & 0x00FF0000) >> 8) | ((tmp & 0x0000FF00) << 8) | ((tmp & 0x000000FF) << 24); } #endif static inline void glue(st16r, MEMSUFFIX) (target_ulong EA, uint16_t data) { uint16_t tmp = ((data & 0xFF00) >> 8) | ((data & 0x00FF) << 8); glue(stw, MEMSUFFIX)(EA, tmp); } static inline void glue(st32r, MEMSUFFIX) (target_ulong EA, uint32_t data) { uint32_t tmp = ((data & 0xFF000000) >> 24) | ((data & 0x00FF0000) >> 8) | ((data & 0x0000FF00) << 8) | ((data & 0x000000FF) << 24); glue(stl, MEMSUFFIX)(EA, tmp); } #if defined(TARGET_PPC64) static inline void glue(st64r, MEMSUFFIX) (target_ulong EA, uint64_t data) { uint64_t tmp = ((data & 0xFF00000000000000ULL) >> 56) | ((data & 0x00FF000000000000ULL) >> 40) | ((data & 0x0000FF0000000000ULL) >> 24) | ((data & 0x000000FF00000000ULL) >> 8) | ((data & 0x00000000FF000000ULL) << 8) | ((data & 0x0000000000FF0000ULL) << 24) | ((data & 0x000000000000FF00ULL) << 40) | ((data & 0x00000000000000FFULL) << 56); glue(stq, MEMSUFFIX)(EA, tmp); } #endif /*** Integer load ***/ #define PPC_LD_OP(name, op) \ void OPPROTO glue(glue(op_l, name), MEMSUFFIX) (void) \ { \ T1 = glue(op, MEMSUFFIX)((uint32_t)T0); \ RETURN(); \ } #if defined(TARGET_PPC64) #define PPC_LD_OP_64(name, op) \ void OPPROTO glue(glue(glue(op_l, name), _64), MEMSUFFIX) (void) \ { \ T1 = glue(op, MEMSUFFIX)((uint64_t)T0); \ RETURN(); \ } #endif #define PPC_ST_OP(name, op) \ void OPPROTO glue(glue(op_st, name), MEMSUFFIX) (void) \ { \ glue(op, MEMSUFFIX)((uint32_t)T0, T1); \ RETURN(); \ } #if defined(TARGET_PPC64) #define PPC_ST_OP_64(name, op) \ void OPPROTO glue(glue(glue(op_st, name), _64), MEMSUFFIX) (void) \ { \ glue(op, MEMSUFFIX)((uint64_t)T0, T1); \ RETURN(); \ } #endif PPC_LD_OP(bz, ldub); PPC_LD_OP(ha, ldsw); PPC_LD_OP(hz, lduw); PPC_LD_OP(wz, ldl); #if defined(TARGET_PPC64) PPC_LD_OP(d, ldq); PPC_LD_OP(wa, ldsl); PPC_LD_OP_64(d, ldq); PPC_LD_OP_64(wa, ldsl); PPC_LD_OP_64(bz, ldub); PPC_LD_OP_64(ha, ldsw); PPC_LD_OP_64(hz, lduw); PPC_LD_OP_64(wz, ldl); #endif PPC_LD_OP(ha_le, ld16rs); PPC_LD_OP(hz_le, ld16r); PPC_LD_OP(wz_le, ld32r); #if defined(TARGET_PPC64) PPC_LD_OP(d_le, ld64r); PPC_LD_OP(wa_le, ld32rs); PPC_LD_OP_64(d_le, ld64r); PPC_LD_OP_64(wa_le, ld32rs); PPC_LD_OP_64(ha_le, ld16rs); PPC_LD_OP_64(hz_le, ld16r); PPC_LD_OP_64(wz_le, ld32r); #endif /*** Integer store ***/ PPC_ST_OP(b, stb); PPC_ST_OP(h, stw); PPC_ST_OP(w, stl); #if defined(TARGET_PPC64) PPC_ST_OP(d, stq); PPC_ST_OP_64(d, stq); PPC_ST_OP_64(b, stb); PPC_ST_OP_64(h, stw); PPC_ST_OP_64(w, stl); #endif PPC_ST_OP(h_le, st16r); PPC_ST_OP(w_le, st32r); #if defined(TARGET_PPC64) PPC_ST_OP(d_le, st64r); PPC_ST_OP_64(d_le, st64r); PPC_ST_OP_64(h_le, st16r); PPC_ST_OP_64(w_le, st32r); #endif /*** Integer load and store with byte reverse ***/ PPC_LD_OP(hbr, ld16r); PPC_LD_OP(wbr, ld32r); PPC_ST_OP(hbr, st16r); PPC_ST_OP(wbr, st32r); #if