/*
 *  PowerPC emulation helpers for qemu.
 * 
 *  Copyright (c) 2003-2007 Jocelyn Mayer
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include "exec.h"

#include "op_helper.h"

#define MEMSUFFIX _raw
#include "op_helper.h"
#include "op_helper_mem.h"
#if !defined(CONFIG_USER_ONLY)
#define MEMSUFFIX _user
#include "op_helper.h"
#include "op_helper_mem.h"
#define MEMSUFFIX _kernel
#include "op_helper.h"
#include "op_helper_mem.h"
#endif

//#define DEBUG_OP
//#define DEBUG_EXCEPTIONS
//#define DEBUG_SOFTWARE_TLB
//#define FLUSH_ALL_TLBS

/*****************************************************************************/
/* Exceptions processing helpers */
void cpu_loop_exit (void)
{
    longjmp(env->jmp_env, 1);
}

void do_raise_exception_err (uint32_t exception, int error_code)
{
#if 0
    printf("Raise exception %3x code : %d\n", exception, error_code);
#endif
    switch (exception) {
    case EXCP_PROGRAM:
        if (error_code == EXCP_FP && msr_fe0 == 0 && msr_fe1 == 0)
            return;
        break;
    default:
        break;
    }
    env->exception_index = exception;
    env->error_code = error_code;
    cpu_loop_exit();
}

void do_raise_exception (uint32_t exception)
{
    do_raise_exception_err(exception, 0);
}

/*****************************************************************************/
/* Registers load and stores */
void do_load_cr (void)
{
    T0 = (env->crf[0] << 28) |
        (env->crf[1] << 24) |
        (env->crf[2] << 20) |
        (env->crf[3] << 16) |
        (env->crf[4] << 12) |
        (env->crf[5] << 8) |
        (env->crf[6] << 4) |
        (env->crf[7] << 0);
}

void do_store_cr (uint32_t mask)
{
    int i, sh;

    for (i = 0, sh = 7; i < 8; i++, sh --) {
        if (mask & (1 << sh))
            env->crf[i] = (T0 >> (sh * 4)) & 0xFUL;
    }
}

void do_load_xer (void)
{
    T0 = (xer_so << XER_SO) |
        (xer_ov << XER_OV) |
        (xer_ca << XER_CA) |
        (xer_bc << XER_BC) |
        (xer_cmp << XER_CMP);
}

void do_store_xer (void)
{
    xer_so = (T0 >> XER_SO) & 0x01;
    xer_ov = (T0 >> XER_OV) & 0x01;
    xer_ca = (T0 >> XER_CA) & 0x01;
    xer_cmp = (T0 >> XER_CMP) & 0xFF;
    xer_bc = (T0 >> XER_BC) & 0x7F;
}

void do_load_fpscr (void)
{
    /* The 32 MSB of the target fpr are undefined.
     * They'll be zero...
     */
    union {
        float64 d;
        struct {
            uint32_t u[2];
        } s;
    } u;
    int i;

#if defined(WORDS_BIGENDIAN)
#define WORD0 0
#define WORD1 1
#else
#define WORD0 1
#define WORD1 0
#endif
    u.s.u[WORD0] = 0;
    u.s.u[WORD1] = 0;
    for (i = 0; i < 8; i++)
        u.s.u[WORD1] |= env->fpscr[i] << (4 * i);
    FT0 = u.d;
}

void do_store_fpscr (uint32_t mask)
{
    /*
     * We use only the 32 LSB of the incoming fpr
     */
    union {
        double d;
        struct {
            uint32_t u[2];
        } s;
    } u;
    int i, rnd_type;

    u.d = FT0;
    if (mask & 0x80)
        env->fpscr[0] = (env->fpscr[0] & 0x9) | ((u.s.u[WORD1] >> 28) & ~0x9);
    for (i = 1; i < 7; i++) {
        if (mask & (1 << (7 - i)))
            env->fpscr[i] = (u.s.u[WORD1] >> (4 * (7 - i))) & 0xF;
    }
    /* TODO: update FEX & VX */
    /* Set rounding mode */
    switch (env->fpscr[0] & 0x3) {
    case 0:
        /* Best approximation (round to nearest) */
        rnd_type = float_round_nearest_even;
        break;
    case 1:
        /* Smaller magnitude (round toward zero) */
        rnd_type = float_round_to_zero;
        break;
    case 2:
        /* Round toward +infinite */
        rnd_type = float_round_up;
        break;
    default:
    case 3:
        /* Round toward -infinite */
        rnd_type = float_round_down;
        break;
    }
    set_float_rounding_mode(rnd_type, &env->fp_status);
}

/*****************************************************************************/
/* Fixed point operations helpers */
#if defined(TARGET_PPC64)
static void add128 (uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b)
{
    *plow += a;
    /* carry test */
    if (*plow < a)
        (*phigh)++;
    *phigh += b;
}

static void neg128 (uint64_t *plow, uint64_t *phigh)
{
    *plow = ~ *plow;
    *phigh = ~ *phigh;
    add128(plow, phigh, 1, 0);
}

static void mul64 (uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b)
{
    uint32_t a0, a1, b0, b1;
    uint64_t v;

    a0 = a;
    a1 = a >> 32;

    b0 = b;
    b1 = b >> 32;
    
    v = (uint64_t)a0 * (uint64_t)b0;
    *plow = v;
    *phigh = 0;

    v = (uint64_t)a0 * (uint64_t)b1;
    add128(plow, phigh, v << 32, v >> 32);

    v = (uint64_t)a1 * (uint64_t)b0;
    add128(plow, phigh, v << 32, v >> 32);

    v = (uint64_t)a1 * (uint64_t)b1;
    *phigh += v;
#if defined(DEBUG_MULDIV)
    printf("mul: 0x%016llx * 0x%016llx = 0x%016llx%016llx\n",
           a, b, *phigh, *plow);
#endif
}

void do_mul64 (uint64_t *plow, uint64_t *phigh)
{
    mul64(plow, phigh, T0, T1);
}

static void imul64 (uint64_t *plow, uint64_t *phigh, int64_t a, int64_t b)
{
    int sa, sb;
    sa = (a < 0);
    if (sa)
        a = -a;
    sb = (b < 0);
    if (sb)
        b = -b;
    mul64(plow, phigh, a, b);
    if (sa ^ sb) {
        neg128(plow, phigh);
    }
}

void do_imul64 (uint64_t *plow, uint64_t *phigh)
{
    imul64(plow, phigh, T0, T1);
}
#endif

void do_adde (void)
{
    T2 = T0;
    T0 += T1 + xer_ca;
    if (likely(!((uint32_t)T0 < (uint32_t)T2 ||
                 (xer_ca == 1 && (uint32_t)T0 == (uint32_t)T2)))) {
        xer_ca = 0;
    } else {
        xer_ca = 1;
    }
}

#if defined(TARGET_PPC64)
void do_adde_64 (void)
{
    T2 = T0;
    T0 += T1 + xer_ca;
    if (likely(!((uint64_t)T0 < (uint64_t)T2 ||
                 (xer_ca == 1 && (uint64_t)T0 == (uint64_t)T2)))) {
        xer_ca = 0;
    } else {
        xer_ca = 1;
    }
}
#endif

void do_addmeo (void)
{
    T1 = T0;
    T0 += xer_ca + (-1);
    if (likely(!((uint32_t)T1 &
                 ((uint32_t)T1 ^ (uint32_t)T0) & (1UL << 31)))) {
        xer_ov = 0;
    } else {
        xer_so = 1;
        xer_ov = 1;
    }
    if (likely(T1 != 0))
        xer_ca = 1;
}

#if defined(TARGET_PPC64)
void do_addmeo_64 (void)
{
    T1 = T0;
    T0 += xer_ca + (-1);
    if (likely(!((uint64_t)T1 &
                 ((uint64_t)T1 ^ (uint64_t)T0) & (1ULL << 63)))) {
        xer_ov = 0;
    } else {
        xer_so = 1;
        xer_ov = 1;
    }
    if (likely(T1 != 0))
        xer_ca = 1;
}
#endif

void do_divwo (void)
{
    if (likely(!(((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) ||
                 (int32_t)T1 == 0))) {
        xer_ov = 0;
        T0 = (int32_t)T0 / (int32_t)T1;
    } else {
        xer_so = 1;
        xer_ov = 1;
        T0 = (-1) * ((uint32_t)T0 >> 31);
    }
}

