/* * PowerPC emulation helpers for qemu. * * Copyright (c) 2003-2007 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "exec.h" #define MEMSUFFIX _raw #include "op_helper_mem.h" #if !defined(CONFIG_USER_ONLY) #define MEMSUFFIX _user #include "op_helper_mem.h" #define MEMSUFFIX _kernel #include "op_helper_mem.h" #endif //#define DEBUG_OP //#define DEBUG_EXCEPTIONS //#define DEBUG_SOFTWARE_TLB //#define FLUSH_ALL_TLBS #define Ts0 (long)((target_long)T0) #define Ts1 (long)((target_long)T1) #define Ts2 (long)((target_long)T2) /*****************************************************************************/ /* Exceptions processing helpers */ void cpu_loop_exit (void) { longjmp(env->jmp_env, 1); } void do_raise_exception_err (uint32_t exception, int error_code) { #if 0 printf("Raise exception %3x code : %d\n", exception, error_code); #endif switch (exception) { case EXCP_PROGRAM: if (error_code == EXCP_FP && msr_fe0 == 0 && msr_fe1 == 0) return; break; default: break; } env->exception_index = exception; env->error_code = error_code; cpu_loop_exit(); } void do_raise_exception (uint32_t exception) { do_raise_exception_err(exception, 0); } /*****************************************************************************/ /* Registers load and stores */ void do_load_cr (void) { T0 = (env->crf[0] << 28) | (env->crf[1] << 24) | (env->crf[2] << 20) | (env->crf[3] << 16) | (env->crf[4] << 12) | (env->crf[5] << 8) | (env->crf[6] << 4) | (env->crf[7] << 0); } void do_store_cr (uint32_t mask) { int i, sh; for (i = 0, sh = 7; i < 8; i++, sh --) { if (mask & (1 << sh)) env->crf[i] = (T0 >> (sh * 4)) & 0xFUL; } } void do_load_xer (void) { T0 = (xer_so << XER_SO) | (xer_ov << XER_OV) | (xer_ca << XER_CA) | (xer_bc << XER_BC) | (xer_cmp << XER_CMP); } void do_store_xer (void) { xer_so = (T0 >> XER_SO) & 0x01; xer_ov = (T0 >> XER_OV) & 0x01; xer_ca = (T0 >> XER_CA) & 0x01; xer_cmp = (T0 >> XER_CMP) & 0xFF; xer_bc = (T0 >> XER_BC) & 0x3F; } void do_load_fpscr (void) { /* The 32 MSB of the target fpr are undefined. * They'll be zero... */ union { float64 d; struct { uint32_t u[2]; } s; } u; int i; #ifdef WORDS_BIGENDIAN #define WORD0 0 #define WORD1 1 #else #define WORD0 1 #define WORD1 0 #endif u.s.u[WORD0] = 0; u.s.u[WORD1] = 0; for (i = 0; i < 8; i++) u.s.u[WORD1] |= env->fpscr[i] << (4 * i); FT0 = u.d; } void do_store_fpscr (uint32_t mask) { /* * We use only the 32 LSB of the incoming fpr */ union { double d; struct { uint32_t u[2]; } s; } u; int i, rnd_type; u.d = FT0; if (mask & 0x80) env->fpscr[0] = (env->fpscr[0] & 0x9) | ((u.s.u[WORD1] >> 28) & ~0x9); for (i = 1; i < 7; i++) { if (mask & (1 << (7 - i))) env->fpscr[i] = (u.s.u[WORD1] >> (4 * (7 - i))) & 0xF; } /* TODO: update FEX & VX */ /* Set rounding mode */ switch (env->fpscr[0] & 0x3) { case 0: /* Best approximation (round to nearest) */ rnd_type = float_round_nearest_even; break; case 1: /* Smaller magnitude (round toward zero) */ rnd_type = float_round_to_zero; break; case 2: /* Round toward +infinite */ rnd_type = float_round_up; break; default: case 3: /* Round toward -infinite */ rnd_type = float_round_down; break; } set_float_rounding_mode(rnd_type, &env->fp_status); } /*****************************************************************************/ /* Fixed point operations helpers */ void do_addo (void) { T2 = T0; T0 += T1; if (likely(!