/* * PowerPC emulation helpers for QEMU. * * Copyright (c) 2003-2007 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include #include "cpu.h" #include "dyngen-exec.h" #include "host-utils.h" #include "helper.h" #include "helper_regs.h" #if !defined(CONFIG_USER_ONLY) #include "softmmu_exec.h" #endif /* !defined(CONFIG_USER_ONLY) */ //#define DEBUG_OP /*****************************************************************************/ /* SPR accesses */ void helper_load_dump_spr(uint32_t sprn) { qemu_log("Read SPR %d %03x => " TARGET_FMT_lx "\n", sprn, sprn, env->spr[sprn]); } void helper_store_dump_spr(uint32_t sprn) { qemu_log("Write SPR %d %03x <= " TARGET_FMT_lx "\n", sprn, sprn, env->spr[sprn]); } target_ulong helper_load_tbl(void) { return (target_ulong)cpu_ppc_load_tbl(env); } target_ulong helper_load_tbu(void) { return cpu_ppc_load_tbu(env); } target_ulong helper_load_atbl(void) { return (target_ulong)cpu_ppc_load_atbl(env); } target_ulong helper_load_atbu(void) { return cpu_ppc_load_atbu(env); } #if defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY) target_ulong helper_load_purr(void) { return (target_ulong)cpu_ppc_load_purr(env); } #endif target_ulong helper_load_601_rtcl(void) { return cpu_ppc601_load_rtcl(env); } target_ulong helper_load_601_rtcu(void) { return cpu_ppc601_load_rtcu(env); } #if !defined(CONFIG_USER_ONLY) #if defined(TARGET_PPC64) void helper_store_asr(target_ulong val) { ppc_store_asr(env, val); } #endif void helper_store_sdr1(target_ulong val) { ppc_store_sdr1(env, val); } void helper_store_tbl(target_ulong val) { cpu_ppc_store_tbl(env, val); } void helper_store_tbu(target_ulong val) { cpu_ppc_store_tbu(env, val); } void helper_store_atbl(target_ulong val) { cpu_ppc_store_atbl(env, val); } void helper_store_atbu(target_ulong val) { cpu_ppc_store_atbu(env, val); } void helper_store_601_rtcl(target_ulong val) { cpu_ppc601_store_rtcl(env, val); } void helper_store_601_rtcu(target_ulong val) { cpu_ppc601_store_rtcu(env, val); } target_ulong helper_load_decr(void) { return cpu_ppc_load_decr(env); } void helper_store_decr(target_ulong val) { cpu_ppc_store_decr(env, val); } void helper_store_hid0_601(target_ulong val) { target_ulong hid0; hid0 = env->spr[SPR_HID0]; if ((val ^ hid0) & 0x00000008) { /* Change current endianness */ env->hflags &= ~(1 << MSR_LE); env->hflags_nmsr &= ~(1 << MSR_LE); env->hflags_nmsr |= (1 << MSR_LE) & (((val >> 3) & 1) << MSR_LE); env->hflags |= env->hflags_nmsr; qemu_log("%s: set endianness to %c => " TARGET_FMT_lx "\n", __func__, val & 0x8 ? 'l' : 'b', env->hflags); } env->spr[SPR_HID0] = (uint32_t)val; } void helper_store_403_pbr(uint32_t num, target_ulong value) { if (likely(env->pb[num] != value)) { env->pb[num] = value; /* Should be optimized */ tlb_flush(env, 1); } } target_ulong helper_load_40x_pit(void) { return load_40x_pit(env); } void helper_store_40x_pit(target_ulong val) { store_40x_pit(env, val); } void helper_store_40x_dbcr0(target_ulong val) { store_40x_dbcr0(env, val); } void helper_store_40x_sler(target_ulong val) { store_40x_sler(env, val); } void helper_store_booke_tcr(target_ulong val) { store_booke_tcr(env, val); } void helper_store_booke_tsr(target_ulong val) { store_booke_tsr(env, val); } #endif /*****************************************************************************/ /* Memory load and stores */ static inline target_ulong addr_add(target_ulong addr, target_long arg) { #if defined(TARGET_PPC64) if (!msr_sf) { return (uint32_t)(addr + arg); } else #endif { return addr + arg; } } void