defined(TARGET_PPC64) PPC_LD_OP_64(hbr, ld16r); PPC_LD_OP_64(wbr, ld32r); PPC_ST_OP_64(hbr, st16r); PPC_ST_OP_64(wbr, st32r); #endif PPC_LD_OP(hbr_le, lduw); PPC_LD_OP(wbr_le, ldl); PPC_ST_OP(hbr_le, stw); PPC_ST_OP(wbr_le, stl); #if defined(TARGET_PPC64) PPC_LD_OP_64(hbr_le, lduw); PPC_LD_OP_64(wbr_le, ldl); PPC_ST_OP_64(hbr_le, stw); PPC_ST_OP_64(wbr_le, stl); #endif /*** Integer load and store multiple ***/ void OPPROTO glue(op_lmw, MEMSUFFIX) (void) { glue(do_lmw, MEMSUFFIX)(PARAM1); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO glue(op_lmw_64, MEMSUFFIX) (void) { glue(do_lmw_64, MEMSUFFIX)(PARAM1); RETURN(); } #endif void OPPROTO glue(op_lmw_le, MEMSUFFIX) (void) { glue(do_lmw_le, MEMSUFFIX)(PARAM1); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO glue(op_lmw_le_64, MEMSUFFIX) (void) { glue(do_lmw_le_64, MEMSUFFIX)(PARAM1); RETURN(); } #endif void OPPROTO glue(op_stmw, MEMSUFFIX) (void) { glue(do_stmw, MEMSUFFIX)(PARAM1); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO glue(op_stmw_64, MEMSUFFIX) (void) { glue(do_stmw_64, MEMSUFFIX)(PARAM1); RETURN(); } #endif void OPPROTO glue(op_stmw_le, MEMSUFFIX) (void) { glue(do_stmw_le, MEMSUFFIX)(PARAM1); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO glue(op_stmw_le_64, MEMSUFFIX) (void) { glue(do_stmw_le_64, MEMSUFFIX)(PARAM1); RETURN(); } #endif /*** Integer load and store strings ***/ void OPPROTO glue(op_lswi, MEMSUFFIX) (void) { glue(do_lsw, MEMSUFFIX)(PARAM1); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO glue(op_lswi_64, MEMSUFFIX) (void) { glue(do_lsw_64, MEMSUFFIX)(PARAM1); RETURN(); } #endif void OPPROTO glue(op_lswi_le, MEMSUFFIX) (void) { glue(do_lsw_le, MEMSUFFIX)(PARAM1); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO glue(op_lswi_le_64, MEMSUFFIX) (void) { glue(do_lsw_le_64, MEMSUFFIX)(PARAM1); RETURN(); } #endif /* PPC32 specification says we must generate an exception if * rA is in the range of registers to be loaded. * In an other hand, IBM says this is valid, but rA won't be loaded. * For now, I'll follow the spec... */ void OPPROTO glue(op_lswx, MEMSUFFIX) (void) { /* Note: T1 comes from xer_bc then no cast is needed */ if (likely(T1 != 0)) { if (unlikely((PARAM1 < PARAM2 && (PARAM1 + T1) > PARAM2) || (PARAM1 < PARAM3 && (PARAM1 + T1) > PARAM3))) { do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_LSWX); } else { glue(do_lsw, MEMSUFFIX)(PARAM1); } } RETURN(); } #if defined(TARGET_PPC64) void OPPROTO glue(op_lswx_64, MEMSUFFIX) (void) { /* Note: T1 comes from xer_bc then no cast is needed */ if (likely(T1 != 0)) { if (unlikely((PARAM1 < PARAM2 && (PARAM1 + T1) > PARAM2) || (PARAM1 < PARAM3 && (PARAM1 + T1) > PARAM3))) { do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_LSWX); } else { glue(do_lsw_64, MEMSUFFIX)(PARAM1); } } RETURN(); } #endif void OPPROTO glue(op_lswx_le, MEMSUFFIX) (void) { /* Note: T1 