#if defined(TARGET_PPC64)
void do_divdo (void)
{
    if (likely(!(((int64_t)T0 == INT64_MIN && (int64_t)T1 == -1ULL) ||
                 (int64_t)T1 == 0))) {
        xer_ov = 0;
        T0 = (int64_t)T0 / (int64_t)T1;
    } else {
        xer_so = 1;
        xer_ov = 1;
        T0 = (-1ULL) * ((uint64_t)T0 >> 63);
    }
}
#endif

void do_divwuo (void)
{
    if (likely((uint32_t)T1 != 0)) {
        xer_ov = 0;
        T0 = (uint32_t)T0 / (uint32_t)T1;
    } else {
        xer_so = 1;
        xer_ov = 1;
        T0 = 0;
    }
}

#if defined(TARGET_PPC64)
void do_divduo (void)
{
    if (likely((uint64_t)T1 != 0)) {
        xer_ov = 0;
        T0 = (uint64_t)T0 / (uint64_t)T1;
    } else {
        xer_so = 1;
        xer_ov = 1;
        T0 = 0;
    }
}
#endif

void do_mullwo (void)
{
    int64_t res = (int64_t)T0 * (int64_t)T1;

    if (likely((int32_t)res == res)) {
        xer_ov = 0;
    } else {
        xer_ov = 1;
        xer_so = 1;
    }
    T0 = (int32_t)res;
}

#if defined(TARGET_PPC64)
void do_mulldo (void)
{
    int64_t th;
    uint64_t tl;

    do_imul64(&tl, &th);
    if (likely(th == 0)) {
        xer_ov = 0;
    } else {
        xer_ov = 1;
        xer_so = 1;
    }
    T0 = (int64_t)tl;
}
#endif

void do_nego (void)
{
    if (likely((int32_t)T0 != INT32_MIN)) {
        xer_ov = 0;
        T0 = -(int32_t)T0;
    } else {
        xer_ov = 1;
        xer_so = 1;
    }
}

#if defined(TARGET_PPC64)
void do_nego_64 (void)
{
    if (likely((int64_t)T0 != INT64_MIN)) {
        xer_ov = 0;
        T0 = -(int64_t)T0;
    } else {
        xer_ov = 1;
        xer_so = 1;
    }
}
#endif

void do_subfe (void)
{
    T0 = T1 + ~T0 + xer_ca;
    if (likely((uint32_t)T0 >= (uint32_t)T1 &&
               (xer_ca == 0 || (uint32_t)T0 != (uint32_t)T1))) {
        xer_ca = 0;
    } else {
        xer_ca = 1;
    }
}

#if defined(TARGET_PPC64)
void do_subfe_64 (void)
{
    T0 = T1 + ~T0 + xer_ca;
    if (likely((uint64_t)T0 >= (uint64_t)T1 &&
               (xer_ca == 0 || (uint64_t)T0 != (uint64_t)T1))) {
        xer_ca = 0;
    } else {
        xer_ca = 1;
    }
}
#endif

void do_subfmeo (void)
{
    T1 = T0;
    T0 = ~T0 + xer_ca - 1;
    if (likely(!((uint32_t)~T1 & ((uint32_t)~T1 ^ (uint32_t)T0) &
                 (1UL << 31)))) {
        xer_ov = 0;
    } else {
        xer_so = 1;
        xer_ov = 1;
    }
    if (likely((uint32_t)T1 != UINT32_MAX))
        xer_ca = 1;
}

#if defined(TARGET_PPC64)
void do_subfmeo_64 (void)
{
    T1 = T0;
    T0 = ~T0 + xer_ca - 1;
    if (likely(!((uint64_t)~T1 & ((uint64_t)~T1 ^ (uint64_t)T0) &
                 (1ULL << 63)))) {
        xer_ov = 0;
    } else {
        xer_so = 1;
        xer_ov = 1;
    }
    if (likely((uint64_t)T1 != UINT64_MAX))
        xer_ca = 1;
}
#endif

void do_subfzeo (void)
{
    T1 = T0;
    T0 = ~T0 + xer_ca;
    if (likely(!(((uint32_t)~T1 ^ UINT32_MAX) &
                 ((uint32_t)(~T1) ^ (uint32_t)T0) & (1UL << 31)))) {
        xer_ov = 0;
    } else {
        xer_ov = 1;
        xer_so = 1;
    }
    if (likely((uint32_t)T0 >= (uint32_t)~T1)) {
        xer_ca = 0;
    } else {
        xer_ca = 1;
    }
}

#if defined(TARGET_PPC64)
void do_subfzeo_64 (void)
{
    T1 = T0;
    T0 = ~T0 + xer_ca;
    if (likely(!(((uint64_t)~T1 ^ UINT64_MAX) &
                 ((uint64_t)(~T1) ^ (uint64_t)T0) & (1ULL << 63)))) {
        xer_ov = 0;
    } else {
        xer_ov = 1;
        xer_so = 1;
    }
    if (likely((uint64_t)T0 >= (uint64_t)~T1)) {
        xer_ca = 0;
    } else {
        xer_ca = 1;
    }
}
#endif

/* shift right arithmetic helper */
void do_sraw (void)
{
    int32_t ret;

    if (likely(!(T1 & 0x20UL))) {
        if (likely((uint32_t)T1 != 0)) {
            ret = (int32_t)T0 >> (T1 & 0x1fUL);
            if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) {
                xer_ca = 0;
            } else {
                xer_ca = 1;
            }
        } else {
            ret = T0;
            xer_ca = 0;
        }
    } else {
        ret = (-1) * ((uint32_t)T0 >> 31);
        if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) {
            xer_ca = 0;
        } else {
            xer_ca = 1;
        }
    }
    T0 = ret;
}

#if defined(TARGET_PPC64)
void do_srad (void)
{
    int64_t ret;

    if (likely(!(T1 & 0x40UL))) {
        if (likely((uint64_t)T1 != 0)) {
            ret = (int64_t)T0 >> (T1 & 0x3FUL);
            if (likely(ret >= 0 || ((int64_t)T0 & ((1 << T1) - 1)) == 0)) {
                xer_ca = 0;
            } else {
                xer_ca = 1;
            }
        } else {
            ret = T0;
            xer_ca = 0;
        }
    } else {
        ret = (-1) * ((uint64_t)T0 >> 63);
        if (likely(ret >= 0 || ((uint64_t)T0 & ~0x8000000000000000ULL) == 0)) {
            xer_ca = 0;
        } else {
            xer_ca = 1;
        }
    }
    T0 = ret;
}
#endif

static inline int popcnt (uint32_t val)
{
    int i;

    for (i = 0; val != 0;)
        val = val ^ (val - 1);

    return i;
}

void do_popcntb (void)
{
    uint32_t ret;
    int i;

    ret = 0;
    for (i = 0; i < 32; i += 8)
        ret |= popcnt((T0 >> i) & 0xFF) << i;
    T0 = ret;
}

#if defined(TARGET_PPC64)
void do_popcntb_64 (void)
{
    uint64_t ret;
    int i;

    ret = 0;
    for (i = 0; i < 64; i += 8)
        ret |= popcnt((T0 >> i) & 0xFF) << i;
    T0 = ret;
}
#endif

/*****************************************************************************/
/* Floating point operations helpers */
void do_fctiw (void)
{
    union {
        double d;
        uint64_t i;
    } p;

    p.i = float64_to_int32(FT0, &env->fp_status);
#if USE_PRECISE_EMULATION
    /* XXX: higher bits are not supposed to be significant.
     *     to make tests easier, return the same as a real PowerPC 750 (aka G3)
     */
    p.i |= 0xFFF80000ULL << 32;
#endif
    FT0 = p.d;
}

void do_fctiwz (void)
{
    union {
        double d;
        uint64_t i;
    } p;

    p.i = float64_to_int32_round_to_zero(FT0, &env->fp_status);
#if USE_PRECISE_EMULATION
    /* XXX: higher bits are not supposed to be significant.
     *     to make tests easier, return the same as a real PowerPC 750 (aka G3)
     */
    p.i |= 0xFFF80000ULL << 32;
#endif
    FT0 = p.d;
}