((T2 ^ T1 ^ (-1)) & (T2 ^ T0) & (1 << 31)))) { xer_ov = 0; } else { xer_so = 1; xer_ov = 1; } } void do_addco (void) { T2 = T0; T0 += T1; if (likely(T0 >= T2)) { xer_ca = 0; } else { xer_ca = 1; } if (likely(!((T2 ^ T1 ^ (-1)) & (T2 ^ T0) & (1 << 31)))) { xer_ov = 0; } else { xer_so = 1; xer_ov = 1; } } void do_adde (void) { T2 = T0; T0 += T1 + xer_ca; if (likely(!(T0 < T2 || (xer_ca == 1 && T0 == T2)))) { xer_ca = 0; } else { xer_ca = 1; } } void do_addeo (void) { T2 = T0; T0 += T1 + xer_ca; if (likely(!(T0 < T2 || (xer_ca == 1 && T0 == T2)))) { xer_ca = 0; } else { xer_ca = 1; } if (likely(!((T2 ^ T1 ^ (-1)) & (T2 ^ T0) & (1 << 31)))) { xer_ov = 0; } else { xer_so = 1; xer_ov = 1; } } void do_addmeo (void) { T1 = T0; T0 += xer_ca + (-1); if (likely(!(T1 & (T1 ^ T0) & (1 << 31)))) { xer_ov = 0; } else { xer_so = 1; xer_ov = 1; } if (likely(T1 != 0)) xer_ca = 1; } void do_addzeo (void) { T1 = T0; T0 += xer_ca; if (likely(!((T1 ^ (-1)) & (T1 ^ T0) & (1 << 31)))) { xer_ov = 0; } else { xer_so = 1; xer_ov = 1; } if (likely(T0 >= T1)) { xer_ca = 0; } else { xer_ca = 1; } } void do_divwo (void) { if (likely(!((Ts0 == INT32_MIN && Ts1 == -1) || Ts1 == 0))) { xer_ov = 0; T0 = (Ts0 / Ts1); } else { xer_so = 1; xer_ov = 1; T0 = (-1) * ((uint32_t)T0 >> 31); } } void do_divwuo (void) { if (likely((uint32_t)T1 != 0)) { xer_ov = 0; T0 = (uint32_t)T0 / (uint32_t)T1; } else { xer_so = 1; xer_ov = 1; T0 = 0; } } void do_mullwo (void) { int64_t res = (int64_t)Ts0 * (int64_t)Ts1; if (likely((int32_t)res == res)) { xer_ov = 0; } else { xer_ov = 1; xer_so = 1; } T0 = (int32_t)res; } void do_nego (void) { if (likely(T0 != INT32_MIN)) { xer_ov = 0; T0 = -Ts0; } else { xer_ov = 1; xer_so = 1; } } void do_subfo (void) { T2 = T0; T0 = T1 - T0; if (likely(!(((~T2) ^ T1 ^ (-1)) & ((~T2) ^ T0) & (1 << 31)))) { xer_ov = 0; } else { xer_so = 1; xer_ov = 1; } RETURN(); } void do_subfco (void) { T2 = T0; T0 = T1 - T0; if (likely(T0 > T1)) { xer_ca = 0; } else { xer_ca = 1; } if (likely(!(((~T2) ^ T1 ^ (-1)) & ((~T2) ^ T0) & (1 << 31)))) { xer_ov = 0; } else { xer_so = 1; xer_ov = 1; } } void do_subfe (void) { T0 = T1 + ~T0 + xer_ca; if (likely(T0 >= T1 && (xer_ca == 0 || T0 != T1))) { xer_ca = 0; } else { xer_ca = 1; } } void do_subfeo (void) { T2 = T0; T0 = T1 + ~T0 + xer_ca; if (likely(!((~T2 ^ T1 ^ (-1)) & (~T2 ^ T0) & (1 << 31)))) { xer_ov = 0; } else { xer_so = 1; xer_ov = 1; } if (likely(T0 >= T1 && (xer_ca == 0 || T0 != T1))) { xer_ca = 0; } else { xer_ca = 1; } } void do_subfmeo (void) { T1 = T0; T0 = ~T0 + xer_ca - 1; if (likely(!(~T1 & (~T1 ^ T0) & (1 << 31)))) { xer_ov = 0; } else { xer_so = 1; xer_ov = 1; } if (likely(T1 != -1)) xer_ca = 1; } void do_subfzeo (void) { T1 = T0; T0 = ~T0 + xer_ca; if (likely(!((~T1 ^ (-1)) & ((~T1) ^ T0) & (1 << 31)))) { xer_ov = 0; } else { xer_ov = 1; xer_so = 1; } if (likely(T0 >= ~T1)) { xer_ca = 0; } else { xer_ca = 1; } } /* shift right arithmetic helper */ void do_sraw (void) { int32_t ret; if (likely(!