helper_lmw(target_ulong addr, uint32_t reg) { for (; reg < 32; reg++) { if (msr_le) { env->gpr[reg] = bswap32(ldl(addr)); } else { env->gpr[reg] = ldl(addr); } addr = addr_add(addr, 4); } } void helper_stmw(target_ulong addr, uint32_t reg) { for (; reg < 32; reg++) { if (msr_le) { stl(addr, bswap32((uint32_t)env->gpr[reg])); } else { stl(addr, (uint32_t)env->gpr[reg]); } addr = addr_add(addr, 4); } } void helper_lsw(target_ulong addr, uint32_t nb, uint32_t reg) { int sh; for (; nb > 3; nb -= 4) { env->gpr[reg] = ldl(addr); reg = (reg + 1) % 32; addr = addr_add(addr, 4); } if (unlikely(nb > 0)) { env->gpr[reg] = 0; for (sh = 24; nb > 0; nb--, sh -= 8) { env->gpr[reg] |= ldub(addr) << sh; addr = addr_add(addr, 1); } } } /* PPC32 specification says we must generate an exception if * rA is in the range of registers to be loaded. * In an other hand, IBM says this is valid, but rA won't be loaded. * For now, I'll follow the spec... */ void helper_lswx(target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb) { if (likely(xer_bc != 0)) { if (unlikely((ra != 0 && reg < ra && (reg + xer_bc) > ra) || (reg < rb && (reg + xer_bc) > rb))) { helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_LSWX); } else { helper_lsw(addr, xer_bc, reg); } } } void helper_stsw(target_ulong addr, uint32_t nb, uint32_t reg) { int sh; for (; nb > 3; nb -= 4) { stl(addr, env->gpr[reg]); reg = (reg + 1) % 32; addr = addr_add(addr, 4); } if (unlikely(nb > 0)) { for (sh = 24; nb > 0; nb--, sh -= 8) { stb(addr, (env->gpr[reg] >> sh) & 0xFF); addr = addr_add(addr, 1); } } } static void do_dcbz(target_ulong addr, int dcache_line_size) { int i; addr &= ~(dcache_line_size - 1); for (i = 0; i < dcache_line_size; i += 4) { stl(addr + i, 0); } if (env->reserve_addr == addr) { env->reserve_addr = (target_ulong)-1ULL; } } void helper_dcbz(target_ulong addr) { do_dcbz(addr, env->dcache_line_size); } void helper_dcbz_970(target_ulong addr) { if (((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) { do_dcbz(addr, 32); } else { do_dcbz(addr, env->dcache_line_size); } } void helper_icbi(target_ulong addr) { addr &= ~(env->dcache_line_size - 1); /* Invalidate one cache line : * PowerPC specification says this is to be treated like a load * (not a fetch) by the MMU. To be sure it will be so, * do the load "by hand". */ ldl(addr); } /* XXX: to be tested */ target_ulong helper_lscbx(target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb) { int i, c, d; d = 24; for (i = 0; i < xer_bc; i++) { c = ldub(addr); addr = addr_add(addr, 1); /* ra (if not 0) and rb are never modified */ if (likely(reg != rb && (ra == 0 || reg != ra))) { env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d); } if (unlikely(c == xer_cmp)) { break; } if (likely(d != 0)) { d -= 8; } else { d = 24; reg++; reg = reg & 0x1F; } } return i; } /*****************************************************************************/ /* PowerPC 601 specific instructions (POWER bridge) */ target_ulong helper_clcs(uint32_t arg) { switch (arg) { case 0x0CUL: /* Instruction cache line size */ return env->icache_line_size; break; case 0x0DUL: /* Data cache line size */ return env->dcache_line_size; break; case 0x0EUL: /* Minimum cache line size */ return (env->icache_line_size < env->dcache_line_size) ? env->icache_line_size : env->dcache_line_size; break; case 0x0FUL: /* Maximum cache line size */ return (env->icache_line_size > env->dcache_line_size) ? env->icache_line_size : env->dcache_line_size; break; default: /* Undefined */ return 