#if defined(TARGET_PPC64)
void do_fcfid (void)
{
    union {
        double d;
        uint64_t i;
    } p;

    p.d = FT0;
    FT0 = int64_to_float64(p.i, &env->fp_status);
}

void do_fctid (void)
{
    union {
        double d;
        uint64_t i;
    } p;

    p.i = float64_to_int64(FT0, &env->fp_status);
    FT0 = p.d;
}

void do_fctidz (void)
{
    union {
        double d;
        uint64_t i;
    } p;

    p.i = float64_to_int64_round_to_zero(FT0, &env->fp_status);
    FT0 = p.d;
}

#endif

#if USE_PRECISE_EMULATION
void do_fmadd (void)
{
#ifdef FLOAT128
    float128 ft0_128, ft1_128;

    ft0_128 = float64_to_float128(FT0, &env->fp_status);
    ft1_128 = float64_to_float128(FT1, &env->fp_status);
    ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
    ft1_128 = float64_to_float128(FT2, &env->fp_status);
    ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
    FT0 = float128_to_float64(ft0_128, &env->fp_status);
#else
    /* This is OK on x86 hosts */
    FT0 = (FT0 * FT1) + FT2;
#endif
}

void do_fmsub (void)
{
#ifdef FLOAT128
    float128 ft0_128, ft1_128;

    ft0_128 = float64_to_float128(FT0, &env->fp_status);
    ft1_128 = float64_to_float128(FT1, &env->fp_status);
    ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
    ft1_128 = float64_to_float128(FT2, &env->fp_status);
    ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
    FT0 = float128_to_float64(ft0_128, &env->fp_status);
#else
    /* This is OK on x86 hosts */
    FT0 = (FT0 * FT1) - FT2;
#endif
}
#endif /* USE_PRECISE_EMULATION */

void do_fnmadd (void)
{
#if USE_PRECISE_EMULATION
#ifdef FLOAT128
    float128 ft0_128, ft1_128;

    ft0_128 = float64_to_float128(FT0, &env->fp_status);
    ft1_128 = float64_to_float128(FT1, &env->fp_status);
    ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
    ft1_128 = float64_to_float128(FT2, &env->fp_status);
    ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
    FT0 = float128_to_float64(ft0_128, &env->fp_status);
#else
    /* This is OK on x86 hosts */
    FT0 = (FT0 * FT1) + FT2;
#endif
#else
    FT0 = float64_mul(FT0, FT1, &env->fp_status);
    FT0 = float64_add(FT0, FT2, &env->fp_status);
#endif
    if (likely(!isnan(FT0)))
        FT0 = float64_chs(FT0);
}

void do_fnmsub (void)
{
#if USE_PRECISE_EMULATION
#ifdef FLOAT128
    float128 ft0_128, ft1_128;

    ft0_128 = float64_to_float128(FT0, &env->fp_status);
    ft1_128 = float64_to_float128(FT1, &env->fp_status);
    ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
    ft1_128 = float64_to_float128(FT2, &env->fp_status);
    ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
    FT0 = float128_to_float64(ft0_128, &env->fp_status);
#else
    /* This is OK on x86 hosts */
    FT0 = (FT0 * FT1) - FT2;
#endif
#else
    FT0 = float64_mul(FT0, FT1, &env->fp_status);
    FT0 = float64_sub(FT0, FT2, &env->fp_status);
#endif
    if (likely(!isnan(FT0)))
        FT0 = float64_chs(FT0);
}

void do_fsqrt (void)
{
    FT0 = float64_sqrt(FT0, &env->fp_status);
}

void do_fres (void)
{
    union {
        double d;
        uint64_t i;
    } p;

    if (likely(isnormal(FT0))) {
#if USE_PRECISE_EMULATION
        FT0 = float64_div(1.0, FT0, &env->fp_status);
        FT0 = float64_to_float32(FT0, &env->fp_status);
#else
        FT0 = float32_div(1.0, FT0, &env->fp_status);
#endif
    } else {
        p.d = FT0;
        if (p.i == 0x8000000000000000ULL) {
            p.i = 0xFFF0000000000000ULL;
        } else if (p.i == 0x0000000000000000ULL) {
            p.i = 0x7FF0000000000000ULL;
        } else if (isnan(FT0)) {
            p.i = 0x7FF8000000000000ULL;
        } else if (FT0 < 0.0) {
            p.i = 0x8000000000000000ULL;
        } else {
            p.i = 0x0000000000000000ULL;
        }
        FT0 = p.d;
    }
}

void do_frsqrte (void)
{
    union {
        double d;
        uint64_t i;
    } p;

    if (likely(isnormal(FT0) && FT0 > 0.0)) {
        FT0 = float64_sqrt(FT0, &env->fp_status);
        FT0 = float32_div(1.0, FT0, &env->fp_status);
    } else {
        p.d = FT0;
        if (p.i == 0x8000000000000000ULL) {
            p.i = 0xFFF0000000000000ULL;
        } else if (p.i == 0x0000000000000000ULL) {
            p.i = 0x7FF0000000000000ULL;
        } else if (isnan(FT0)) {
            if (!(p.i & 0x0008000000000000ULL))
                p.i |= 0x000FFFFFFFFFFFFFULL;
        } else if (FT0 < 0) {
            p.i = 0x7FF8000000000000ULL;
        } else {
            p.i = 0x0000000000000000ULL;
        }
        FT0 = p.d;
    }
}

void do_fsel (void)
{
    if (FT0 >= 0)
        FT0 = FT1;
    else
        FT0 = FT2;
}

void do_fcmpu (void)
{
    if (likely(!isnan(FT0) && !isnan(FT1))) {
        if (float64_lt(FT0, FT1, &env->fp_status)) {
            T0 = 0x08UL;
        } else if (!float64_le(FT0, FT1, &env->fp_status)) {
            T0 = 0x04UL;
        } else {
            T0 = 0x02UL;
        }
    } else {
        T0 = 0x01UL;
        env->fpscr[4] |= 0x1;
        env->fpscr[6] |= 0x1;
    }
    env->fpscr[3] = T0;
}

void do_fcmpo (void)
{
    env->fpscr[4] &= ~0x1;
    if (likely(!isnan(FT0) && !isnan(FT1))) {
        if (float64_lt(FT0, FT1, &env->fp_status)) {
            T0 = 0x08UL;
        } else if (!float64_le(FT0, FT1, &env->fp_status)) {
            T0 = 0x04UL;
        } else {
            T0 = 0x02UL;
        }
    } else {
        T0 = 0x01UL;
        env->fpscr[4] |= 0x1;
        if (!float64_is_signaling_nan(FT0) || !float64_is_signaling_nan(FT1)) {
            /* Quiet NaN case */
            env->fpscr[6] |= 0x1;
            if (!(env->fpscr[1] & 0x8))
                env->fpscr[4] |= 0x8;
        } else {
            env->fpscr[4] |= 0x8;
        }
    }
    env->fpscr[3] = T0;
}

#if !defined (CONFIG_USER_ONLY)
void do_rfi (void)
{
#if defined(TARGET_PPC64)
    if (env->spr[SPR_SRR1] & (1ULL << MSR_SF)) {
        env->nip = (uint64_t)(env->spr[SPR_SRR0] & ~0x00000003);
        do_store_msr(env, (uint64_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
    } else {
        env->nip = (uint32_t)(env->spr[SPR_SRR0] & ~0x00000003);
        ppc_store_msr_32(env, (uint32_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
    }
#else
    env->nip = (uint32_t)(env->spr[SPR_SRR0] & ~0x00000003);
    do_store_msr(env, (uint32_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
#endif
#if defined (DEBUG_OP)
    dump_rfi();
#endif
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
}

#if defined(TARGET_PPC64)
void do_rfid (void)
{
    if (env->spr[SPR_SRR1] & (1ULL << MSR_SF)) {
        env->nip = (uint64_t)(env->spr[SPR_SRR0] & ~0x00000003);
        do_store_msr(env, (uint64_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
    } else {
        env->nip = (uint32_t)(env->spr[SPR_SRR0] & ~0x00000003);
        do_store_msr(env, (uint32_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
    }
#if defined (DEBUG_OP)
    dump_rfi();
#endif
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
}
#endif
#endif

void do_tw (int flags)
{
    if (!likely(!(((int32_t)T0 < (int32_t)T1 && (flags & 0x10)) ||
                  ((int32_t)T0 > (int32_t)T1 && (flags & 0x08)) ||
                  ((int32_t)T0 == (int32_t)T1 && (flags & 0x04)) ||
                  ((uint32_t)T0 < (uint32_t)T1 && (flags & 0x02)) ||
                  ((uint32_t)T0 > (uint32_t)T1 && (flags & 0x01))))) {
        do_raise_exception_err(EXCP_PROGRAM, EXCP_TRAP);
    }
}

#if defined(TARGET_PPC64)
void do_td (int flags)
{
    if (!likely(!(((int64_t)T0 < (int64_t)T1 && (flags & 0x10)) ||
                  ((int64_t)T0 > (int64_t)T1 && (flags & 0x08)) ||
                  ((int64_t)T0 == (int64_t)T1 && (flags & 0x04)) ||
                  ((uint64_t)T0 < (uint64_t)T1 && (flags & 0x02)) ||
                  ((uint64_t)T0 > (uint64_t)T1 && (flags & 0x01)))))
        do_raise_exception_err(EXCP_PROGRAM, EXCP_TRAP);
}
#endif