(T1 & 0x20UL))) { if (likely(T1 != 0)) { ret = (int32_t)T0 >> (T1 & 0x1fUL); if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) { xer_ca = 0; } else { xer_ca = 1; } } else { ret = T0; xer_ca = 0; } } else { ret = (-1) * ((uint32_t)T0 >> 31); if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) { xer_ca = 0; } else { xer_ca = 1; } } T0 = ret; } /*****************************************************************************/ /* Floating point operations helpers */ void do_fctiw (void) { union { double d; uint64_t i; } p; /* XXX: higher bits are not supposed to be significant. * to make tests easier, return the same as a real PowerPC 750 (aka G3) */ p.i = float64_to_int32(FT0, &env->fp_status); p.i |= 0xFFF80000ULL << 32; FT0 = p.d; } void do_fctiwz (void) { union { double d; uint64_t i; } p; /* XXX: higher bits are not supposed to be significant. * to make tests easier, return the same as a real PowerPC 750 (aka G3) */ p.i = float64_to_int32_round_to_zero(FT0, &env->fp_status); p.i |= 0xFFF80000ULL << 32; FT0 = p.d; } void do_fnmadd (void) { FT0 = float64_mul(FT0, FT1, &env->fp_status); FT0 = float64_add(FT0, FT2, &env->fp_status); if (likely(!isnan(FT0))) FT0 = float64_chs(FT0); } void do_fnmsub (void) { FT0 = float64_mul(FT0, FT1, &env->fp_status); FT0 = float64_sub(FT0, FT2, &env->fp_status); if (likely(!isnan(FT0))) FT0 = float64_chs(FT0); } void do_fsqrt (void) { FT0 = float64_sqrt(FT0, &env->fp_status); } void do_fres (void) { union { double d; uint64_t i; } p; if (likely(isnormal(FT0))) { FT0 = float32_div(1.0, FT0, &env->fp_status); } else { p.d = FT0; if (p.i == 0x8000000000000000ULL) { p.i = 0xFFF0000000000000ULL; } else if (p.i == 0x0000000000000000ULL) { p.i = 0x7FF0000000000000ULL; } else if (isnan(FT0)) { p.i = 0x7FF8000000000000ULL; } else if (FT0 < 0.0) { p.i = 0x8000000000000000ULL; } else { p.i = 0x0000000000000000ULL; } FT0 = p.d; } } void do_frsqrte (void) { union { double d; uint64_t i; } p; if (likely(isnormal(FT0) && FT0 > 0.0)) { FT0 = float64_sqrt(FT0, &env->fp_status); FT0 = float32_div(1.0, FT0, &env->fp_status); } else { p.d = FT0; if (p.i == 0x8000000000000000ULL) { p.i = 0xFFF0000000000000ULL; } else if (p.i == 0x0000000000000000ULL) { p.i = 0x7FF0000000000000ULL; } else if (isnan(FT0)) { if (!(p.i & 0x0008000000000000ULL)) p.i |= 0x000FFFFFFFFFFFFFULL; } else if (FT0 < 0) { p.i = 0x7FF8000000000000ULL; } else { p.i = 0x0000000000000000ULL; } FT0 = p.d; } } void do_fsel (void) { if (FT0 >= 0) FT0 = FT1; else FT0 = FT2; } void do_fcmpu (void) { if (likely(!isnan(FT0) && !isnan(FT1))) { if (float64_lt(FT0, FT1, &env->fp_status)) { T0 = 0x08UL; } else if (!float64_le(FT0, FT1, &env->fp_status)) { T0 = 0x04UL; } else { T0 = 0x02UL; } } else { T0 = 0x01UL; env->fpscr[4] |= 0x1; env->fpscr[6] |= 0x1; } env->fpscr[3] = T0; } void do_fcmpo (void) { env->fpscr[4] &= ~0x1; if (likely(!isnan(FT0) && !isnan(FT1))) { if (float64_lt(FT0, FT1, &env->fp_status)) { T0 = 0x08UL; } else if (!float64_le(FT0, FT1, &env->fp_status)) { T0 = 0x04UL; } else { T0 = 0x02UL; } } else { T0 = 0x01UL; env->fpscr[4] |= 0x1; if (!float64_is_signaling_nan(FT0) || !float64_is_signaling_nan(FT1)) { /* Quiet NaN case */ env->fpscr[6] |= 0x1; if (!