0; break; } } /*****************************************************************************/ /* Embedded PowerPC specific helpers */ /* XXX: to be improved to check access rights when in user-mode */ target_ulong helper_load_dcr(target_ulong dcrn) { uint32_t val = 0; if (unlikely(env->dcr_env == NULL)) { qemu_log("No DCR environment\n"); helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); } else if (unlikely(ppc_dcr_read(env->dcr_env, (uint32_t)dcrn, &val) != 0)) { qemu_log("DCR read error %d %03x\n", (uint32_t)dcrn, (uint32_t)dcrn); helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG); } return val; } void helper_store_dcr(target_ulong dcrn, target_ulong val) { if (unlikely(env->dcr_env == NULL)) { qemu_log("No DCR environment\n"); helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); } else if (unlikely(ppc_dcr_write(env->dcr_env, (uint32_t)dcrn, (uint32_t)val) != 0)) { qemu_log("DCR write error %d %03x\n", (uint32_t)dcrn, (uint32_t)dcrn); helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG); } } /*****************************************************************************/ /* Altivec extension helpers */ #if defined(HOST_WORDS_BIGENDIAN) #define HI_IDX 0 #define LO_IDX 1 #else #define HI_IDX 1 #define LO_IDX 0 #endif #define LVE(name, access, swap, element) \ void helper_##name(ppc_avr_t *r, target_ulong addr) \ { \ size_t n_elems = ARRAY_SIZE(r->element); \ int adjust = HI_IDX*(n_elems - 1); \ int sh = sizeof(r->element[0]) >> 1; \ int index = (addr & 0xf) >> sh; \ \ if (msr_le) { \ r->element[LO_IDX ? index : (adjust - index)] = \ swap(access(addr)); \ } else { \ r->element[LO_IDX ? index : (adjust - index)] = \ access(addr); \ } \ } #define I(x) (x) LVE(lvebx, ldub, I, u8) LVE(lvehx, lduw, bswap16, u16) LVE(lvewx, ldl, bswap32, u32) #undef I #undef LVE #define STVE(name, access, swap, element) \ void helper_##name(ppc_avr_t *r, target_ulong addr) \ { \ size_t n_elems = ARRAY_SIZE(r->element); \ int adjust = HI_IDX * (n_elems - 1); \ int sh = sizeof(r->element[0]) >> 1; \ int index = (addr & 0xf) >> sh; \ \ if (msr_le) { \ access(addr, swap(r->element[LO_IDX ? index : (adjust - index)])); \ } else { \ access(addr, r->element[LO_IDX ? index : (adjust - index)]); \ } \ } #define I(x) (x) STVE(stvebx, stb, I, u8) STVE(stvehx, stw, bswap16, u16) STVE(stvewx, stl, bswap32, u32) #undef I #undef LVE #undef HI_IDX #undef LO_IDX /*****************************************************************************/ /* Softmmu support */ #if !defined(CONFIG_USER_ONLY) #define MMUSUFFIX _mmu #define SHIFT 0 #include "softmmu_template.h" #define SHIFT 1 #include "softmmu_template.h" #define SHIFT 2 #include "softmmu_template.h" #define SHIFT 3 #include "softmmu_template.h" /* try to fill the TLB and return an exception if error. If retaddr is NULL, it means that the function was called in C code (i.e. not from generated code or from helper.c) */ /* XXX: fix it to restore all registers */ void tlb_fill(CPUPPCState *env1, target_ulong addr, int is_write, int mmu_idx, uintptr_t retaddr) { TranslationBlock *tb; CPUPPCState *saved_env; int ret; saved_env = env; env = env1; ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx); if (unlikely(ret != 0)) { if (likely(retaddr)) { /* now we have a real cpu fault */ tb = tb_find_pc(retaddr); if (likely(tb)) { /* the PC is inside the translated code. It means that we have a virtual CPU fault */ cpu_restore_state(tb, env, retaddr); } } helper_raise_exception_err(env, env->exception_index, env->error_code); } env = saved_env; } #endif /* !CONFIG_USER_ONLY */