/*****************************************************************************/
/* PowerPC 601 specific instructions (POWER bridge) */
void do_POWER_abso (void)
{
    if ((uint32_t)T0 == INT32_MIN) {
        T0 = INT32_MAX;
        xer_ov = 1;
        xer_so = 1;
    } else {
        T0 = -T0;
        xer_ov = 0;
    }
}

void do_POWER_clcs (void)
{
    switch (T0) {
    case 0x0CUL:
        /* Instruction cache line size */
        T0 = ICACHE_LINE_SIZE;
        break;
    case 0x0DUL:
        /* Data cache line size */
        T0 = DCACHE_LINE_SIZE;
        break;
    case 0x0EUL:
        /* Minimum cache line size */
        T0 = ICACHE_LINE_SIZE < DCACHE_LINE_SIZE ?
            ICACHE_LINE_SIZE : DCACHE_LINE_SIZE;
        break;
    case 0x0FUL:
        /* Maximum cache line size */
        T0 = ICACHE_LINE_SIZE > DCACHE_LINE_SIZE ?
            ICACHE_LINE_SIZE : DCACHE_LINE_SIZE;
        break;
    default:
        /* Undefined */
        break;
    }
}

void do_POWER_div (void)
{
    uint64_t tmp;

    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
        T0 = (long)((-1) * (T0 >> 31));
        env->spr[SPR_MQ] = 0;
    } else {
        tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
        env->spr[SPR_MQ] = tmp % T1;
        T0 = tmp / (int32_t)T1;
    }
}

void do_POWER_divo (void)
{
    int64_t tmp;

    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
        T0 = (long)((-1) * (T0 >> 31));
        env->spr[SPR_MQ] = 0;
        xer_ov = 1;
        xer_so = 1;
    } else {
        tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
        env->spr[SPR_MQ] = tmp % T1;
        tmp /= (int32_t)T1;
        if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) {
            xer_ov = 1;
            xer_so = 1;
        } else {
            xer_ov = 0;
        }
        T0 = tmp;
    }
}

void do_POWER_divs (void)
{
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
        T0 = (long)((-1) * (T0 >> 31));
        env->spr[SPR_MQ] = 0;
    } else {
        env->spr[SPR_MQ] = T0 % T1;
        T0 = (int32_t)T0 / (int32_t)T1;
    }
}

void do_POWER_divso (void)
{
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
        T0 = (long)((-1) * (T0 >> 31));
        env->spr[SPR_MQ] = 0;
        xer_ov = 1;
        xer_so = 1;
    } else {
        T0 = (int32_t)T0 / (int32_t)T1;
        env->spr[SPR_MQ] = (int32_t)T0 % (int32_t)T1;
        xer_ov = 0;
    }
}

void do_POWER_dozo (void)
{
    if ((int32_t)T1 > (int32_t)T0) {
        T2 = T0;
        T0 = T1 - T0;
        if (((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) &
            ((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)) {
            xer_so = 1;
            xer_ov = 1;
        } else {
            xer_ov = 0;
        }
    } else {
        T0 = 0;
        xer_ov = 0;
    }
}

void do_POWER_maskg (void)
{
    uint32_t ret;

    if ((uint32_t)T0 == (uint32_t)(T1 + 1)) {
        ret = -1;
    } else {
        ret = (((uint32_t)(-1)) >> ((uint32_t)T0)) ^
            (((uint32_t)(-1) >> ((uint32_t)T1)) >> 1);
        if ((uint32_t)T0 > (uint32_t)T1)
            ret = ~ret;
    }
    T0 = ret;
}

void do_POWER_mulo (void)
{
    uint64_t tmp;

    tmp = (uint64_t)T0 * (uint64_t)T1;
    env->spr[SPR_MQ] = tmp >> 32;
    T0 = tmp;
    if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) {
        xer_ov = 1;
        xer_so = 1;
    } else {
        xer_ov = 0;
    }
}

#if !defined (CONFIG_USER_ONLY)
void do_POWER_rac (void)
{
#if 0
    mmu_ctx_t ctx;

    /* We don't have to generate many instances of this instruction,
     * as rac is supervisor only.
     */
    if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT, 1) == 0)
        T0 = ctx.raddr;
#endif
}

void do_POWER_rfsvc (void)
{
    env->nip = env->lr & ~0x00000003UL;
    T0 = env->ctr & 0x0000FFFFUL;
    do_store_msr(env, T0);
#if defined (DEBUG_OP)
    dump_rfi();
#endif
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
}

/* PowerPC 601 BAT management helper */
void do_store_601_batu (int nr)
{
    do_store_ibatu(env, nr, (uint32_t)T0);
    env->DBAT[0][nr] = env->IBAT[0][nr];
    env->DBAT[1][nr] = env->IBAT[1][nr];
}
#endif

/*****************************************************************************/
/* 602 specific instructions */
/* mfrom is the most crazy instruction ever seen, imho ! */
/* Real implementation uses a ROM table. Do the same */
#define USE_MFROM_ROM_TABLE
void do_op_602_mfrom (void)
{
    if (likely(T0 < 602)) {
#if defined(USE_MFROM_ROM_TABLE)
#include "mfrom_table.c"
        T0 = mfrom_ROM_table[T0];
#else
        double d;
        /* Extremly decomposed:
         *                    -T0 / 256
         * T0 = 256 * log10(10          + 1.0) + 0.5
         */
        d = T0;
        d = float64_div(d, 256, &env->fp_status);
        d = float64_chs(d);
        d = exp10(d); // XXX: use float emulation function
        d = float64_add(d, 1.0, &env->fp_status);
        d = log10(d); // XXX: use float emulation function
        d = float64_mul(d, 256, &env->fp_status);
        d = float64_add(d, 0.5, &env->fp_status);
        T0 = float64_round_to_int(d, &env->fp_status);
#endif
    } else {
        T0 = 0;
    }
}

/*****************************************************************************/
/* Embedded PowerPC specific helpers */
void do_405_check_ov (void)
{
    if (likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) ||
               !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
        xer_ov = 0;
    } else {
        xer_ov = 1;
        xer_so = 1;
    }
}

void do_405_check_sat (void)
{
    if (!likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) ||
                !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
        /* Saturate result */
        if (T2 >> 31) {
            T0 = INT32_MIN;
        } else {
            T0 = INT32_MAX;
        }
    }
}

#if !defined(CONFIG_USER_ONLY)
void do_40x_rfci (void)
{
    env->nip = env->spr[SPR_40x_SRR2];
    do_store_msr(env, env->spr[SPR_40x_SRR3] & ~0xFFFF0000);
#if defined (DEBUG_OP)
    dump_rfi();
#endif
    env->interrupt_request = CPU_INTERRUPT_EXITTB;
}

void do_rfci (void)
{
#if defined(TARGET_PPC64)
    if (env->spr[SPR_BOOKE_CSRR1] & (1 << MSR_CM)) {
        env->nip = (uint64_t)env->spr[SPR_BOOKE_CSRR0];
    } else
#endif
    {
        env->nip = (uint32_t)env->spr[SPR_BOOKE_CSRR0];
    }
    do_store_msr(env, (uint32_t)env->spr[SPR_BOOKE_CSRR1] & ~0x3FFF0000);
#if defined (DEBUG_OP)
    dump_rfi();
#endif
    env->interrupt_request = CPU_INTERRUPT_EXITTB;
}

void do_rfdi (void)
{
#if defined(TARGET_PPC64)
    if (env->spr[SPR_BOOKE_DSRR1] & (1 << MSR_CM)) {
        env->nip = (uint64_t)env->spr[SPR_BOOKE_DSRR0];
    } else
#endif
    {
        env->nip = (uint32_t)env->spr[SPR_BOOKE_DSRR0];
    }
    do_store_msr(env, (uint32_t)env->spr[SPR_BOOKE_DSRR1] & ~0x3FFF0000);
#if defined (DEBUG_OP)
    dump_rfi();
#endif
    env->interrupt_request = CPU_INTERRUPT_EXITTB;
}

void do_rfmci (void)
{
#if defined(TARGET_PPC64)
    if (env->spr[SPR_BOOKE_MCSRR1] & (1 << MSR_CM)) {
        env->nip = (uint64_t)env->spr[SPR_BOOKE_MCSRR0];
    } else
#endif
    {
        env->nip = (uint32_t)env->spr[SPR_BOOKE_MCSRR0];
    }
    do_store_msr(env, (uint32_t)env->spr[SPR_BOOKE_MCSRR1] & ~0x3FFF0000);
#if defined (DEBUG_OP)
    dump_rfi();
#endif
    env->interrupt_request = CPU_INTERRUPT_EXITTB;
}

void do_load_dcr (void)
{
    target_ulong val;
    
    if (unlikely(env->dcr_env == NULL)) {
        printf("No DCR environment\n");
        do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_INVAL);
    } else if (unlikely(ppc_dcr_read(env->dcr_env, T0, &val) != 0)) {
        printf("DCR read error\n");
        do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_PRIV_REG);
    } else {
        T0 = val;
    }
}

void do_store_dcr (void)
{
    if (unlikely(env->dcr_env == NULL)) {
        printf("No DCR environment\n");
        do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_INVAL);
    } else if (unlikely(ppc_dcr_write(env->dcr_env, T0, T1) != 0)) {
        printf("DCR write error\n");
        do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_PRIV_REG);
    }
}

void do_load_403_pb (int num)
{
    T0 = env->pb[num];
}

void do_store_403_pb (int num)
{
    if (likely(env->pb[num] != T0)) {
        env->pb[num] = T0;
        /* Should be optimized */
        tlb_flush(env, 1);
    }
}
#endif