(env->fpscr[1] & 0x8)) env->fpscr[4] |= 0x8; } else { env->fpscr[4] |= 0x8; } } env->fpscr[3] = T0; } #if !defined (CONFIG_USER_ONLY) void do_rfi (void) { env->nip = env->spr[SPR_SRR0] & ~0x00000003; T0 = env->spr[SPR_SRR1] & ~0xFFFF0000UL; do_store_msr(env, T0); #if defined (DEBUG_OP) dump_rfi(); #endif env->interrupt_request |= CPU_INTERRUPT_EXITTB; } #endif void do_tw (int flags) { if (!likely(!((Ts0 < Ts1 && (flags & 0x10)) || (Ts0 > Ts1 && (flags & 0x08)) || (Ts0 == Ts1 && (flags & 0x04)) || (T0 < T1 && (flags & 0x02)) || (T0 > T1 && (flags & 0x01))))) do_raise_exception_err(EXCP_PROGRAM, EXCP_TRAP); } /* Instruction cache invalidation helper */ void do_icbi (void) { uint32_t tmp; /* Invalidate one cache line : * PowerPC specification says this is to be treated like a load * (not a fetch) by the MMU. To be sure it will be so, * do the load "by hand". */ #if defined(TARGET_PPC64) if (!msr_sf) T0 &= 0xFFFFFFFFULL; #endif tmp = ldl_kernel(T0); T0 &= ~(ICACHE_LINE_SIZE - 1); tb_invalidate_page_range(T0, T0 + ICACHE_LINE_SIZE); } /*****************************************************************************/ /* PowerPC 601 specific instructions (POWER bridge) */ void do_POWER_abso (void) { if (T0 == INT32_MIN) { T0 = INT32_MAX; xer_ov = 1; xer_so = 1; } else { T0 = -T0; xer_ov = 0; } } void do_POWER_clcs (void) { switch (T0) { case 0x0CUL: /* Instruction cache line size */ T0 = ICACHE_LINE_SIZE; break; case 0x0DUL: /* Data cache line size */ T0 = DCACHE_LINE_SIZE; break; case 0x0EUL: /* Minimum cache line size */ T0 = ICACHE_LINE_SIZE < DCACHE_LINE_SIZE ? ICACHE_LINE_SIZE : DCACHE_LINE_SIZE; break; case 0x0FUL: /* Maximum cache line size */ T0 = ICACHE_LINE_SIZE > DCACHE_LINE_SIZE ? ICACHE_LINE_SIZE : DCACHE_LINE_SIZE; break; default: /* Undefined */ break; } } void do_POWER_div (void) { uint64_t tmp; if ((Ts0 == INT32_MIN && Ts1 == -1) || Ts1 == 0) { T0 = (long)((-1) * (T0 >> 31)); env->spr[SPR_MQ] = 0; } else { tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ]; env->spr[SPR_MQ] = tmp % T1; T0 = tmp / Ts1; } } void do_POWER_divo (void) { int64_t tmp; if ((Ts0 == INT32_MIN && Ts1 == -1) || Ts1 == 0) { T0 = (long)((-1) * (T0 >> 31)); env->spr[SPR_MQ] = 0; xer_ov = 1; xer_so = 1; } else { tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ]; env->spr[SPR_MQ] = tmp % T1; tmp /= Ts1; if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) { xer_ov = 1; xer_so = 1; } else { xer_ov = 0; } T0 = tmp; } } void do_POWER_divs (void) { if ((Ts0 == INT32_MIN && Ts1 == -1) || Ts1 == 0) { T0 = (long)((-1) * (T0 >> 31)); env->spr[SPR_MQ] = 0; } else { env->spr[SPR_MQ] = T0 % T1; T0 = Ts0 / Ts1; } } void do_POWER_divso (void) { if ((Ts0 == INT32_MIN && Ts1 == -1) || Ts1 == 0) { T0 = (long)((-1) * (T0 >> 31)); env->spr[SPR_MQ] = 0; xer_ov = 1; xer_so = 1; } else { T0 = Ts0 / Ts1; env->spr[SPR_MQ] = Ts0 % Ts1; xer_ov = 0; } } void do_POWER_dozo (void) { if (Ts1 > Ts0) { T2 = T0; T0 = T1 - T0; if (((~T2) ^ T1 ^ (-1)) & ((~T2) ^ T0) & (1 << 31)) { xer_so = 1; xer_ov = 1; } else { xer_ov = 0; } } else { T0 = 0; xer_ov = 0; } } void do_POWER_maskg (void) { uint32_t ret; if (T0 == T1 + 1) { ret = -1; } else { ret = (((uint32_t)(-1)) >> (T0)) ^ (((uint32_t)(-1) >> (T1)) >> 1); if (T0 > T1) ret = ~ret; } T0 = ret; } void do_POWER_mulo (void) { uint64_t tmp; tmp = (uint64_t)T0 * (uint64_t)T1; env->spr[SPR_MQ] = tmp >> 32; T0 = tmp; if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) { xer_ov = 1; xer_so = 1; } else { xer_ov = 0; } } #if !defined (CONFIG_USER_ONLY) void do_POWER_rac (void) { #if 0 mmu_ctx_t ctx; /* We don't have to generate many instances of this instruction, * as rac is supervisor only. */ if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT, 1) == 0) T0 = ctx.raddr; #endif } void do_POWER_rfsvc (void) { env->nip = env->lr & ~0x00000003UL; T0 = env->ctr & 0x0000FFFFUL; do_store_msr(env, T0); #if defined (DEBUG_OP) dump_rfi(); #endif env->interrupt_request |= CPU_INTERRUPT_EXITTB; } /* PowerPC 601 BAT management helper */ void do_store_601_batu (int nr) { do_store_ibatu(env, nr, T0); env->DBAT[0][nr] = env->IBAT[0][nr]; env->DBAT[1][nr] = env->IBAT[1][nr]; } #endif /*****************************************************************************/ /* 602 specific instructions */ /* mfrom is the most crazy instruction ever seen, imho ! */ /* Real implementation uses a ROM table. Do the same */ #define USE_MFROM_ROM_TABLE void do_op_602_mfrom (void) { if (likely(T0 < 602)) { #ifdef USE_MFROM_ROM_TABLE #include "mfrom_table.c" T0 = mfrom_ROM_table[T0]; #else double d; /* Extremly decomposed: * -T0 / 256 * T0 = 256 * log10(10 + 1.0) + 0.5 */ d = T0; d = float64_div(d, 256, &env->fp_status); d = float64_chs(d); d = exp10(d); // XXX: use float emulation function d = float64_add(d, 1.0, &env->fp_status); d = log10(d); // XXX: use float emulation function d = float64_mul(d, 256, &env->fp_status); d = float64_add(d, 0.5, &env->fp_status); T0 = float64_round_to_int(d, &env->fp_status); #endif } else { T0 = 0; } } /*****************************************************************************/ /* Embedded PowerPC specific helpers */ void do_405_check_ov (void) { if (likely(((T1 ^ T2) >> 31) || !((T0 ^ T2) >> 31))) { xer_ov = 0; } else { xer_ov = 1; xer_so = 1; } } void do_405_check_sat (void) { if (!likely(((T1 ^ T2) >> 31) || !((T0 ^ T2) >> 31))) { /* Saturate result */ if (T2 >> 31) { T0 = INT32_MIN; } else { T0 = INT32_MAX; } } } #if !defined(CONFIG_USER_ONLY) void do_4xx_rfci (void) { env->nip = env->spr[SPR_40x_SRR2]; T0 = env->spr[SPR_40x_SRR3] & ~0xFFFF0000; do_store_msr(env, T0); #if defined (DEBUG_OP) dump_rfi(); #endif env->interrupt_request = CPU_INTERRUPT_EXITTB; } void do_4xx_load_dcr (int dcrn) { target_ulong val; if (unlikely(env->dcr_read == NULL)) do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_INVAL); else if (unlikely((*env->dcr_read)(env->dcr_env, dcrn, &val) != 0)) do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_PRIV_REG); else T0 = val; } void do_4xx_store_dcr (int dcrn) { if (unlikely(env->dcr_write == NULL)) do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_INVAL); else if (unlikely((*env->dcr_write)(env->dcr_env, dcrn, T0) != 0)) do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_PRIV_REG); } void do_load_403_pb (int num) { T0 = env->pb[num]; } void