comes from xer_bc then no cast is needed */ if (likely(T1 != 0)) { if (unlikely((PARAM1 < PARAM2 && (PARAM1 + T1) > PARAM2) || (PARAM1 < PARAM3 && (PARAM1 + T1) > PARAM3))) { do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_LSWX); } else { glue(do_lsw_le, MEMSUFFIX)(PARAM1); } } RETURN(); } #if defined(TARGET_PPC64) void OPPROTO glue(op_lswx_le_64, MEMSUFFIX) (void) { /* Note: T1 comes from xer_bc then no cast is needed */ if (likely(T1 != 0)) { if (unlikely((PARAM1 < PARAM2 && (PARAM1 + T1) > PARAM2) || (PARAM1 < PARAM3 && (PARAM1 + T1) > PARAM3))) { do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_LSWX); } else { glue(do_lsw_le_64, MEMSUFFIX)(PARAM1); } } RETURN(); } #endif void OPPROTO glue(op_stsw, MEMSUFFIX) (void) { glue(do_stsw, MEMSUFFIX)(PARAM1); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO glue(op_stsw_64, MEMSUFFIX) (void) { glue(do_stsw_64, MEMSUFFIX)(PARAM1); RETURN(); } #endif void OPPROTO glue(op_stsw_le, MEMSUFFIX) (void) { glue(do_stsw_le, MEMSUFFIX)(PARAM1); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO glue(op_stsw_le_64, MEMSUFFIX) (void) { glue(do_stsw_le_64, MEMSUFFIX)(PARAM1); RETURN(); } #endif /*** Floating-point store ***/ #define PPC_STF_OP(name, op) \ void OPPROTO glue(glue(op_st, name), MEMSUFFIX) (void) \ { \ glue(op, MEMSUFFIX)((uint32_t)T0, FT0); \ RETURN(); \ } #if defined(TARGET_PPC64) #define PPC_STF_OP_64(name, op) \ void OPPROTO glue(glue(glue(op_st, name), _64), MEMSUFFIX) (void) \ { \ glue(op, MEMSUFFIX)((uint64_t)T0, FT0); \ RETURN(); \ } #endif PPC_STF_OP(fd, stfq); PPC_STF_OP(fs, stfl); #if defined(TARGET_PPC64) PPC_STF_OP_64(fd, stfq); PPC_STF_OP_64(fs, stfl); #endif static inline void glue(stfqr, MEMSUFFIX) (target_ulong EA, double d) { union { double d; uint64_t u; } u; u.d = d; u.u = ((u.u & 0xFF00000000000000ULL) >> 56) | ((u.u & 0x00FF000000000000ULL) >> 40) | ((u.u & 0x0000FF0000000000ULL) >> 24) | ((u.u & 0x000000FF00000000ULL) >> 8) | ((u.u & 0x00000000FF000000ULL) << 8) | ((u.u & 0x0000000000FF0000ULL) << 24) | ((u.u & 0x000000000000FF00ULL) << 40) | ((u.u & 0x00000000000000FFULL) << 56); glue(stfq, MEMSUFFIX)(EA, u.d); } static inline void glue(stflr, MEMSUFFIX) (target_ulong EA, float f) { union { float f; uint32_t u; } u; u.f = f; u.u = ((u.u & 0xFF000000UL) >> 24) | ((u.u & 0x00FF0000ULL) >> 8) | ((u.u & 0x0000FF00UL) << 8) | ((u.u & 0x000000FFULL) << 24); glue(stfl, MEMSUFFIX)(EA, u.f); } PPC_STF_OP(fd_le, stfqr); PPC_STF_OP(fs_le, stflr); #if defined(TARGET_PPC64) PPC_STF_OP_64(fd_le, stfqr); PPC_STF_OP_64(fs_le, stflr); #endif /*** Floating-point load ***/ #define PPC_LDF_OP(name, op) \ void OPPROTO glue(glue(op_l, name), MEMSUFFIX) (void) \ { \ FT0 = glue(op, MEMSUFFIX)((uint32_t)T0); \ RETURN(); \ } #if defined(TARGET_PPC64) #define PPC_LDF_OP_64(name, op) \ void OPPROTO glue(glue(glue(op_l, name), _64), MEMSUFFIX) (void) \ { \ FT0 = glue(op, MEMSUFFIX)((uint64_t)T0); \ RETURN(); \ } #endif PPC_LDF_OP(fd, ldfq); PPC_LDF_OP(fs, ldfl); #if defined(TARGET_PPC64) PPC_LDF_OP_64(fd, ldfq); PPC_LDF_OP_64(fs, ldfl); #endif static inline double glue(ldfqr, MEMSUFFIX) (target_ulong EA) { union { double d; uint64_t u; } u; u.d = glue(ldfq, MEMSUFFIX)(EA); u.u = ((u.u & 0xFF00000000000000ULL) >> 56) | ((u.u & 0x00FF000000000000ULL) >> 40) | ((u.u & 0x0000FF0000000000ULL) >> 24) | ((u.u & 0x000000FF00000000ULL) >> 8) | ((u.u & 0x00000000FF000000ULL) << 8) | ((u.u & 0x0000000000FF0000ULL) << 24) | ((u.u & 0x000000000000FF00ULL) << 40) | ((u.u & 0x00000000000000FFULL) << 56); return u.d; } static inline float glue(ldflr, MEMSUFFIX) (target_ulong EA) { union { float f; uint32_t u; } u; u.f = glue(ldfl, MEMSUFFIX)(EA); u.u = ((u.u & 0xFF000000UL) >> 24) | ((u.u & 0x00FF0000ULL) >> 8) | ((u.u & 0x0000FF00UL) << 8) | ((u.u & 0x000000FFULL) << 24); return u.f; } PPC_LDF_OP(fd_le, ldfqr); PPC_LDF_OP(fs_le, ldflr); #if defined(TARGET_PPC64) PPC_LDF_OP_64(fd_le, ldfqr); PPC_LDF_OP_64(fs_le, ldflr); #endif /* Load and set reservation */ void OPPROTO glue(op_lwarx, MEMSUFFIX) (void) { if (unlikely(T0 & 0x03)) { do_raise_exception(EXCP_ALIGN); } else { T1 = glue(ldl, MEMSUFFIX)((uint32_t)T0); regs->reserve = (uint32_t)T0; } RETURN(); } #if defined(TARGET_PPC64) void OPPROTO glue(op_lwarx_64, MEMSUFFIX) (void) { if (unlikely(T0 & 0x03)) { do_raise_exception(EXCP_ALIGN); } else { T1 = glue(ldl, MEMSUFFIX)((uint64_t)T0); regs->reserve = (uint64_t)T0; } RETURN(); } void OPPROTO glue(op_ldarx_64, MEMSUFFIX) (void) { if (unlikely(T0 & 0x03)) { do_raise_exception(EXCP_ALIGN); } else { T1 = glue(ldq, MEMSUFFIX)((uint64_t)T0); regs->reserve = (uint64_t)T0; } RETURN(); } #endif void OPPROTO glue(op_lwarx_le, MEMSUFFIX) (void) { if (unlikely(T0 & 0x03)) { do_raise_exception(EXCP_ALIGN); } else { T1 = glue(ld32r, MEMSUFFIX)((uint32_t)T0); regs->reserve = (uint32_t)T0; } RETURN(); } #if defined(TARGET_PPC64) void OPPROTO glue(op_lwarx_le_64, MEMSUFFIX) (void) { if (unlikely(T0 & 0x03)) { do_raise_exception(EXCP_ALIGN); } else { T1 = glue(ld32r, MEMSUFFIX)((uint64_t)T0); regs->reserve = (uint64_t)T0; } RETURN(); } void OPPROTO glue(op_ldarx_le_64, MEMSUFFIX) (void) { if (unlikely(T0 & 0x03)) { do_raise_exception(EXCP_ALIGN); } else { T1 = glue(ld64r, MEMSUFFIX)((uint64_t)T0); regs->reserve = (uint64_t)T0; } RETURN(); } #endif /* Store with reservation */ void OPPROTO glue(op_stwcx, MEMSUFFIX) (void) { if (unlikely(T0 & 0x03)) { do_raise_exception(EXCP_ALIGN); } else { if (unlikely(regs->reserve != (uint32_t)T0)) { env->crf[0] = xer_ov; } else { glue(stl, MEMSUFFIX)((uint32_t)T0, T1); env->crf[0] = xer_ov | 0x02; } } regs->reserve = -1; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO glue(op_stwcx_64, MEMSUFFIX) (void) { if (unlikely(T0 & 