/* 440 specific */
void do_440_dlmzb (void)
{
    target_ulong mask;
    int i;

    i = 1;
    for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
        if ((T0 & mask) == 0)
            goto done;
        i++;
    }
    for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
        if ((T1 & mask) == 0)
            break;
        i++;
    }
 done:
    T0 = i;
}

#if defined(TARGET_PPCSPE)
/* SPE extension helpers */
/* Use a table to make this quicker */
static uint8_t hbrev[16] = {
    0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
    0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
};

static inline uint8_t byte_reverse (uint8_t val)
{
    return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
}

static inline uint32_t word_reverse (uint32_t val)
{
    return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
        (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
}

#define MASKBITS 16 // Random value - to be fixed
void do_brinc (void)
{
    uint32_t a, b, d, mask;

    mask = (uint32_t)(-1UL) >> MASKBITS;
    b = T1_64 & mask;
    a = T0_64 & mask;
    d = word_reverse(1 + word_reverse(a | ~mask));
    T0_64 = (T0_64 & ~mask) | (d & mask);
}

#define DO_SPE_OP2(name)                                                      \
void do_ev##name (void)                                                       \
{                                                                             \
    T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32, T1_64 >> 32) << 32) |         \
        (uint64_t)_do_e##name(T0_64, T1_64);                                  \
}

#define DO_SPE_OP1(name)                                                      \
void do_ev##name (void)                                                       \
{                                                                             \
    T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32) << 32) |                      \
        (uint64_t)_do_e##name(T0_64);                                         \
}

/* Fixed-point vector arithmetic */
static inline uint32_t _do_eabs (uint32_t val)
{
    if (val != 0x80000000)
        val &= ~0x80000000;

    return val;
}

static inline uint32_t _do_eaddw (uint32_t op1, uint32_t op2)
{
    return op1 + op2;
}

static inline int _do_ecntlsw (uint32_t val)
{
    if (val & 0x80000000)
        return _do_cntlzw(~val);
    else
        return _do_cntlzw(val);
}

static inline int _do_ecntlzw (uint32_t val)
{
    return _do_cntlzw(val);
}

static inline uint32_t _do_eneg (uint32_t val)
{
    if (val != 0x80000000)
        val ^= 0x80000000;

    return val;
}

static inline uint32_t _do_erlw (uint32_t op1, uint32_t op2)
{
    return rotl32(op1, op2);
}

static inline uint32_t _do_erndw (uint32_t val)
{
    return (val + 0x000080000000) & 0xFFFF0000;
}

static inline uint32_t _do_eslw (uint32_t op1, uint32_t op2)
{
    /* No error here: 6 bits are used */
    return op1 << (op2 & 0x3F);
}

static inline int32_t _do_esrws (int32_t op1, uint32_t op2)
{
    /* No error here: 6 bits are used */
    return op1 >> (op2 & 0x3F);
}

static inline uint32_t _do_esrwu (uint32_t op1, uint32_t op2)
{
    /* No error here: 6 bits are used */
    return op1 >> (op2 & 0x3F);
}

static inline uint32_t _do_esubfw (uint32_t op1, uint32_t op2)
{
    return op2 - op1;
}

/* evabs */
DO_SPE_OP1(abs);
/* evaddw */
DO_SPE_OP2(addw);
/* evcntlsw */
DO_SPE_OP1(cntlsw);
/* evcntlzw */
DO_SPE_OP1(cntlzw);
/* evneg */
DO_SPE_OP1(neg);
/* evrlw */
DO_SPE_OP2(rlw);
/* evrnd */
DO_SPE_OP1(rndw);
/* evslw */
DO_SPE_OP2(slw);
/* evsrws */
DO_SPE_OP2(srws);
/* evsrwu */
DO_SPE_OP2(srwu);
/* evsubfw */
DO_SPE_OP2(subfw);

/* evsel is a little bit more complicated... */
static inline uint32_t _do_esel (uint32_t op1, uint32_t op2, int n)
{
    if (n)
        return op1;
    else
        return op2;
}

void do_evsel (void)
{
    T0_64 = ((uint64_t)_do_esel(T0_64 >> 32, T1_64 >> 32, T0 >> 3) << 32) |
        (uint64_t)_do_esel(T0_64, T1_64, (T0 >> 2) & 1);
}

/* Fixed-point vector comparisons */
#define DO_SPE_CMP(name)                                                      \
void do_ev##name (void)                                                       \
{                                                                             \
    T0 = _do_evcmp_merge((uint64_t)_do_e##name(T0_64 >> 32,                   \
                                               T1_64 >> 32) << 32,            \
                         _do_e##name(T0_64, T1_64));                          \
}

static inline uint32_t _do_evcmp_merge (int t0, int t1)
{
    return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
}
static inline int _do_ecmpeq (uint32_t op1, uint32_t op2)
{
    return op1 == op2 ? 1 : 0;
}

static inline int _do_ecmpgts (int32_t op1, int32_t op2)
{
    return op1 > op2 ? 1 : 0;
}

static inline int _do_ecmpgtu (uint32_t op1, uint32_t op2)
{
    return op1 > op2 ? 1 : 0;
}

static inline int _do_ecmplts (int32_t op1, int32_t op2)
{
    return op1 < op2 ? 1 : 0;
}

static inline int _do_ecmpltu (uint32_t op1, uint32_t op2)
{
    return op1 < op2 ? 1 : 0;
}

/* evcmpeq */
DO_SPE_CMP(cmpeq);
/* evcmpgts */
DO_SPE_CMP(cmpgts);
/* evcmpgtu */
DO_SPE_CMP(cmpgtu);
/* evcmplts */
DO_SPE_CMP(cmplts);
/* evcmpltu */
DO_SPE_CMP(cmpltu);

/* Single precision floating-point conversions from/to integer */
static inline uint32_t _do_efscfsi (int32_t val)
{
    union {
        uint32_t u;
        float32 f;
    } u;

    u.f = int32_to_float32(val, &env->spe_status);

    return u.u;
}

static inline uint32_t _do_efscfui (uint32_t val)
{
    union {
        uint32_t u;
        float32 f;
    } u;

    u.f = uint32_to_float32(val, &env->spe_status);

    return u.u;
}

static inline int32_t _do_efsctsi (uint32_t val)
{
    union {
        int32_t u;
        float32 f;
    } u;

    u.u = val;
    /* NaN are not treated the same way IEEE 754 does */
    if (unlikely(isnan(u.f)))
        return 0;

    return float32_to_int32(u.f, &env->spe_status);
}

static inline uint32_t _do_efsctui (uint32_t val)
{
    union {
        int32_t u;
        float32 f;
    } u;

    u.u = val;
    /* NaN are not treated the same way IEEE 754 does */
    if (unlikely(isnan(u.f)))
        return 0;

    return float32_to_uint32(u.f, &env->spe_status);
}

static inline int32_t _do_efsctsiz (uint32_t val)
{
    union {
        int32_t u;
        float32 f;
    } u;

    u.u = val;
    /* NaN are not treated the same way IEEE 754 does */
    if (unlikely(isnan(u.f)))
        return 0;

    return float32_to_int32_round_to_zero(u.f, &env->spe_status);
}

static inline uint32_t _do_efsctuiz (uint32_t val)
{
    union {
        int32_t u;
        float32 f;
    } u;