do_store_403_pb (int num) { if (likely(env->pb[num] != T0)) { env->pb[num] = T0; /* Should be optimized */ tlb_flush(env, 1); } } #endif /* 440 specific */ void do_440_dlmzb (void) { target_ulong mask; int i; i = 1; for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { if ((T0 & mask) == 0) goto done; i++; } for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { if ((T1 & mask) == 0) break; i++; } done: T0 = i; } /*****************************************************************************/ /* Softmmu support */ #if !defined (CONFIG_USER_ONLY) #define MMUSUFFIX _mmu #define GETPC() (__builtin_return_address(0)) #define SHIFT 0 #include "softmmu_template.h" #define SHIFT 1 #include "softmmu_template.h" #define SHIFT 2 #include "softmmu_template.h" #define SHIFT 3 #include "softmmu_template.h" /* try to fill the TLB and return an exception if error. If retaddr is NULL, it means that the function was called in C code (i.e. not from generated code or from helper.c) */ /* XXX: fix it to restore all registers */ void tlb_fill (target_ulong addr, int is_write, int is_user, void *retaddr) { TranslationBlock *tb; CPUState *saved_env; target_phys_addr_t pc; int ret; /* XXX: hack to restore env in all cases, even if not called from generated code */ saved_env = env; env = cpu_single_env; ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, is_user, 1); if (unlikely(ret != 0)) { if (likely(retaddr)) { /* now we have a real cpu fault */ pc = (target_phys_addr_t)retaddr; tb = tb_find_pc(pc); if (likely(tb)) { /* the PC is inside the translated code. It means that we have a virtual CPU fault */ cpu_restore_state(tb, env, pc, NULL); } } do_raise_exception_err(env->exception_index, env->error_code); } env = saved_env; } /* TLB invalidation helpers */ void do_tlbia (void) { if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_6xx)) { ppc6xx_tlb_invalidate_all(env); } else if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_4xx)) { /* XXX: TODO */ #if 0 ppcbooke_tlb_invalidate_all(env); #endif } else { tlb_flush(env, 1); } } void do_tlbie (void) { #if !defined(FLUSH_ALL_TLBS) if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_6xx)) { ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 0); if (env->id_tlbs == 1) ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 1); } else if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_4xx)) { /* XXX: TODO */ #if 0 ppcbooke_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, env->spr[SPR_BOOKE_PID]); #endif } else { /* tlbie invalidate TLBs for all segments */ T0 &= TARGET_PAGE_MASK; T0 &= ~((target_ulong)-1 << 28); /* XXX: this case should be optimized, * giving a mask to tlb_flush_page */ tlb_flush_page(env, T0 | (0x0 << 28)); tlb_flush_page(env, T0 | (0x1 << 28)); tlb_flush_page(env, T0 | (0x2 << 28)); tlb_flush_page(env, T0 | (0x3 << 28)); tlb_flush_page(env, T0 | (0x4 << 28)); tlb_flush_page(env, T0 | (0x5 << 28)); tlb_flush_page(env, T0 | (0x6 << 28)); tlb_flush_page(env, T0 | (0x7 << 28)); tlb_flush_page(env, T0 | (0x8 << 28)); tlb_flush_page(env, T0 | (0x9 << 28)); tlb_flush_page(env, T0 | (0xA << 28)); tlb_flush_page(env, T0 | (0xB << 28)); tlb_flush_page(env, T0 | (0xC << 28)); tlb_flush_page(env, T0 | (0xD << 28)); tlb_flush_page(env, T0 | (0xE << 28)); tlb_flush_page(env, T0 | (0xF << 28)); } #else do_tlbia(); #endif } /* Software driven TLBs management */ /* PowerPC 602/603 software TLB load instructions helpers */ void do_load_6xx_tlb (int is_code) { target_ulong RPN, CMP, EPN; int way; RPN = env->spr[SPR_RPA]; if (is_code) { CMP = env->spr[SPR_ICMP]; EPN = env->spr[SPR_IMISS]; } else { CMP = env->spr[SPR_DCMP]; EPN = env->spr[SPR_DMISS]; } way = (env->spr[SPR_SRR1] >> 17) & 1; #if defined (DEBUG_SOFTWARE_TLB) if (loglevel != 0) { fprintf(logfile, "%s: EPN %08lx %08lx PTE0 %08lx PTE1 %08lx way %d\n", __func__, (unsigned long)T0, (unsigned long)EPN, (unsigned long)CMP, (unsigned long)RPN, way); } #endif /* Store this TLB */ ppc6xx_tlb_store(env, T0 & TARGET_PAGE_MASK, way, is_code, CMP, RPN); } /* Helpers for 4xx TLB management */ void do_4xx_tlbia (void) { #if 0 ppc_tlb_t *tlb; target_ulong page, end; int i; for (i = 0; i < 64; i++) { tlb = &env->tlb[i]; if (tlb->prot & PAGE_VALID) { end = tlb->EPN + tlb->size; for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) tlb_flush_page(env, page); tlb->prot &= ~PAGE_VALID; } } #endif } void do_4xx_tlbre_lo (void) { #if 0 ppc_tlb_t *tlb; T0 &= 0x3F; tlb = &env->tlb[T0]; T0 = tlb->stor[0]; env->spr[SPR_40x_PID] = tlb->pid; #endif } void do_4xx_tlbre_hi (void) { #if 0 ppc_tlb_t *tlb; T0 &= 0x3F; tlb = &env->tlb[T0]; T0 = tlb->stor[1]; #endif } static int tlb_4xx_search (target_ulong virtual) { #if 0 ppc_tlb_t *tlb; target_ulong base, mask; int i, ret; /* Default return value is no match */ ret = -1; for (i = 0; i < 64; i++) { tlb = &env->tlb[i]; /* Check TLB validity */ if (!(tlb->prot & PAGE_VALID)) continue; /* Check TLB PID vs current PID */ if (tlb->pid != 0 && tlb->pid != env->spr[SPR_40x_PID]) continue; /* Check TLB address vs virtual address */ base = tlb->EPN; mask = ~(tlb->size - 1); if ((base & mask) != (virtual & mask)) continue; ret = i; break; } return ret; #else return -1; #endif } void do_4xx_tlbsx (void) { T0 = tlb_4xx_search(T0); } void do_4xx_tlbsx_ (void) { int tmp = xer_ov; T0 = tlb_4xx_search(T0); if (T0 != -1) tmp |= 0x02; env->crf[0] = tmp; } void do_4xx_tlbwe_lo (void) { #if 0 ppc_tlb_t *tlb; target_ulong page, end; T0 &= 0x3F; tlb = &env->tlb[T0]; /* Invalidate previous TLB (if it's valid) */ if (tlb->prot & PAGE_VALID) { end = tlb->EPN + tlb->size; for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) tlb_flush_page(env, page); } tlb->size = 1024 << (2 * ((T1 >> 7) & 0x7)); tlb->EPN = (T1 & 0xFFFFFC00) & ~(tlb->size - 1); if (T1 & 0x400) tlb->prot |= PAGE_VALID; else tlb->prot &= ~PAGE_VALID; tlb->pid = env->spr[SPR_BOOKE_PID]; /* PID */ /* Invalidate new TLB (if valid) */ if (tlb->prot & PAGE_VALID) { end = tlb->EPN + tlb->size; for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) tlb_flush_page(env, page); } #endif } void do_4xx_tlbwe_hi (void) { #if 0 ppc_tlb_t *tlb; T0 &= 0x3F; tlb = &env->tlb[T0]; tlb->RPN = T1 & 0xFFFFFC00; tlb->prot = PAGE_READ; if (T1 & 0x200) tlb->prot |= PAGE_EXEC; if (T1 & 0x100) tlb->prot |= PAGE_WRITE; #endif } #endif /* !CONFIG_USER_ONLY */