0x03)) { do_raise_exception(EXCP_ALIGN); } else { if (unlikely(regs->reserve != (uint64_t)T0)) { env->crf[0] = xer_ov; } else { glue(stl, MEMSUFFIX)((uint64_t)T0, T1); env->crf[0] = xer_ov | 0x02; } } regs->reserve = -1; RETURN(); } void OPPROTO glue(op_stdcx_64, MEMSUFFIX) (void) { if (unlikely(T0 & 0x03)) { do_raise_exception(EXCP_ALIGN); } else { if (unlikely(regs->reserve != (uint64_t)T0)) { env->crf[0] = xer_ov; } else { glue(stq, MEMSUFFIX)((uint64_t)T0, T1); env->crf[0] = xer_ov | 0x02; } } regs->reserve = -1; RETURN(); } #endif void OPPROTO glue(op_stwcx_le, MEMSUFFIX) (void) { if (unlikely(T0 & 0x03)) { do_raise_exception(EXCP_ALIGN); } else { if (unlikely(regs->reserve != (uint32_t)T0)) { env->crf[0] = xer_ov; } else { glue(st32r, MEMSUFFIX)((uint32_t)T0, T1); env->crf[0] = xer_ov | 0x02; } } regs->reserve = -1; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO glue(op_stwcx_le_64, MEMSUFFIX) (void) { if (unlikely(T0 & 0x03)) { do_raise_exception(EXCP_ALIGN); } else { if (unlikely(regs->reserve != (uint64_t)T0)) { env->crf[0] = xer_ov; } else { glue(st32r, MEMSUFFIX)((uint64_t)T0, T1); env->crf[0] = xer_ov | 0x02; } } regs->reserve = -1; RETURN(); } void OPPROTO glue(op_stdcx_le_64, MEMSUFFIX) (void) { if (unlikely(T0 & 0x03)) { do_raise_exception(EXCP_ALIGN); } else { if (unlikely(regs->reserve != (uint64_t)T0)) { env->crf[0] = xer_ov; } else { glue(st64r, MEMSUFFIX)((uint64_t)T0, T1); env->crf[0] = xer_ov | 0x02; } } regs->reserve = -1; RETURN(); } #endif void OPPROTO glue(op_dcbz, MEMSUFFIX) (void) { glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x00), 0); glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x04), 0); glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x08), 0); glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x0C), 0); glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x10), 0); glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x14), 0); glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x18), 0); glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x1C), 0); #if DCACHE_LINE_SIZE == 64 /* XXX: cache line size should be 64 for POWER & PowerPC 601 */ glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x20UL), 0); glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x24UL), 0); glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x28UL), 0); glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x2CUL), 0); glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x30UL), 0); glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x34UL), 0); glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x38UL), 0); glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x3CUL), 0); #endif RETURN(); } #if defined(TARGET_PPC64) void OPPROTO glue(op_dcbz_64, MEMSUFFIX) (void) { glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x00), 0); glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x04), 0); glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x08), 0); glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x0C), 0); glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x10), 0); glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x14), 0); glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x18), 0); glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x1C), 0); #if DCACHE_LINE_SIZE == 64 /* XXX: cache line size should be 64 for POWER & PowerPC 601 */ glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x20UL), 0); glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x24UL), 0); glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x28UL), 0); glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x2CUL), 0); glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x30UL), 0); glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x34UL), 0); glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x38UL), 0); glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x3CUL), 0); #endif RETURN(); } #endif /* External access */ void OPPROTO glue(op_eciwx, MEMSUFFIX) (void) { T1 = glue(ldl, MEMSUFFIX)((uint32_t)T0); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO glue(op_eciwx_64, MEMSUFFIX) (void) { T1 = glue(ldl, MEMSUFFIX)((uint64_t)T0); RETURN(); } #endif void OPPROTO glue(op_ecowx, MEMSUFFIX) (void) { glue(stl, MEMSUFFIX)((uint32_t)T0, T1); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO glue(op_ecowx_64, MEMSUFFIX) (void) { glue(stl, MEMSUFFIX)((uint64_t)T0, T1); RETURN(); } #endif void OPPROTO glue(op_eciwx_le, MEMSUFFIX) (void) { T1 = glue(ld32r, MEMSUFFIX)((uint32_t)T0); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO glue(op_eciwx_le_64, MEMSUFFIX) (void) { T1 = glue(ld32r, MEMSUFFIX)((uint64_t)T0); RETURN(); } #endif void OPPROTO glue(op_ecowx_le, MEMSUFFIX) (void) { glue(st32r, MEMSUFFIX)((uint32_t)T0, T1); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO glue(op_ecowx_le_64, MEMSUFFIX) (void) { glue(st32r, MEMSUFFIX)((uint64_t)T0, T1); RETURN(); } #endif /* XXX: those micro-ops need tests ! */ /* PowerPC 601 specific instructions (POWER bridge) */ void OPPROTO glue(op_POWER_lscbx, MEMSUFFIX) (void) { /* When byte count is 0, do nothing */ if (likely(T1 != 0)) { glue(do_POWER_lscbx, MEMSUFFIX)(PARAM1, PARAM2, PARAM3); } RETURN(); } /* POWER2 quad load and store */ /* XXX: TAGs are not managed */ void OPPROTO glue(op_POWER2_lfq, MEMSUFFIX) (void) { glue(do_POWER2_lfq, MEMSUFFIX)(); RETURN(); } void glue(op_POWER2_lfq_le, MEMSUFFIX) (void) { glue(do_POWER2_lfq_le, MEMSUFFIX)(); RETURN(); } void OPPROTO glue(op_POWER2_stfq, MEMSUFFIX) (void) { glue(do_POWER2_stfq, MEMSUFFIX)(); RETURN(); } void OPPROTO glue(op_POWER2_stfq_le, MEMSUFFIX) (void) { glue(do_POWER2_stfq_le, MEMSUFFIX)(); RETURN(); } #undef MEMSUFFIX