    u.u = val;
    /* NaN are not treated the same way IEEE 754 does */
    if (unlikely(isnan(u.f)))
        return 0;

    return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
}

void do_efscfsi (void)
{
    T0_64 = _do_efscfsi(T0_64);
}

void do_efscfui (void)
{
    T0_64 = _do_efscfui(T0_64);
}

void do_efsctsi (void)
{
    T0_64 = _do_efsctsi(T0_64);
}

void do_efsctui (void)
{
    T0_64 = _do_efsctui(T0_64);
}

void do_efsctsiz (void)
{
    T0_64 = _do_efsctsiz(T0_64);
}

void do_efsctuiz (void)
{
    T0_64 = _do_efsctuiz(T0_64);
}

/* Single precision floating-point conversion to/from fractional */
static inline uint32_t _do_efscfsf (uint32_t val)
{
    union {
        uint32_t u;
        float32 f;
    } u;
    float32 tmp;

    u.f = int32_to_float32(val, &env->spe_status);
    tmp = int64_to_float32(1ULL << 32, &env->spe_status);
    u.f = float32_div(u.f, tmp, &env->spe_status);

    return u.u;
}

static inline uint32_t _do_efscfuf (uint32_t val)
{
    union {
        uint32_t u;
        float32 f;
    } u;
    float32 tmp;

    u.f = uint32_to_float32(val, &env->spe_status);
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
    u.f = float32_div(u.f, tmp, &env->spe_status);

    return u.u;
}

static inline int32_t _do_efsctsf (uint32_t val)
{
    union {
        int32_t u;
        float32 f;
    } u;
    float32 tmp;

    u.u = val;
    /* NaN are not treated the same way IEEE 754 does */
    if (unlikely(isnan(u.f)))
        return 0;
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
    u.f = float32_mul(u.f, tmp, &env->spe_status);

    return float32_to_int32(u.f, &env->spe_status);
}

static inline uint32_t _do_efsctuf (uint32_t val)
{
    union {
        int32_t u;
        float32 f;
    } u;
    float32 tmp;

    u.u = val;
    /* NaN are not treated the same way IEEE 754 does */
    if (unlikely(isnan(u.f)))
        return 0;
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
    u.f = float32_mul(u.f, tmp, &env->spe_status);

    return float32_to_uint32(u.f, &env->spe_status);
}

static inline int32_t _do_efsctsfz (uint32_t val)
{
    union {
        int32_t u;
        float32 f;
    } u;
    float32 tmp;

    u.u = val;
    /* NaN are not treated the same way IEEE 754 does */
    if (unlikely(isnan(u.f)))
        return 0;
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
    u.f = float32_mul(u.f, tmp, &env->spe_status);

    return float32_to_int32_round_to_zero(u.f, &env->spe_status);
}

static inline uint32_t _do_efsctufz (uint32_t val)
{
    union {
        int32_t u;
        float32 f;
    } u;
    float32 tmp;

    u.u = val;
    /* NaN are not treated the same way IEEE 754 does */
    if (unlikely(isnan(u.f)))
        return 0;
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
    u.f = float32_mul(u.f, tmp, &env->spe_status);

    return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
}

void do_efscfsf (void)
{
    T0_64 = _do_efscfsf(T0_64);
}

void do_efscfuf (void)
{
    T0_64 = _do_efscfuf(T0_64);
}

void do_efsctsf (void)
{
    T0_64 = _do_efsctsf(T0_64);
}

void do_efsctuf (void)
{
    T0_64 = _do_efsctuf(T0_64);
}

void do_efsctsfz (void)
{
    T0_64 = _do_efsctsfz(T0_64);
}

void do_efsctufz (void)
{
    T0_64 = _do_efsctufz(T0_64);
}

/* Double precision floating point helpers */
static inline int _do_efdcmplt (uint64_t op1, uint64_t op2)
{
    /* XXX: TODO: test special values (NaN, infinites, ...) */
    return _do_efdtstlt(op1, op2);
}

static inline int _do_efdcmpgt (uint64_t op1, uint64_t op2)
{
    /* XXX: TODO: test special values (NaN, infinites, ...) */
    return _do_efdtstgt(op1, op2);
}

static inline int _do_efdcmpeq (uint64_t op1, uint64_t op2)
{
    /* XXX: TODO: test special values (NaN, infinites, ...) */
    return _do_efdtsteq(op1, op2);
}

void do_efdcmplt (void)
{
    T0 = _do_efdcmplt(T0_64, T1_64);
}

void do_efdcmpgt (void)
{
    T0 = _do_efdcmpgt(T0_64, T1_64);
}

void do_efdcmpeq (void)
{
    T0 = _do_efdcmpeq(T0_64, T1_64);
}

/* Double precision floating-point conversion to/from integer */
static inline uint64_t _do_efdcfsi (int64_t val)
{
    union {
        uint64_t u;
        float64 f;
    } u;

    u.f = int64_to_float64(val, &env->spe_status);

    return u.u;
}

static inline uint64_t _do_efdcfui (uint64_t val)
{
    union {
        uint64_t u;
        float64 f;
    } u;

    u.f = uint64_to_float64(val, &env->spe_status);

    return u.u;
}

static inline int64_t _do_efdctsi (uint64_t val)
{
    union {
        int64_t u;
        float64 f;
    } u;

    u.u = val;
    /* NaN are not treated the same way IEEE 754 does */
    if (unlikely(isnan(u.f)))
        return 0;

    return float64_to_int64(u.f, &env->spe_status);
}

static inline uint64_t _do_efdctui (uint64_t val)
{
    union {
        int64_t u;
        float64 f;
    } u;

    u.u = val;
    /* NaN are not treated the same way IEEE 754 does */
    if (unlikely(isnan(u.f)))
        return 0;

    return float64_to_uint64(u.f, &env->spe_status);
}

static inline int64_t _do_efdctsiz (uint64_t val)
{
    union {
        int64_t u;
        float64 f;
    } u;

    u.u = val;
    /* NaN are not treated the same way IEEE 754 does */
    if (unlikely(isnan(u.f)))
        return 0;

    return float64_to_int64_round_to_zero(u.f, &env->spe_status);
}

static inline uint64_t _do_efdctuiz (uint64_t val)
{
    union {
        int64_t u;
        float64 f;
    } u;

    u.u = val;
    /* NaN are not treated the same way IEEE 754 does */
    if (unlikely(isnan(u.f)))
        return 0;

    return float64_to_uint64_round_to_zero(u.f, &env->spe_status);
}

void do_efdcfsi (void)
{
    T0_64 = _do_efdcfsi(T0_64);
}

void do_efdcfui (void)
{
    T0_64 = _do_efdcfui(T0_64);
}

void do_efdctsi (void)
{
    T0_64 = _do_efdctsi(T0_64);
}

void do_efdctui (void)
{
    T0_64 = _do_efdctui(T0_64);
}

void do_efdctsiz (void)
{
    T0_64 = _do_efdctsiz(T0_64);
}

void do_efdctuiz (void)
{
    T0_64 = _do_efdctuiz(T0_64);
}

/* Double precision floating-point conversion to/from fractional */
static inline uint64_t _do_efdcfsf (int64_t val)
{
    union {
        uint64_t u;
        float64 f;
    } u;
    float64 tmp;

    u.f = int32_to_float64(val, &env->spe_status);
    tmp = int64_to_float64(1ULL << 32, &env->spe_status);
    u.f = float64_div(u.f, tmp, &env->spe_status);

    return u.u;
}

static inline uint64_t _do_efdcfuf (uint64_t val)
{
    union {
        uint64_t u;
        float64 f;
    } u;
    float64 tmp;

    u.f = uint32_to_float64(val, &env->spe_status);
    tmp = int64_to_float64(1ULL << 32, &env->spe_status);
    u.f = float64_div(u.f, tmp, &env->spe_status);

    return u.u;
}

static inline int64_t _do_efdctsf (uint64_t val)
{
    union {
        int64_t u;
        float64 f;
    } u;
    float64 tmp;

    u.u = val;
    /* NaN are not treated the same way IEEE 754 does */
    if (unlikely(isnan(u.f)))
        return 0;
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
    u.f = float64_mul(u.f, tmp, &env->spe_status);

    return float64_to_int32(u.f, &env->spe_status);
}

static inline uint64_t _do_efdctuf (uint64_t val)
{
    union {
        int64_t u;
        float64 f;
    } u;
    float64 tmp;

    u.u = val;
    /* NaN are not treated the same way IEEE 754 does */
    if (unlikely(isnan(u.f)))
        return 0;
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
    u.f = float64_mul(u.f, tmp, &env->spe_status);

    return float64_to_uint32(u.f, &env->spe_status);
}

static inline int64_t _do_efdctsfz (uint64_t val)
{
    union {
        int64_t u;
        float64 f;
    } u;
    float64 tmp;

    u.u = val;
    /* NaN are not treated the same way IEEE 754 does */
    if (unlikely(isnan(u.f)))
        return 0;
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
    u.f = float64_mul(u.f, tmp, &env->spe_status);

    return float64_to_int32_round_to_zero(u.f, &env->spe_status);
}

static inline uint64_t _do_efdctufz (uint64_t val)
{
    union {
        int64_t u;
        float64 f;
    } u;
    float64 tmp;

    u.u = val;
    /* NaN are not treated the same way IEEE 754 does */
    if (unlikely(isnan(u.f)))
        return 0;
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
    u.f = float64_mul(u.f, tmp, &env->spe_status);

    return float64_to_uint32_round_to_zero(u.f, &env->spe_status);
}

void do_efdcfsf (void)
{
    T0_64 = _do_efdcfsf(T0_64);
}

void do_efdcfuf (void)
{
    T0_64 = _do_efdcfuf(T0_64);
}

void do_efdctsf (void)
{
    T0_64 = _do_efdctsf(T0_64);
}

void do_efdctuf (void)
{
    T0_64 = _do_efdctuf(T0_64);
}

void do_efdctsfz (void)
{
    T0_64 = _do_efdctsfz(T0_64);
}

void do_efdctufz (void)
{
    T0_64 = _do_efdctufz(T0_64);
}

/* Floating point conversion between single and double precision */
static inline uint32_t _do_efscfd (uint64_t val)
{
    union {
        uint64_t u;
        float64 f;
    } u1;
    union {
        uint32_t u;
        float32 f;
    } u2;

    u1.u = val;
    u2.f = float64_to_float32(u1.f, &env->spe_status);

    return u2.u;
}

static inline uint64_t _do_efdcfs (uint32_t val)
{
    union {
        uint64_t u;
        float64 f;
    } u2;
    union {
        uint32_t u;
        float32 f;
    } u1;

    u1.u = val;
    u2.f = float32_to_float64(u1.f, &env->spe_status);

    return u2.u;
}

void do_efscfd (void)
{
    T0_64 = _do_efscfd(T0_64);
}

void do_efdcfs (void)
{
    T0_64 = _do_efdcfs(T0_64);
}

/* Single precision fixed-point vector arithmetic */
/* evfsabs */
DO_SPE_OP1(fsabs);
/* evfsnabs */
DO_SPE_OP1(fsnabs);
/* evfsneg */
DO_SPE_OP1(fsneg);
/* evfsadd */
DO_SPE_OP2(fsadd);
/* evfssub */
DO_SPE_OP2(fssub);
/* evfsmul */
DO_SPE_OP2(fsmul);
/* evfsdiv */
DO_SPE_OP2(fsdiv);

/* Single-precision floating-point comparisons */
static inline int _do_efscmplt (uint32_t op1, uint32_t op2)
{
    /* XXX: TODO: test special values (NaN, infinites, ...) */
    return _do_efststlt(op1, op2);
}

static inline int _do_efscmpgt (uint32_t op1, uint32_t op2)
{
    /* XXX: TODO: test special values (NaN, infinites, ...) */
    return _do_efststgt(op1, op2);
}

static inline int _do_efscmpeq (uint32_t op1, uint32_t op2)
{
    /* XXX: TODO: test special values (NaN, infinites, ...) */
    return _do_efststeq(op1, op2);
}

void do_efscmplt (void)
{
    T0 = _do_efscmplt(T0_64, T1_64);
}

void do_efscmpgt (void)
{
    T0 = _do_efscmpgt(T0_64, T1_64);
}

void do_efscmpeq (void)
{
    T0 = _do_efscmpeq(T0_64, T1_64);
}

/* Single-precision floating-point vector comparisons */
/* evfscmplt */
DO_SPE_CMP(fscmplt);
/* evfscmpgt */
DO_SPE_CMP(fscmpgt);
/* evfscmpeq */
DO_SPE_CMP(fscmpeq);
/* evfststlt */
DO_SPE_CMP(fststlt);
/* evfststgt */
DO_SPE_CMP(fststgt);
/* evfststeq */
DO_SPE_CMP(fststeq);

/* Single-precision floating-point vector conversions */
/* evfscfsi */
DO_SPE_OP1(fscfsi);
/* evfscfui */
DO_SPE_OP1(fscfui);
/* evfscfuf */
DO_SPE_OP1(fscfuf);
/* evfscfsf */
DO_SPE_OP1(fscfsf);
/* evfsctsi */
DO_SPE_OP1(fsctsi);
/* evfsctui */
DO_SPE_OP1(fsctui);
/* evfsctsiz */
DO_SPE_OP1(fsctsiz);
/* evfsctuiz */
DO_SPE_OP1(fsctuiz);
/* evfsctsf */
DO_SPE_OP1(fsctsf);
/* evfsctuf */
DO_SPE_OP1(fsctuf);
#endif /* defined(TARGET_PPCSPE) */

/*****************************************************************************/
/* Softmmu support */
#if !defined (CONFIG_USER_ONLY)

#define MMUSUFFIX _mmu
#define GETPC() (__builtin_return_address(0))

#define SHIFT 0
#include "softmmu_template.h"

#define SHIFT 1
#include "softmmu_template.h"

#define SHIFT 2
#include "softmmu_template.h"

#define SHIFT 3
#include "softmmu_template.h"

/* try to fill the TLB and return an exception if error. If retaddr is
   NULL, it means that the function was called in C code (i.e. not
   from generated code or from helper.c) */
/* XXX: fix it to restore all registers */
void tlb_fill (target_ulong addr, int is_write, int is_user, void *retaddr)
{
    TranslationBlock *tb;
    CPUState *saved_env;
    target_phys_addr_t pc;
    int ret;

    /* XXX: hack to restore env in all cases, even if not called from
       generated code */
    saved_env = env;
    env = cpu_single_env;
    ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, is_user, 1);
    if (unlikely(ret != 0)) {
        if (likely(retaddr)) {
            /* now we have a real cpu fault */
            pc = (target_phys_addr_t)retaddr;
            tb = tb_find_pc(pc);
            if (likely(tb)) {
                /* the PC is inside the translated code. It means that we have
                   a virtual CPU fault */
                cpu_restore_state(tb, env, pc, NULL);
            }
        }
        do_raise_exception_err(env->exception_index, env->error_code);
    }
    env = saved_env;
}

/* TLB invalidation helpers */
void do_tlbia (void)
{
    if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_6xx)) {
        ppc6xx_tlb_invalidate_all(env);
    } else if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_4xx)) {
        /* XXX: TODO */
#if 0
        ppcbooke_tlb_invalidate_all(env);
#endif
    } else {
        tlb_flush(env, 1);
    }
}

void do_tlbie (void)
{
    T0 = (uint32_t)T0;
#if !defined(FLUSH_ALL_TLBS)
    if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_6xx)) {
        ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 0);
        if (env->id_tlbs == 1)
            ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 1);
    } else if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_4xx)) {
        /* XXX: TODO */
#if 0
        ppcbooke_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK,
                                     env->spr[SPR_BOOKE_PID]);
#endif
    } else {
        /* tlbie invalidate TLBs for all segments */
        T0 &= TARGET_PAGE_MASK;
        T0 &= ~((target_ulong)-1 << 28);
        /* XXX: this case should be optimized,
         * giving a mask to tlb_flush_page
         */
        tlb_flush_page(env, T0 | (0x0 << 28));
        tlb_flush_page(env, T0 | (0x1 << 28));
        tlb_flush_page(env, T0 | (0x2 << 28));
        tlb_flush_page(env, T0 | (0x3 << 28));
        tlb_flush_page(env, T0 | (0x4 << 28));
        tlb_flush_page(env, T0 | (0x5 << 28));
        tlb_flush_page(env, T0 | (0x6 << 28));
        tlb_flush_page(env, T0 | (0x7 << 28));
        tlb_flush_page(env, T0 | (0x8 << 28));
        tlb_flush_page(env, T0 | (0x9 << 28));
        tlb_flush_page(env, T0 | (0xA << 28));
        tlb_flush_page(env, T0 | (0xB << 28));
        tlb_flush_page(env, T0 | (0xC << 28));
        tlb_flush_page(env, T0 | (0xD << 28));
        tlb_flush_page(env, T0 | (0xE << 28));
        tlb_flush_page(env, T0 | (0xF << 28));
    }
#else
    do_tlbia();
#endif
}

#if defined(TARGET_PPC64)
void do_tlbie_64 (void)
{
    T0 = (uint64_t)T0;
#if !defined(FLUSH_ALL_TLBS)
    if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_6xx)) {
        ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 0);
        if (env->id_tlbs == 1)
            ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 1);
    } else if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_4xx)) {
        /* XXX: TODO */
#if 0
        ppcbooke_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK,
                                     env->spr[SPR_BOOKE_PID]);
#endif
    } else {
        /* tlbie invalidate TLBs for all segments
         * As we have 2^36 segments, invalidate all qemu TLBs
         */
#if 0
        T0 &= TARGET_PAGE_MASK;
        T0 &= ~((target_ulong)-1 << 28);
        /* XXX: this case should be optimized,
         * giving a mask to tlb_flush_page
         */
        tlb_flush_page(env, T0 | (0x0 << 28));
        tlb_flush_page(env, T0 | (0x1 << 28));
        tlb_flush_page(env, T0 | (0x2 << 28));
        tlb_flush_page(env, T0 | (0x3 << 28));
        tlb_flush_page(env, T0 | (0x4 << 28));
        tlb_flush_page(env, T0 | (0x5 << 28));
        tlb_flush_page(env, T0 | (0x6 << 28));
        tlb_flush_page(env, T0 | (0x7 << 28));
        tlb_flush_page(env, T0 | (0x8 << 28));
        tlb_flush_page(env, T0 | (0x9 << 28));
        tlb_flush_page(env, T0 | (0xA << 28));
        tlb_flush_page(env, T0 | (0xB << 28));
        tlb_flush_page(env, T0 | (0xC << 28));
        tlb_flush_page(env, T0 | (0xD << 28));
        tlb_flush_page(env, T0 | (0xE << 28));
        tlb_flush_page(env, T0 | (0xF << 28));
#else
        tlb_flush(env, 1);
#endif
    }
#else
    do_tlbia();
#endif
}
#endif

#if defined(TARGET_PPC64)
void do_slbia (void)
{
    /* XXX: TODO */
    tlb_flush(env, 1);
}

void do_slbie (void)
{
    /* XXX: TODO */
    tlb_flush(env, 1);
}
#endif

/* Software driven TLBs management */
/* PowerPC 602/603 software TLB load instructions helpers */
void do_load_6xx_tlb (int is_code)
{
    target_ulong RPN, CMP, EPN;
    int way;

    RPN = env->spr[SPR_RPA];
    if (is_code) {
        CMP = env->spr[SPR_ICMP];
        EPN = env->spr[SPR_IMISS];
    } else {
        CMP = env->spr[SPR_DCMP];
        EPN = env->spr[SPR_DMISS];
    }
    way = (env->spr[SPR_SRR1] >> 17) & 1;
#if defined (DEBUG_SOFTWARE_TLB)
    if (loglevel != 0) {
        fprintf(logfile, "%s: EPN %08lx %08lx PTE0 %08lx PTE1 %08lx way %d\n",
                __func__, (unsigned long)T0, (unsigned long)EPN,
                (unsigned long)CMP, (unsigned long)RPN, way);
    }
#endif
    /* Store this TLB */
    ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
                     way, is_code, CMP, RPN);
}

static target_ulong booke_tlb_to_page_size (int size)
{
    return 1024 << (2 * size);
}

static int booke_page_size_to_tlb (target_ulong page_size)
{
    int size;

    switch (page_size) {
    case 0x00000400UL:
        size = 0x0;
        break;
    case 0x00001000UL:
        size = 0x1;
        break;
    case 0x00004000UL:
        size = 0x2;
        break;
    case 0x00010000UL:
        size = 0x3;
        break;
    case 0x00040000UL:
        size = 0x4;
        break;
    case 0x00100000UL:
        size = 0x5;
        break;
    case 0x00400000UL:
        size = 0x6;
        break;
    case 0x01000000UL:
        size = 0x7;
        break;
    case 0x04000000UL:
        size = 0x8;
        break;
    case 0x10000000UL:
        size = 0x9;
        break;
    case 0x40000000UL:
        size = 0xA;
        break;
#if defined (TARGET_PPC64)
    case 0x000100000000ULL:
        size = 0xB;
        break;
    case 0x000400000000ULL:
        size = 0xC;
        break;
    case 0x001000000000ULL:
        size = 0xD;
        break;
    case 0x004000000000ULL:
        size = 0xE;
        break;
    case 0x010000000000ULL:
        size = 0xF;
        break;
#endif
    default:
        size = -1;
        break;
    }

    return size;
}

/* Helpers for 4xx TLB management */
void do_4xx_tlbia (void)
{
    ppcemb_tlb_t *tlb;
    int i;

    for (i = 0; i < 64; i++) {
        tlb = &env->tlb[i].tlbe;
        if (tlb->prot & PAGE_VALID) {
#if 0
            end = tlb->EPN + tlb->size;
            for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
                tlb_flush_page(env, page);
#endif
            tlb->prot &= ~PAGE_VALID;
        }
    }
    tlb_flush(env, 1);
}

void do_4xx_tlbre_lo (void)
{
    ppcemb_tlb_t *tlb;
    int size;

    T0 &= 0x3F;
    tlb = &env->tlb[T0].tlbe;
    T0 = tlb->EPN;
    if (tlb->prot & PAGE_VALID)
        T0 |= 0x400;
    size = booke_page_size_to_tlb(tlb->size);
    if (size < 0 || size > 0x7)
        size = 1;
    T0 |= size << 7;
    env->spr[SPR_40x_PID] = tlb->PID;
}

void do_4xx_tlbre_hi (void)
{
    ppcemb_tlb_t *tlb;

    T0 &= 0x3F;
    tlb = &env->tlb[T0].tlbe;
    T0 = tlb->RPN;
    if (tlb->prot & PAGE_EXEC)
        T0 |= 0x200;
    if (tlb->prot & PAGE_WRITE)
        T0 |= 0x100;
}

static int tlb_4xx_search (target_ulong virtual)
{
    ppcemb_tlb_t *tlb;
    target_ulong base, mask;
    int i, ret;

    /* Default return value is no match */
    ret = -1;
    for (i = 0; i < 64; i++) {
        tlb = &env->tlb[i].tlbe;
        /* Check TLB validity */
        if (!(tlb->prot & PAGE_VALID))
            continue;
        /* Check TLB PID vs current PID */
        if (tlb->PID != 0 && tlb->PID != env->spr[SPR_40x_PID])
            continue;
        /* Check TLB address vs virtual address */
        base = tlb->EPN;
        mask = ~(tlb->size - 1);
        if ((base & mask) != (virtual & mask))
            continue;
        ret = i;
        break;
    }

    return ret;
}

void do_4xx_tlbsx (void)
{
    T0 = tlb_4xx_search(T0);
}

void do_4xx_tlbsx_ (void)
{
    int tmp = xer_ov;

    T0 = tlb_4xx_search(T0);
    if (T0 != -1)
        tmp |= 0x02;
    env->crf[0] = tmp;
}

void do_4xx_tlbwe_lo (void)
{
    ppcemb_tlb_t *tlb;
    target_ulong page, end;

    T0 &= 0x3F;
    tlb = &env->tlb[T0].tlbe;
    /* Invalidate previous TLB (if it's valid) */
    if (tlb->prot & PAGE_VALID) {
        end = tlb->EPN + tlb->size;
        for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
            tlb_flush_page(env, page);
    }
    tlb->size = booke_tlb_to_page_size((T1 >> 7) & 0x7);
    tlb->EPN = (T1 & 0xFFFFFC00) & ~(tlb->size - 1);
    if (T1 & 0x400)
        tlb->prot |= PAGE_VALID;
    else
        tlb->prot &= ~PAGE_VALID;
    tlb->PID = env->spr[SPR_BOOKE_PID]; /* PID */
    tlb->attr = T1 & 0xFF;
    /* Invalidate new TLB (if valid) */
    if (tlb->prot & PAGE_VALID) {
        end = tlb->EPN + tlb->size;
        for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
            tlb_flush_page(env, page);
    }
}

void do_4xx_tlbwe_hi (void)
{
    ppcemb_tlb_t *tlb;

    T0 &= 0x3F;
    tlb = &env->tlb[T0].tlbe;
    tlb->RPN = T1 & 0xFFFFFC00;
    tlb->prot = PAGE_READ;
    if (T1 & 0x200)
        tlb->prot |= PAGE_EXEC;
    if (T1 & 0x100)
        tlb->prot |= PAGE_WRITE;
}
#endif /* !CONFIG_USER_ONLY */